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ABSTRACT 

The principal isotope enrichment business in the world is the enrichment of uranium for 
commercial power reactor fuels. However, there are a number of other needs for separated 
isotopes.  Some examples are: 1) Pure isotopic targets for irradiation to produce medical 
radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various 
uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. 

Examples of interest to medicine are non-radioactive targets such as S-33, Mo-98, Mo-100, W-
186, Sn-112 to produce radio-isotopes; while for MRI diagnostics, the natural Xe-129 isotope 
is wanted. For super-semiconductor applications desired industrial isotopes are Si-28, Ga-69, Ge-
74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is zinc 
depleted of the Zn-64 isotope. Depleted zinc is used as a corrosion inhibitor in nuclear reactor 
primary coolant systems. Neutron activation of Ar isotopes is of interest in industrial tracer and 
diagnostic applications (e.g. oil-logging).

In the past few years there has been a sufficient supply of isotopes in common demand, because 
of huge Russian stockpiles produced with old electromagnetic and centrifuge separators 
previously used for uranium enrichment. Production of specialized isotopes in the USA has been 
largely accomplished using old “calutrons” (electromagnetic separators) at Oak Ridge National 
Laboratory. These isotope separation methods are rather energy inefficient.
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Use of lasers for isotope separation has been considered for many decades. None of the proposed 
methods have attained sufficient proof of principal status to be economically attractive to pursue 
commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather 
new and different method, know as condensation repression. In this scheme, a gas of the selected 
isotopes for enrichment, is irradiated with a laser at a particular wavelength that would excite 
only one of the isotopes. The entire gas is subjected to low temperatures sufficient to 
cause condensation on a cold surface or coagulation in the gas. Those molecules in the gas that 
the laser excited are not as likely to condense or dimerize (coagulate into a double molecule, 
called a dimer) as unexcited molecules. Hence in cold-wall condensation, gas drawn out of the 
system is enriched in the isotope that was laser-excited.  

We have evaluated the relative energy required in this process if applied on a commercial 
scale. We estimate the energy required for laser isotope enrichment is about 30% of that 
required in centrifuge separations, and 2% of that required by use of "calutrons". 

INTRODUCTION.

Nuclear medicine and industrial isotope users are relying on a growing number of enriched natural 
isotopes. Some nuclei of these isotopes can be transmuted by spallation reactions induced by 
particle accelerators or by neutron absorptions produced in research reactors, to yield valuable 
radioactive species for medical and industrial applications. Disruption in the supply of enriched 
isotope sources, which are currently provided by surplussed Russian and European ultra-centrifuges 
(UCF) or electromagnetic calutrons (EMC) at Oak Ridge, could seriously jeopardize such nuclear 
applications. It is therefore important that new laser isotope separation (LIS) techniques be 
developed to insure a secure supply of source isotopes for these important medical and industrial 
disciplines. Prices of isotopes produced by converted UCF or EMC plants, used earlier for Uranium 
enrichment operations, are rather high because of high energy consumptions. For example 33SF6
enriched to 99% in a UCF presently sells for about $16,000 per gram of S-33. LIS schemes forecast 
ten-fold lower costs. Table 1 lists some isotopes used in modern medicine that require enrichment. 

One of the main reasons for a need of pure isotopes in medical applications is to minimize the 
natural contamination in radioisotopes used in nuclear medicine. For instance, the most common 
nuclear medicine isotope is Tc-99, derived from radioactive Mo-99 shipped to hospitals weekly in a 
“cow.” The Mo-99 (half life 2.75 days) decays to Tc-99 (half life 6 hours), which is eluted 
chemically from the “cow” for injection into the patient. The elution is never perfectly free of 
contamination from some of the parent material (Mo), and hence the need to keep the quantity of 
Mo to a minimum. Current techniques for producing the Mo are by separating it from the fuel and 
fission products irradiated in a nuclear reactor. The chemical process cannot distinguish between the 
seven or more different Mo isotopes which come from the fission process, and hence all of these 
isotopes naturally come along into the product. This process results in a lot of high-level radioactive 
chemical waste. An alternative process would produce Mo-99 either from neutron irradiation of 
Mo-98 (24%) or neutron spallation on Mo-100 (9.6%), with essentially no high level waste. If 
indeed these processes became the ones preferred because they produce no high level waste, then 
pure targets of either Mo-98 or Mo-100 would be needed in order to minimize the “contamination” 
of the five other naturally occurring isotopes of Mo.  In fact the one reason that medical production 
of Mo-99 uses the fission product process is that it has far less Mo contamination than the neutron 
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irradiation process on pure Mo-98. The latter, even in a high flux reactor, produces typically only 1 
activated Mo-99 atom in every 50,000 Mo-98 atoms.  However, the many other medical isotope 
applications that depend on neutron irradiation in reactors (and have no fission product production 
options) need to start with pure targets of the isotope that is exposed to neutron capture. 

