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We study the two and three dimensional, N = 2, 3, nonlinear dispersive equation CN (m, a + b):
ut + (um)x +

[
ua∇2ub

]
x

= 0 where the degeneration of the dispersion at ground state induces
cylindrically and spherically symmetric compactons convected in x-direction. An initial pulse of
bounded extent decomposes into a sequence of robust compactons. Colliding compactons seem to
emerge from the interaction intact, or almost so.
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Introduction.- Arguably, modern nonlinear science has
started in earnest with the discovery of solitons, c.f.,[1].
What started as a humble attempt to understand the
FPU and KdV equations has turned into one of the pil-
lars of nonlinear science with a wide range of applica-
tions in optics, plasma hydrodynamics and solid state
physics. However, with rare exceptions which do not
have scalar counterparts [3,4], the well known solitary
structures (whether exactly solitonic or almost so)in the
continuum are limited to one-spatial dimension, 1−D,[4].

In spite of many remarkable mathematical advances
this picture has not significantly changed in the last forty
years. In fact, the stunning success of the 1−D solitonic
theory can be only compared to its equally stunning fail-
ure in higher dimensions.

Viewing integrability as a miracle, one is tempted to
metaphysical resignation. However, when one seeks ro-
bust structures, which are close to, but not exactly inte-
grable, then the quest for localized structures in higher
dimensions has a pertinent scientific validity. We sur-
mise that the search for soliton bearing equations, like
the metaphoric search for a coin under an ’enlightened’
lantern, was for too long attached to ’lantern’s pole’, [5].

Without dwelling on exact definitions we recall that
solitons are a manifestation of the balance between iner-
tial and dispersive forces. Typically, soliton supporting
equations are obtained via weakly nonlinear perturbation
schemes. However in higher spatial dimensions these pro-
cedures yield equations which are non-integrable and, as
a rule, are unable to support genuinely localized patterns.
While very disappointing this should not have come as a
surprise for increasing the spatial dimension shifts the
balance between inertia and dispersion; whereas nonlin-
earity due to inertia plays the same role, the increase in
degrees of freedom increases the effectiveness of disper-
sion. It thus stands to reason that a well balanced model
in 1−D will be less so in a higher dimensions, or be lost
entirely - and, indeed, this is what happens.

FIG. 1: Position of C2(3, 1 + 2) compactons support evolv-
ing out of an elongated initial support (upper panel). Their
corresponding profiles are displayed on Fig.(2). Note that
whenever m = a+b the respective compactons have the same
support. Note also that periodic boundaries were assumed.

For a genuinely localized structure to emerge in N-D,
one has either to enhance the nonlinearity or, as we shall
do,[5], to properly weaken the dispersion. This can be
accomplished using nonlinear dispersion that degenerates
at a ground state. The 1−D implication of this approach
begets compactons, robust solitary waves with compact
support, [6] (for a recent exposition see [7]). In this letter
we demonstrate that this mechanism can also create N-
dimensional compact structures.

The compacton, a compact solitary wave, is a non-
analytical robust entity with the singularity dependent on
the nonlinearity of the degenerating dispersion but is in-
dependent of the spatial dimension. To understand these
localized dispersive structures in higher dimensions one
has to probe deeper into the nonlinear domain. Our
present aim is to explore the essential ingredients needed
for such structures to exist.

The class of model equations in this letter is perhaps
the simplest attempt to make a solitonic break through
the 1 − D barrier. We believe that the seasoned reader
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FIG. 2: Temporal snapshots of of C2(3, 1 + 2) compactons
evolving out of an elongated initial pulse (upper panel).

should have no difficulty to see how the essentials of our
discussion apply to phenomena for which a very mathe-
matical description will apply.

The model Equation.- To demonstrate the viability
of our arguments, we now present an N − D model
wherein the unidirectional convection is balanced by a
N-dimensional dispersive force, [5,9],

CN (m, a + b) : ut + (um)x +
1
b

[
ua(∇2ub)

]
x

= 0, (1)

where m ≥ max(1, a − 1) and b > 0. As in the 1 − D
model, a particular choice of exponents (m, a and b)
reflects a specific physical mechanism. Notably, when
a = b = 1 and m = 2, Eq.(1) describes the sedimentation
of particles in a dilute dispersion, though at the time
neither the multidimensional feature of the model nor its
ability the generate compact structures was realized,[8].

