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MEASURES OF SPATIAL PATTERN FOR COUNTS
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Abstract. SADIE (Spatial Analysis by Distance IndicEs) is a new methodology to
detect and measure the degree of nonrandomness in the two-dimensional spatial patterns
of populations. It applies the same principles to data in the form of maps as to data in the
form of counts at specified locations, but with different techniques. This paper considers
data in the form of counts such as occur commonly in ecology. For such data the method
has an advantage over traditional approaches that measure only statistical variance hetero-
geneity, because all the spatial information in the sample is used. Two indices and associated
tests are reviewed, one based on the total distance of the sample from a completely regular
arrangement, the other from a completely crowded arrangement. A new diagnostic plot is
presented to aid interpretation. Results from some artificial data are studied to survey the
properties of both indices for defined patterns of clustering. Indices based on the distance
to regularity are powerful at detecting aggregation when several clusters are present; those
based on the distance to crowding have the power to detect aggregation only when a single
cluster is present. Methods are presented to estimate the typical cluster size and intercluster
distance, suitable for data from sample units in the form of a contiguous grid. Examples
are given for cyst-nematode field data and plant virus disease.

Key words: aggregation; clusters; heterogeneity; patchiness; randomness; regularity; SADIE;
spatial pattern; uniformity.

INTRODUCTION

In ecology it is often difficult to study the movement
of individual animals directly, especially for small, nu-
merous animals such as insects. Ecologists have there-
fore studied the spatial pattern of individuals of a par-
ticular species to infer the underlying behavioral rules
that govern their movement (Greig-Smith 1952, Lloyd
1967, Kennedy 1972, Taylor 1986). The spatial het-
erogeneity that results from nonrandom interactions be-
tween individuals, from both inter- and intraspecific
behavior, tends to stabilize ecological systems (Hassell
and May 1973). Spatiotemporal dynamic ecological
models (Czárán and Bartha 1992), such as cellular au-
tomata (Hassell et al. 1991) and metapopulation models
(Hanski and Gilpin 1991, Perry and Gonzalez-Andujar
1993, Perry 1994), increasingly use space explicitly,
to locate and move individuals within a two-dimen-
sional coordinate system. Wiens (1989) stressed the
importance of spatial scale and emphasized that an eco-
logical process that operates in a certain way at one
scale may not operate in the same way, or at all, at a
different scale (Heads and Lawton 1983). This paper
is about the quantification of spatial pattern for data in
the form of counts of animals or plants at specified
locations. These counts might, for example, be of bee-
tles sampled by pitfall traps, or of the number of dis-
eased plants in a quadrat. This paper reviews and ex-
tends previous work (Perry and Hewitt 1991, Perry
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1995a, b, 1996) on SADIE (Spatial Analysis by Dis-
tance IndicEs).

The basis of SADIE is to quantify the spatial pattern
in a sampled population by measuring the total effort
(in terms of distance moved) that the individuals in the
observed sample must expend to move to extreme ar-
rangements, in which the individuals in the samples
are either spaced as uniformly (regularly) or are as
aggregated (crowded) as possible. The degree of non-
randomness within a set of data is quantified by com-
paring the observed spatial pattern with rearrangements
in which the sampled counts are randomly redistributed
among the units. Perry and Hewitt (1991) introduced
an index based on crowding for data in the form of a
grid of counts, and noted two advantages: a biologically
more intuitive index than traditional mathematically
based ratios involving sample variance and mean, and
increased power due to the greater use of the spatial
information in the sample. Alston (1996) argued that
distance to regularity provided a better basis for an
index, because of the failure of the crowding index to
detect multiple clusters, clumps, or patches. Perry
(1995a) demonstrated the use of distance to regularity
for data in the form of counts at specified locations,
not necessarily on a grid, and exposed some subtle
effects of scale. He showed how to distinguish non-
randomness in the form of statistical heterogeneity
from spatial nonrandomness. The former arises from
skewness in the frequency distribution of counts and
subsequent departures from a Poisson distribution; the
latter arises from aggregation of those counts into clus-
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ters or from regularity of the counts. Perry (1995b)
extended the use of the distance-to-regularity index to
mapped data, where the two-dimensional coordinates
of each individual in the sample are known explicitly.
He introduced two diagnostic plots as aids to interpre-
tation and a new method to estimate the initial focus
of a cluster. Once again, scale was shown to be an
important determinant of overall spatial pattern. Perry
(1996) presented an algorithm that would allow a set
of given counts to be distributed amongst a set of given
sample units to achieve any given degree of spatial
pattern, where possible. He noted the importance of
constraining the simulated arrangements to allow for
the degree to which the observed counts occur towards
an edge of the sample area.