Medical isotope needs are rather small, in the gram range, with patient injections being in the 
milligram range. However, as has been pointed out above, there are needs for pure isotopes in 
industrial applications, and these come in the kg range need. When dealing with the need for very 
large quantities of an isotope, existing techniques used for uranium separation might be more 
feasible, at least until laser isotope separation techniques have been demonstrated to be sufficiently 
effective for commercial development. For that reason our focus in this paper is on laser techniques 
for isotope separations of potential use in nuclear medicine.     

BACKGROUND.

After sufficiently powerful lasers became available in the 1970’s for isotope-selective excitations, it 
appeared that quantum-action LIS techniques might enrich some isotopes at much lower cost than 
the old mass-action UCF and EMC schemes. A world-wide effort to develop LIS techniques 
ensued. The main advantage of LIS methods over mass-action UCF and EMC processes, is that in 
the latter case, all isotopes of a desired element must be energized, while in LIS one only energizes 
one isotope of interest. For example to separate S-33 whose natural abundance is 0.75%, a UCF or 
EMC device must energize 133 times more molecules or atoms than what is required in a LIS 
process. In addition, single-stage separation factors ( ) are generally higher, that is  > 2 compared 
to  1.3 for UCF. (Note, in the traditional gaseous diffusion process used for uranium enrichment, 
the single stage  = 1.0043.) Therefore, LIS separator equipment offers smaller footprints, which 
allows small-quantity radioisotope separators to be mounted inside standard hot-cells. Thus LIS 
offers the possibility of providing new radioisotopes which hitherto were too difficult to extract 
from a "hot" product mixture. 

Two different LIS approaches have evolved in the last decades. One labeled AVLIS (Atomic Vapor 
LIS) employs atomic vapors and utilizes isotope shifts of electronic excitation frequencies. The 
other called MLIS (Molecular LIS), uses gaseous molecules and takes advantage of isotope-shifts of 
vibrational absorption bands. In AVLIS, laser photons in the ultraviolet or visible spectrum are 
used, while MLIS requires laser excitations in the infrared. Using high-temperature furnaces and 
electron-beam evaporators of elemental Uranium, AVLIS has been developed at Livermore for 
Uranium enrichment. Compared to MLIS and UCF schemes however, AVLIS is uneconomic and 
too expensive to develop for most medical isotope separation applications. 
Suitable infrared lasers for vibrational excitations in MLIS were developed in the 1970 to 1990 
period, and a number of favorable laser/isotope spectral matches were found. While the first step of 
providing selective molecular laser excitation was straightforward, the second MLIS step of 
separating or "harvesting" excited isotopic species from unexcited ones, proved more difficult. Early 
MLIS harvesting involved molecular obliterations (MOLIS) and enhanced chemical reactions 
(CHEMLIS) with a mixed-in co-reactant. In these schemes, aside from selective excitation, laser 
photons induced dissociations and/or chemical reactions of selected isotopic molecules with mixed-
in co-reactants, yielding enriched or depleted products that were chemically different and separable 
from feed molecules. Although a few MOLIS/CHEMLIS schemes using multi- photon absorption 
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were successful, they still required a large number of photons per separated isotopic molecule, 
partly negating the basic LIS promise of low energy consumption. Experiments showed further that 
many heavy molecules of interest form process-complicating dimers when they are cooled to 
improve spectral separation of adjacent isotopic absorption bands. 