Travelling Compactons: We assume spherically
symmetric compactons traversing in x-direction and de-
fine

s = x− λt and R =
√

s2 + y2 + z2. (2)

Integrating in a travelling frame yields

ua
[
−λu1−a + um−a +

1
bRN−1

d

dR
RN−1 d

dR
ub

]
= 0. (3)

Note that λ may be scaled out in terms of u =
λm−1U

[
λ

m−n
2(m−1) R

]
,where n ≡ a + b. Therefore struc-

ture’s width scales as ∼ λ
n−m

2(m−1) and as the wave’s speed
increases its width shrinks (swells), for m > n (n > m).
When m = n, convection and dispersion are in a detailed
balance and compactons width is fixed.

Though existence of compactons for Eq.(3) is easily
asserted, for N > 1 we have identified only two types of
explicit solutions, [5,9]:

a) CN (m = 1 + b, 1 + b): The compacton solution is

u = λ
1
b

[
1− F (R)

F (R∗)

] 1
b

, 0 < R ≤ R∗, (4)

and vanishes elsewhere. In the planar case: F (R) =
J0(
√

bR) and in 3−D: F (R) = sin(
√

bR)/
√

bR. In each
case integration constant assures that u vanishes at R∗,
the first trough of F (R), where it is compactified.

FIG. 3: Collision of three C2(2, 0+2) compactons with speed
λ = 2, 3/2 and 1. As in 1-D, the interaction is very clean and
the compactons seem to emerge intact leaving in the perimeter
of the domain of interaction a small ripple.

FIG. 4: Collision of two C2(2, 1 + 1) compactons. Note the
loss of mass of the smaller compacton after the collision. In
2-D this effect is more pronounced than in 1-D.

b)CN (m = 2 , a + b = 3 ): The solution is a parabola

u = κN

[
λAN − bR2

]
, 0 < R ≤ R∗ ≡

√
λAN/b. (5)

and

CN (2 , 0 + 3 ) : AN =
3
2
(4+N)2, κ−1

N = 6(4+N). (6)
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FIG. 5: Display of two colliding C2(3, 0 + 3) compactons. As
in the C2(2, 0 + 2) case, see Fig.(3), the two compactons re-
emerge intact after the collision without a measurable loss of
mass.

CN (2 , 1 + 2 ) : AN = 2(2 + N)2, κ−1
N = 4(2 + N). (7)

Note that unlike case (a) now R∗ ∼
√

λ.
We note the following property of solutions of Eq.(3):

given a compacton solution u(R) of CN (m, a + b), then
V (R) = uκ(R) is a solution of CN (m∗, a∗ + b∗) where

m∗ = 1+κ(m−1), a∗ = 1+κ(a−1) and b∗ = κb. (8)

Thus every solution u(R) generates a κ− parameter
family of solutions.

Numerical studies.- The results of our numeri-
cal experiments which have a vastly richer dynam-
ics than in 1 − D, are best seen as movies at
http : //math.lanl.gov/ mac/compacton. Every figure is
a snapshot of a corresponding movie. In what follows we
provide a brief exposition of the essential features of for-
mation and interaction of compactons in 2−D. Figs.(8)
and (9) that describe a 3 −D interaction and evolution
are a prelude to a more detailed exposition,[10].

The essence of our studies is to demonstrate the abil-
ity of degenerating nonlinear dispersion to induce robust
compact patterns in higher dimensions. Extensive nu-
merical studies which focused on the emergence of com-
pactons out of initial data and their collision, allow us to
present a number of meaningful conclusions. It is natural
to seek the impact on the the dynamics of the:

(A.)Dimensionality and convection exponent m.
(B.) Interplay between a and b. Expanding the disper-

sive part in (3) the leading part is un−1∇2ux. Although
the lower order part of the dispersion

(un−1)x∇2u + (b− 1)[un−2(∇u)2]x, (9)

has no impact on the singularity at the edge of the com-
pacton, it is essential for compactons propagation. Its
effectiveness depends on the parameter ω ≡ 1 + b − a.
Travelling compactons seem to emerge only if ω > 0,[9].
Thus, for a fixed n, reduction of b reduces ω and the ef-
fectiveness of the lower order term to propel the motion.