This paper studies the behavior of two indices, first
for artificial and then for field data: the index based on
distance to regularity, Ia, studied by Perry (1995a); and
an index, Ja, based on distance to crowding, different
from that proposed by Perry and Hewitt (1991). In
addition, a means to identify and quantify the scale and
characteristics of the dominant clusters is offered for
the situation when the units form a contiguous rect-
angular grid. The artificial data are used to provide a
baseline library of several simple known patterns,
against which to study the behavior of the indices. The
field data are then used to test the ability of the indices
to expose the main facets of the observed patterns. A
new diagnostic plot is introduced to aid interpretation.

DEFINITIONS AND NOTATION

The notation follows that of Perry (1995a). The data
are assumed to be a set of counts of individuals, with
one count in each of i 5 1, . . . , n sample units. The
two-dimensional position (Xi, Yi) of the ith sample unit
and its associated count, Ni, is assumed to be known.
The distance to regularity, D, is the minimum value of
the total distance that the individuals in the sample
would have to move, from unit to unit, so that all units
contained an identical number of individuals. The so-
lution, which may involve a fractional final number in
each unit, concerns the optimal way in which individ-
uals would move from each unit with an initial count
larger than the mean, to other units with initial counts
smaller than the mean. It is provided easily by the
transportation algorithm (see especially Kennington
and Helgason (1980) for a comprehensive treatment
and for the FORTRAN algorithm NETFLO) from the
operational research literature. If the observed counts
are then randomly permuted between sample units, so
that the resulting sample is a simple rearrangement of
the original, then Pa represents the proportion of ran-
domized samples with distance to regularity as large
as, or larger than, the observed value, D. Intuitively, a
large value of D would be expected to imply an ag-
gregated or clustered, i.e., spatially heterogeneous, pat-
tern and, conversely, a small value of D to imply a
regular, i.e., spatially uniform, pattern. A value of Pa

derived from a sufficiently large number of randomi-
zations provides a formal test of randomness (Perry
1995a); the null hypothesis of spatial randomness may
be rejected, for example, if Pa , 0.025 (in favor of the
alternative hypothesis of aggregation), or if Pa . 0.975
(in favor of the alternative of regularity) giving the
usual 5% probability of rejecting the null hypothesis
when it is true. If the arithmetic mean distance to reg-
ularity for the randomized samples is denoted as Ea,
then the index of aggregation, Ia, is defined as Ia 5
D/Ea. Usually, an aggregated sample is indicated if Ia

. 1, a spatially random sample if Ia 5 1, and a regular
sample if Ia , 1. A total of 2000 randomizations are
used for most of the tests in this paper, which should
prove sufficient for the derivation of index values; es-
timation is anyway more important than hypothesis
testing (Perry 1986). The quantity Ir (Perry 1995a) is
no longer thought useful, so is not considered in this
paper.

Let C denote the distance to crowding, the minimum
value of the total distance that individuals in the sample
must move so that all are congregated in one unit. This
value is found more readily than D, by using a simple
direct search over all the units; the unit with the min-
imum value being termed the ‘‘focus’’ for crowding.
Random permutations of the observed counts, as above,
lead to a proportion, denoted Qa, of those permutations
with distance to crowding as small as, or smaller than
the observed value, C. Intuitively, for data that com-
prise a single cluster, a small value of C would be
expected to imply a spatially aggregated pattern; con-
versely a large value of C might imply a spatially reg-
ular pattern. Analogously to the above, the null hy-
pothesis of randomness may be rejected if Qa , 0.025
(in favor of the alternative of aggregation) or if Qa .
0.975 (in favor of the alternative of regularity), and if
the average distance to crowding for the randomized
samples is denoted as Fa, then the index of aggregation,
Ja, is defined as Ja 5 Fa /C. As for the index Ia, described
above, values of Ja . 1 usually indicate an aggregated
sample, Ja 5 1 is expected for spatially random data
and Ja , 1 for a regular sample. Earlier simulations
indicated that values of Ia and Ja for randomized counts
were uncorrelated, so the software employed the same
randomizations to compute both these indices. Before
exemplifying the use of the two indices for field data,
which exhibit a complex, multi-scaled pattern, in the
next section I present a study of the behavior of these
indices for simple patterns using artificial count data.
Although the sample units in all the examples given
fall on a square grid, this is not essential for the SADIE
techniques; units may occupy any location.