Rather than combating dimerization (coagulation into double molecules), subsequent research took 
advantage of it, leading to the more recent condensation repression (CR) harvesting techniques. A 
big advantage of CR-MLIS is that feed and product gas streams are chemically the same, so staging 
is simple. Furthermore one laser beam can irradiate three or more enriching chambers in series. 
Finally, quantum energies needed to affect CR are compatible with single photon energies of high-
power infrared CO2 and CO lasers. CR-MLIS can be activated by single infrared photons of only 
~0.1 eV per monomer or dimer, which compares with 6.2 eV per atom for Uranium ionization in 
AVLIS, and 2 to 5 eV per UF6 molecule for a laser-induced chemical change in MOLIS/CHEMLIS. 

The throughput of a single supersonic free-jet CR-MLIS device (Fig. 1) is ~0.1 moles/hr, which is 
comparable to a single gas ultracentrifuge unit that processes 0.1 to 1 moles/hr. This flow rate is 
adequate in most medical or tracer isotope applications. A single cold-wall CR-MLIS unit (Fig. 2) 
on the other hand can process only ~10-5 moles/hr and the surface physics is only favorable for a 
few isotopic molecules (see below). Nevertheless the latter technique can still be useful for 
separating small quantities of selected (radio)isotopes. Table 2 summarizes typical performance 
parameters and estimated product costs of UCF, EMC, and LIS separators. In what follows we 
outline the basic principles of free-jet and cold-wall CR-MLIS methods researched at the University 
of Missouri and Idaho State University.  

CONDENSATION REPRESSION HARVESTING.

The two CR schemes that have been investigated use either a supersonic free jet and low-
temperature dimer formation, or take advantage of cold-wall condensation of a subsonic gas stream. 
Both employ mixtures of a vapor with isotopic molecules such as iQF6, iQF4, or iQXYZ (e.g. MoF6,
SF6, TeF6, XeOF4) with iQ a desired isotope, diluted in excess carrier gas G (G could be H2, He, N2,
Ar, Xe, SF6, etc). Both CR schemes are operated at low temperatures and pressures. In the free-jet 
method, a self-cooling QF6/G gas stream expands adiabatically through a nozzle into a low-pressure 
chamber shown in Figure 1. After traversing the laser irradiation chamber, most of the jet core is 
captured by a skimmer, while rim gases that diffuse radially out of the core are evacuated 
separately. A tuned laser beam irradiates the jet coaxially or transversely and excites selected iQF6
isotopic molecules. Unexcited jQF6 molecules dimerize in the jet as it cools and tend to stay in the 
jet core longer because of their heavier mass. Excited iQF6

* migrate out of the jet core more rapidly, 
following a sub-microsecond existence as a iQF6

*:G dimer that experiences (pre)dissociation, 
yielding epithermal iQF6 and G molecules that recoil off each other. As a result the rim gases are 
enriched by, and the skimmer gas stream is depleted of iQF6. The heavier the atomic mass MG of 
carrier gas G, the higher the separation factor i is [1]. However to insure adequate jet cooling, the 
gas specific heat ratio of G must be 1.2 < (cp/cv)G< 1.4. 

In the cold-wall approach, a coaxial laser beam selectively excites iQF6 in a QF6/G gas stream that 
flows subsonically through a wall-cooled tube, shown in Figure 2. The temperature of the wall must 
be such that the corresponding equilibrium vapor pressure is below the partial pressure of the 
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incoming QF6 vapor, allowing some QF6 to condense out. The precise value of the wall temperature 
T is further selected to optimize isotope separation. The laser beam radius in the tube should be as 
close as possible to the inner radius of the cylindrical tube, but not touch it. Then, if sufficient 
numbers of excited iQF6

* reach the cold wall (i.e. at low total pressures), and provided the 
vibrational excitation quantum a of iQF6

* exceeds the depth D  of the attractive surface potential, 
iQF6 will desorb from the surface at a higher rate than unexcited jQF6. This is due to vibration-to-
translation (VT) energy conversion and recoil of surface-captured iQF6

* molecules, from 
(pre)dissociation effects. The exit gas stream is thereby isotope-enriched and the wall condensate 
isotope-depleted. However the condition a > D  and additional molecular surface orientation 
restrictions, eliminate some isotopic molecules from a possible CR-MLIS process. 

Free-jet and cold-wall CR-MLIS are only effective at total gas mix pressures below 0.1 torr. 
Because of the supersonic speed, throughputs in the free-jet scheme are still reasonable. In the 
subsonic cold-wall scheme however, process gases move a thousand times more slowly. Free-jets 
are therefore preferred for most CR-MLIS separations. For milligram separations of (radioactive) 
medical isotopes however, the simpler cold-wall CR method may still be useful. 