FIG. 6: Evolution of an elongated initial pulse (upper panel)
at t = 18 for C2(2, 0+3) (lower panel) and C2(2, 1+2) (middle
panel).In both cases n = 3, but since b = 3 and b = 2, respec-
tively (see Eq.(8)), in the first case the evolution is faster and
the emerging compactons are bigger.

FIG. 7: Decomposition of initial vertical pulse of C2(2, 1 + 2)
into a compacton and a pair of travelling blobs which at a later
time coalesce into a second compacton. Unlike Fig.(1) where
the initial support stays put while emitting compactons, here
the perturbed domain as a whole is in motion.

When ω < 0 evolution is confined to the initial domain.
Compare CN (2, 0 + 3) with CN (2, 1 + 2) in Fig.(6): they
have the same singularity at the edge but the ”propelling
force” of the first is stronger (see Eq.(9). Also, if you take
CN (2, 2 + 1) where ω = 0, then (5) has a solution only
when λ = 0.

Emergence of compactons: See Figs.(1-2,6-7)and (9).
In all cases where initial evolution was followed as an
initial condition we have used

u = U0 cos2(αr), r ≤ π

2α
, U0, α are constants. (10)

and vanishes elsewhere. Looking at the figures one notes
that the number of the emerging compactons and their
spatial location depends on the geometry of initial condi-
tions and their span. In Fig.(1) the initial perturbation
stays put as it emits compactons. Such scenario is typ-
ical of 1 − D patterns. On the other hand, emission of
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compact pulses which are not compactons but converge
into compactons as they travel; see Figs.(6) and (9), does
not seem to occur in 1 −D. Also, as seen in Fig.(7), in
higher dimensions we observe patterns wherein the initial
pulse propagates as a whole while evolving and emitting
compactons.

FIG. 8: Collision of two 3-dimensional C3(2, 0+2)compactons.
Early stage of interaction of their supports at t = 5 and im-
mediately thereafter, at t = 15. We also project compactons
profile u(R).

Interaction between compactons: Figs.(3-5) and (8)
present the results of hard collisions which occur when
the centers of colliding compactons are aligned. Soft col-
lisions which seem more like a skirmish happen when the
center of the faster compacton is off center from its prey.
When the centers of softly colliding compactons are suf-
ficiently close, the fast and the slow compactons exchange
their positions. As a rule soft collisions seem to be less
elastic then their hard counterparts,[10].

Some hard interactions appear to be much closer than
others to being elastic with the cleanest interaction un-
doubtedly reserved to m = n = 2, 3 and a = 0 com-
pactons: CN (2, 0 + 2) and CN (3, 0 + 3). As in 1−D,[6],
we observe compactons emerging intact in both 2 − D
and 3−D cases, Figs. (3) and (8).

We also studied C2(3, 1+3) and C2(4, 1+3), not shown.
Here even though m = n, since a = 1, the lower order

part (9) is less effective and collisions, though quite clean,
are a bit less elastic than in the m = n, a = 0 cases.
Thus, while the larger compactons hardly loose any mass,
there is a small but noticeable loss of mass in smaller
compactons. Repeated interactions enhance this effect.

The interaction of ’parabolic compactons’ Eq.(5), m =
2 and n = 3: C2(2, 0+3) and C2(2, 0+3) is far less robust.
In collisions the smaller compactons re-emerge greatly di-
minished, occasionally accompanied with chunks of split-
ting off pieces of mass. A more comprehensive discussion
with detailed 3−D displays will be presented in [10].
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FIG. 9: Emergence of 3-D C3(2, 0 + 3) compactons out of an initial 3-D ball which breaks into a sequence of toroidal supports
displayed at t ∼ 90, each of which first turns into a travelling doughnut and later into a compacton. The doughnut following
the compacton has just emerged. It will converge into a ball at t ∼ 140. Insert: evolution at t ∼ 25.


