APPENDIX E

TARGET AND REFERENCE WAVE PACKETS

Here we derive analytic expressions for the target (reference) wave packet defined by Eq. (5.25) (Eq. (5.26)). Using the short-pulse limit of the B_{x} pulse propagator (5.11) and the free-evolution operator of first-order in J given in footnote 52 of Chapter V , we find

$$
\begin{equation*}
\left|\xi_{1^{\prime}}\right\rangle=\frac{\mu J}{2} \operatorname{area}_{B} \int_{0}^{t_{w}} d \tau e^{-i H_{1^{\prime}}\left(t_{w}-\tau\right)} e^{-i H_{1^{\prime}} \tau}|0,0\rangle . \tag{E.1}
\end{equation*}
$$

The target wave packet (E.1) is assumed to originate from the vibrational ground-state of the electronically unexcited complex; area $_{I}=\int d t A_{I}(t)$ is the integrated pulse envelope.

We can use harmonic-oscillator creation and annihilation operators to go further with Eq. (E.1). Adopting the usual definitions $q_{a}=(2 m \omega)^{-1 / 2}\left(a^{\dagger}+a\right)$, $p_{a}=i(m \omega / 2)^{1 / 2}\left(a^{\dagger}-a\right), q_{b}=(2 m \omega)^{-1 / 2}\left(b^{\dagger}+b\right), p_{b}=i(m \omega / 2)^{1 / 2}\left(b^{\dagger}-b\right)$, and introducing the corresponding phase-space translation operators $T_{a}(\alpha)=\exp \left(\alpha a^{\dagger}-\alpha^{*} a\right)$ and $T_{b}(\beta)=\exp \left(\beta b^{\dagger}-\beta^{*} b\right)$, we have

$$
\begin{align*}
& H_{1}=T_{a}(\delta)\left(H_{0}+\varepsilon_{1}\right) T_{a}^{\dagger}(\delta) \tag{E.2}\\
& H_{1^{\prime}}=T_{b}(\delta)\left(H_{0}+\varepsilon_{1^{\prime}}\right) T_{b}^{\dagger}(\delta) \tag{E.3}\\
& H_{2}=T_{a}(\delta) T_{b}(\delta)\left(H_{0}+\varepsilon_{2}\right) T_{b}^{\dagger}(\delta) T_{a}^{\dagger}(\delta) . \tag{E.4}
\end{align*}
$$

From the relations (E.1) through (E.4) and some operator algebra it follows that

$$
\begin{align*}
\left|\xi_{1^{\prime}}\right\rangle= & -\frac{\mu J}{2} \text { area }_{B} e^{-2 \delta^{2}-i \varepsilon_{1} \tau_{\tau i b} / 2} \tag{E.5}\\
& \times \int_{0}^{\tau_{i b} / 2} d \tau \exp \left\{i\left(\varepsilon_{1^{\prime}}-\varepsilon_{1}\right) \tau-2 i \delta^{2} \sin \omega \tau+\delta\left(1-e^{i \omega \tau}\right) a^{\dagger}+\delta\left(1+e^{i \omega \tau}\right) b^{\dagger}\right\}|0,0\rangle
\end{align*}
$$

The dimensionless displacement is $\delta=(m \omega / 2)^{1 / 2} d$, and the waiting time has been set to $t_{w}=\tau_{v i b} / 2$.

In the short-pulse limit, the reference wave packet (5.26) prepared from the vibronic ground state remains a quasi-classical coherent state of the form

$$
\begin{equation*}
\left|\alpha_{1^{\prime}}\right\rangle=-i\left(\frac{\mu}{2}\right)^{3} \operatorname{area}_{A} \operatorname{area}_{C} \operatorname{area}_{D} e^{i \Omega_{p} t_{p}-i \Omega_{d} t_{d}} e^{i H_{2} t_{d}} e^{-i H_{\gamma^{\prime}}\left(t_{p}+t_{w}+t_{d}\right)} e^{i H_{0} t_{p}}|0,0\rangle \tag{E.6}
\end{equation*}
$$

Relations (E.3) and (E.4) plus some operator manipulations (and the choice $t_{w}=\tau_{v i b} / 2$) lead to the more explicit expression

$$
\begin{align*}
& \left|\alpha_{1^{\prime}}\right\rangle=i\left(\frac{\mu}{2}\right)^{3} \text { area }_{A} \text { area }_{C} \text { area }_{D} \tag{E.7}\\
& \quad \times \exp \left\{-i \frac{\varepsilon_{1^{\prime}} \tau_{v i b}}{2}+i\left(\Omega_{p}-\varepsilon_{1^{\prime}}\right) t_{p}-i\left(\Omega_{d}+\varepsilon_{1^{\prime}}-\varepsilon_{2}\right) t_{d}\right. \\
& \left.\quad+\delta^{2} e^{i \omega t_{d}}-\delta^{2} e^{-i \omega t_{p}}-2 \delta^{2}+\delta\left(1-e^{i \omega t_{d}}\right) a^{\dagger}+\delta\left(1+e^{-i \omega t_{p}}\right) b^{\dagger}\right\}|0,0\rangle
\end{align*}
$$

The inner product of (E.5) and (E.7) leads to the experimentally isolable complex overlap, Eq. (5.29), that is plotted in Chapter V.