In both the subsonic cold-wall and supersonic free-jet case, earlier theories of cold-wall 
condensation, dimerization, and vibrational relaxation, were found inadequate and incapable of 
predicting experimental observations. Calculated optimum gas pressures were far too high. This 
greatly hindered validation of CR-MLIS concepts, which appeared fundamentally viable. In-depth 
studies were therefore undertaken to reexamine condensation, dimerization, and vibrational 
relaxation physics of QF6 vapor molecules. The results are published in [1–4]. 

Cold-wall laser isotope separation of iBCl3 was first announced in 1975 by K.S. Gochelasvili e.a. 
[5]. However attempts at Los Alamos by G.K. Anderson and J.T. Lee to duplicate the Russian 
results failed [6], and in general the concept has received mixed reviews. Our new cold-wall 
condensation theory has thrown new light on the method and can explain previous ambiguities. The 
new condensation theory uses a new principle in accounting for the various possible outcomes or 
"events" when an excited or unexcited QF6 molecule strikes a cold surface covered with QF6
condensate. At gas pressures below about ten atmospheres, one can show that such interaction 
events occur primarily between one striking QF6 molecule and one surface-captured QF6. By listing 
all of the most probable one-on-one events such as surface capture, expulsion by high energy 
surface-striking gas molecules, ejection by condensate phonons, etc, and by recognizing that the 
sum of these probabilities must equal unity for an average QF6 molecule, important parameters such 
as critical temperatures and vapor pressure curves can be deduced which agree well with 
experiment. For molecules like SF6 with a> D , the theory predicts possible isotope separations at 
low pressures within small temperature windows with enrichment factors 2 as shown in Figure 3 
[3,4]. CR-MLIS experiments with CO2 laser irradiations at Idaho State University (ISU) and the 
University of Missouri (MU) have confirmed that cold-wall separations of iSF6 indeed take place 
[7]. Measured values of  = 1.5 to  = 2 agree with calculated values. Unfortunately because of low 
throughputs, long collection times (hours) are needed to enrich even micrograms; that is cold-wall 
isotope separation is less favorable than the free-jet scheme.  

The possibility of laser-induced isotope separation by gas-phase dimerization repression in super-
cooled supersonic free jets was first proposed by Y.T. Lee in 1977 [9], and experimentally verified 
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for SF6 by H. VandenBergh in 1985 [10]. Lee's original proposal considered laser excitation of 
already formed dimers, which would thereafter pre-dissociate, whereas our work and 
VandenBergh's indicate that excitation of iQF6 monomers followed by dimerization (e.g. iQF6

*:Xe) 
and subsequent pre-dissociation of the dimer is more profitable. This is because photon absorption 
peaks of monomers have much higher cross-sections than those of dimers [2].  

As mentioned, originally the major problem in diagnosing and predicting dimerization in free jets 
was the lack of a reliable theory. It was earlier believed that dimers only form in three-body 
collisions because of simultaneous energy and momentum conservation, which requires that one of 
the three interacting bodies must carry off any excess energy so that the other two can bond. If so, 
the high rates of dimer formation observed in cold supersonic free jets, would be theoretically 
impossible. If the three-bodies theory were correct, laser-pumped vibrational states of QF6
molecules at low temperatures should last a relatively long time. According to the three-bodies-only 
dimer formation theory and well-established VT relaxation relations, for heavy molecules QF6 and 
heavy carrier gases G, laser-excited QF6

* molecules should last through some 105 collisions before 
loosing their vibrational energy by collisional VT transfers, when T<200K. Early CR-MLIS 
experiments relying on this theory therefore used process gas pressures that were much higher than 
what was found later to be effective. 