INDEX BEHAVIOR FOR ARTIFICIAL DATA

In ecology, invertebrate or plant data in the form of
counts often show clustering, as with the single almost
circular cluster with ‘‘diameter’’ ;13 units, depicted
in the 15 3 15 grid of 225 sample units (f 5 15) in
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FIG. 1. Artificial data from a square mosaic of clusters of diameter roughly 13 units, where cluster density declines
monotonically from cluster centers; the count in each sample unit is 22, 16, 11, 7, 4, 2, 1, or 0 individuals; clusters are
separated by gaps of g units and sampled by an f 3 f square contiguous grid comprising f 2 sample units. (A–C) g 5 3, f 5
15; position of the sample area within the mosaic determines whether one, two, or four clusters are sampled, respectively;
(D) g 5 9, f 5 21; the cluster is more isolated, but otherwise identical to that in part A.

Fig. 1A. This artificial cluster was formed from an
imaginary sample in which 22 individuals were count-
ed in the central sample unit of this grid, 16 individuals
in each of the eight units immediately surrounding it,
a further ‘‘ring’’ of 11 individuals in each of the sixteen
units surrounding those, and so on, with population
density declining monotonically from the center so that
successive rings contained units with 7, 4, 2, and 1
individuals, until beyond the edge of the cluster there
was a roughly ring-shaped area comprising eighty units
with a count of zero. Further, suppose that outside this
grid there is an unsampled area in which the occurrence
of this cluster is repeated at regular intervals; that such
clusters are separated by a ‘‘gap’’ of length g, exactly
three units both horizontally and vertically in space, to
give an overall pattern comprising an infinite square
mosaic of clusters and gaps (Pielou 1964); and that,
purely for convenience, the sampling grid has the same
orientation as this mosaic. The example in Fig. 1A
represents one of the 11% of cases when a sample grid
with f 5 15, placed randomly on this mosaic, contains
units from one and only one cluster. Equally occasion-

ally, the random placement of such a grid on such a
mosaic will sample units from each of two clusters, as
in Fig. 1B, but in over three-quarters of cases there
will be four clusters involved, as in Fig. 1C. The be-
havior of the indices will be compared for these three
different sampling positions of the grid, where the un-
derlying pattern of the mosaic remains the same. Sup-
pose now that the characteristics of the clusters them-
selves were identical, but that the intercluster gap with-
in the mosaic was increased in length from g 5 3 to g
5 9 units. When the sampling area was increased from
f 5 15 to f 5 21, i.e., to a 21 3 21 contiguous grid of
441 units, the analogous situation to that in Fig. 1A,
where a single cluster was sampled, is now shown in
Fig. 1D. In Fig. 1D the relative size of the cluster to
the sample area is smaller, but otherwise directly com-
parable to that in Fig. 1a. (The effect of a similar cluster,
displaced towards an edge, will be considered in a sep-
arate paper.)

For the single clusters (a and d) both SADIE indices
indicated the presence of a significantly aggregated pat-
tern (Table 1), with values well above unity and, as
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TABLE 1. Indices and their associated probabilities of ag-
gregation for artificial data in Fig. 1A–D, comprising a
square mosaic of clusters of diameter roughly 13 units,
separated by gaps of g units, sampled by a square contig-
uous grid of length f units.

Set f g Ia Pa Ja Qa

a
b
c

15
15
15

3
3
3

2.69
2.67
2.65

,0.0005
,0.0005
,0.0005

1.81
0.92
0.71

,0.0005
0.9935

.0.9995
d 21 9 3.17 ,0.0005 2.54 ,0.0005

FIG. 2. Approximate qualitative relationship between the indices of aggregation, Ia and Ja, for the idealized patch–gap
mosaic (see Fig. 1) and f 2, the size of the square contiguous grid of sample units: up to point ‘‘a’’ most samples are either
entirely within or entirely outside a cluster, between points ‘‘a’’ and ‘‘b’’ most samples contain one cluster, between points
‘‘b’’ and ‘‘c’’ two clusters, and beyond ‘‘c’’ more than two.

expected, greater aggregation for the relatively more
‘‘isolated’’ cluster in Fig. 1D. Other simulations, not
described in detail here, demonstrated that the indices
indicate still greater aggregation for yet larger values
of f and g, and less aggregation when f was reduced
below 13 so that the sample was restricted to the area
within the cluster.