A new examination of dimerization physics revealed that the three-bodies-only theory for creation 
of dimer populations is incorrect. This orbital mechanics theory assumes motions of point particles.
Actually it was found that for finite-sized molecules, dimers are more frequently formed in two-
body contact collisions for those with kinetic energies in the low-energy part of the Boltzmann 
distribution [1]. Excess energy is shed by exchange with vibrational quanta of the VanderWaals 
dimer potential and by induction of dimer rotation. Dimer formation rates are essentially the same 
for laser-excited and unexcited QF6 molecules, since both migrate with the same thermal molecular 
speeds. However after a few rotations and dimer vibrations of a freshly formed QF6

*:G dimer, 
stored vibrational energy a is converted into kinetic energy by the pre-dissociation process [2]. 
This VT conversion forces the dimer partners to recoil off each other and is utilized in CR-MLIS 
free-jet isotope separation. The new dimer formation theory [1] shows that the probability for dimer 
formation increases exponentially with decreasing temperature. Thus vibrational relaxation rates of 
excited iQF6

* also increase as the temperature drops since they are catalyzed by dimerization. This is 
opposite to earlier (dimer-less) collisonal VT theory where VT relaxation rates decrease 
exponentially with decreasing T. The new theory explains why earlier CHEMLIS schemes failed: 
the (pre)dissociation time for freshly formed QF6

*:R dimers (R = coreactant) is shorter than the time 
it takes for a chemical rearrangement of the atoms in the reaction complex. With the new dimer 
theory, migrations of dimers, thermal, and epithermal monomers in and out of a supersonic free jet 
can be calculated with and without laser irradiation [2]. Optimum pressures and temperatures for 
isotope enrichment can be predicted, as shown for example in Figure 4, which plots the enrichment 
factor  versus temperature T for dimethyl-zinc, iZn(CH3)2, excitable by a CO laser. Zn-67 and Zn-
68 are used as targets in accelerators to produce Cu-67 and Ga-68, which are important for tumor 
diagnostics and treatment. Zn-64-depleted zinc is desirable as a low neutron absorbing corrosion 
inhibitor in BWR cooling systems.  

CONCLUSIONS.
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We believe that free-jet and cold-wall condensation repression harvesting in laser isotope 
separations are promising processes for enriching medical and industrial isotopes, and that the 
requisite physics has been developed with which to model the performance of these processes. 
Much research with different isotopic molecules is still needed to increase our data-base of CR-
MLIS methods, and to further validate the new analytic theories we have developed. Because in 
CR-MLIS, feed and product gases are physically the same (except for isotopic composition), simple 
enriching stages can be used in series and be irradiated by a single laser beam to obtain desired 
overall enrichments. When compared with UCF's, the main advantage of CR-MLIS is the total 
energy consumed per separated isotope and the smaller chamber size. Ultimately CR-MLIS 
techniques might be used for the separation of a particular radioactive isotope from a "hot" mix of 
products generated by accelerators or reactors. This could be done in hot-cells with infrared 
transmitting windows through which a laser beam is passed from an outside high-power laser.  

There is considerable laboratory experimental work to be done to demonstrate the conditions under 
which condensation repression will operate for a particular molecular isotope.  Comparison with 
theory will help to ratify the adequacy of the theory.  Such experiments would be appropriate to be 
done on several isotopes of medical interest.  Such work is generally of the type that can be 
conducted in a university laboratory setting.  The Idaho National Laboratory, with its Center for 
Advanced Energy Studies that is closely associated with the regional universities, would be an ideal 
venue for carrying out research of this type.   
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           TABLE I.  MEDICAL RADIO-ISOTOPES.

DESIRED RADIO-ISOTOPE*)    NATURAL TARGET**)       APPLICATION 

(A) SPALLATION - ACCELERATOR PRODUCED

I-123 (13.2h) Xe-124 (0.1%), {p,2p} PET Scan***)

I-123 (13.2h) Te-122(2.6%), {d,n} PET Scan***)

Mo-99(66h)/Tc-99m (6h) Mo-100 (9.6%), {p,pn} Diagnostics; 150,000 US 
procedures weekly 

Cu-67 (2.58d) Zn-67 (4.1%), {p,n} Radiotherapy with 
Monoclonal Antibodies 

Ge-68(270d)/Ga-68 (68m) Zn-68 (18.7%), {p,n} Generator for PET***)

Co-57 (272d) Fe-57 (2.1%), {p,n} Radiotherapy 

Pd-103 (17d) Rh-103 (100%), {p,n} Prostate "Thera-Seed" 

Tl-201 (3.04d) Tl-203 (29.5%),{p,t}/decay Heart Scan 

Co-58 (9.1h/71d)  Ni-58 (68%), {p,n} Anemia Tracer 

 (B) NEUTRON ACTIVATION - PRODUCED IN RESEARCH REACTOR

P-33 (25d) S-33 (0.74%), {n,p} Diagnotics/Therapy 

Os-191(15d)/Ir-191 (4.9s) Os-190 (26%), {n, } Pediatric Cardiology 

Os-194(6a)/Ir-194 (19.4h) Os-192 (41%), {2n, } Proposed Radiotherapy 

Rh-105 (35.4h) Ru-104(19%) indirct{n, } Radio-Immune Therapy 

Mo-99(66h)/Tc-99m (6h) Mo-98 (24%), {n, });
U-235 (0.7%),{n,fission} 

Diagnostics; 150,000 US 
procedures weekly. 

W-188(69d)/Re-188 (17h) W-186 (28%), {2n, } Radiotherapy Trials 

Sn-113(115d)/In-113m (1.7h) Sn-112 (1%), {n, } Diagnostics

Dy-166(3.4d)/Ho-166 (117d) Dy-164 (28%), {2n, } Bone Marrow Ablation 

Pm-149 (48h) Nd(148) (17.2%), {n, }

Pd-103 (17d) Pd-102 (1%), {n, } Prostate "Thera-Seed" 

Pt-195 (4.02d) Pt-194 (33%), {n, } Brain Scan 

Sm-153 (1.93d) Sm-152 (27%), {n, } Bone Cancer Therapy 

Re-186 (3.77d) Re-185 (37%), {n, }

Lu-177 (6.68d) Lu-176 (2.6%), {n, } Radio-Immune Therapy 
*)    Combinations indicate parent/daughter pairs. Half-lifes are in parentheses.   
**)   Parentheses ( ) are natural abundances of target isotopes; { } indicate nuclear reactions. 
***) PET= Positron Emission Tomography



 TABLE II. COMPARISON OF ENRICHMENTS OF 33S FROM 0.74% F  99%Y/0.2%W1)

           MASS ACTION1)         LASER1)

     UCF 
     (SF6)

   EMC            
(S)

    MOLIS 
    (SF5Cl)

Free-Jet  CRISLA2)

(SF6)

stage       1.09       10         4       2.2 

  Total No 
   Stages3)

      125
 (110 + 15) 

       7
  (5 + 2) 

        8
    (7 + 1) 

      14
   (12 + 2)  

  No of Unit          
Separators 

    3,1574)      140         23        14 

 Feed per Unit5)

  Fu ,moles/hr 
     0.2504)     0.011       0.040      0.064 

Plant Total Feed,
F, moles/hr 

     201.34)     3.660       3.660      3.660 

   Plant Output       
Y, moles/hr 

     0.1104)     0.020       0.020      0.020 

  Footprint for 
   Plant, m2

     1,2504)    16,000 25 for chambers + 
975 for lasers= 1000 

5 for chambers + 
105 for lasers = 110 

  kWhr/mole     40,000  150,000       9,4006)       3,600 

  Consumed eV        
per S-33 

  1,492,400 5,596,500      350,714     134,316 

 Atomic Excit’n 
   eV per S-33 

      ----     1,392 
(ionization) 

        3.0 
  (dissociation) 

        0.1 
(dimer predissoc’n) 

  Operating    
Cost 

  $ 250/g  $ 6,000/g        $ 165/g        $ 95/g 

  Write-off 
  Plant (10y) 

  $ 1,850/g  $ 6,000/g        $ 177/g        $ 125/g 

 Total Product 
    Cost 

  $ 2,100/g  $ 12,000/g        $ 342/g        $ 220/g 

1) F = Feed; Y = Product; and W = Tails Stream Flow Rates in moles/hr. xx% = S-33 abundance. All values 
are coarse estimates based on open literature publications. Note that W = F – Y. 
2) CRISLA = Condensation Repression by Isotope Selective Laser Activation = CR-MLIS.  
3) Ideal cascades are assumed with number of stages in enriching and stripping sections in parentheses. 
4) For a UCF the minimum-sized plant requires 3,157 units, with YUCF = 0.11 moles/hr; FUCF = 201             
moles/hr; and a footprint of 1,250 m2.
 5) Based on allowed flow rate through a single separator unit, and Yu/Fu =  = (1+ stage)-1 for each unit. 
 6) Includes power for inter-stage chemical re-conversions in MOLIS. 
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