For two (b) and four (c) clusters, whilst there was
virtually no change in Ia, the value of Ja fell sharply
to 0.92 and 0.71, respectively (Table 1), as noted by
Alston (1996), and the probability Qa falsely implied
a regular rather than an aggregated pattern. The reason
for this is that when data comprise a single cluster only,
the individuals within the sample would have a rela-
tively short distance to move to the focus of crowding,
which is invariably within the cluster itself. However,
when two or more clusters are present, either the focus
occurs somewhere between them (as for sets b and c,
here) and all individuals would have to move a rela-
tively large distance, or it occurs in one of the clusters,
in which case all individuals from the other clusters
would have to move a relatively large distance to it;
either way the value of the distance to crowding, C, is
inflated.

Both indices, except Ja for multiple clusters, were
very powerful at detecting the degrees of aggregation
simulated. In other simulations, not detailed here, Ja

proved more powerful than Ia for single clusters where
the cluster was less well-defined.

The different behavior of the indices for several clus-
ters may be used to advantage in the analysis of field
data, particularly when there is a need to characterize
the typical size of clusters within a set of data in which
pattern may occur at several spatial scales. For ex-
ample, consider the effect on the indices of randomly
sampling an idealized mosaic such as that described
above, with a steadily increasing sample area f 2. What-
ever the precise values of cluster size, or intercluster
gap, g, which determines the exact nature of the mosaic,
the relationships found above may be qualitatively ap-
proximated by typical curves (Fig. 2). When the sample
area is very much less than the cluster size, the sample
is most likely to be either entirely within a cluster or
entirely outside it, and both crowding and regularity
indices are fairly small. As the sample area increases,
at the point labeled ‘‘a’’ in Fig. 2; there is a reasonably
large probability that a randomly placed sample area
will contain only part of a cluster, and overlap one
cluster boundary. Beyond point ‘‘a,’’ as this probability
increases, both crowding and regularity indices in-
crease, albeit at possibly different rates. Eventually the
sample area achieves a size where, at point ‘‘b,’’ a
randomly placed area will be likely to include parts of
two clusters; here the value of Ia reaches a maximum,
whereas the value of Ja declines very sharply, to near
unity or even below it. With a further increase in size,
and a correspondingly greater expected number of clus-
ters per sample area, at point ‘‘c,’’ Ja decreases yet
further, although Ia is unaffected. By inspecting graphs
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FIG. 3. Counts of cyst nematodes, collected by B. Boag,
from Webster and Boag (1992). (A) Heterodera avenae at
Invergowrie (m 5 4.15, s2 5 64.9); (B) Globodera rosto-
chiensis at Drumkilbo (m 5 11.0, s2 5 55.4).

of Ia and Ja, plotted against sample area for a set of
data resampled by various grid sizes, it is possible to
infer typical cluster sizes and intercluster distances
from the positions of observed points ‘‘a,’’ ‘‘b,’’ and
‘‘c.’’ Examples will be given for two sets of nematode
data, described below.

Having obtained baseline data concerning the be-
havior for artificial data with known patterns, ecolog-
ical field data will now be analyzed to illustrate inter-
pretation featuring the simultaneous use of both indi-
ces. For the first time, presence/absence data, a special
case of counts, will be analyzed using SADIE.

MATERIALS AND METHODS

Field data

The first two sets of data concern counts of two pest
cyst-nematode species, collected by B. Boag (Webster
and Boag 1992). In two fields in Scotland, an area of
1 ha was sampled by taking soil cores on a 15 3 15
square grid at intervals of 7.1 m; the cysts were sep-
arated from each 200-g sample of soil and those with
viable eggs counted. Heterodera avenae was sampled
at Invergowrie (Fig. 3A) and Globodera rostochiensis
at Drumkilbo (Fig. 3B). Webster and Boag (1992) were
concerned to quantify the patchiness, to estimate clus-
ter size, and to determine whether there was more in-
festation in the centers of clusters than near their mar-
gins.

When sample units form large contiguous rectan-
gular grids of m 3 n units, such as these sets of nem-
atode data, a hierarchical scheme (Bliss 1941, Greig-
Smith 1952, Mead 1974) may be employed to inves-
tigate change of pattern with spatial scale and to find
the dominant cluster size, as described above. As an
example, for both sets of nematode data, the 15 3 15
grid was sampled firstly as a whole, but then addition-
ally using successively smaller sample areas. For ex-
ample, it is easy to see that there are nine separate ways
in which a 13 3 13 continuous subgrid may be imposed
on the overall data. In general, there are (n 2 f 1 1)2

different ways in which an f 3 f contiguous subgrid
may be imposed on an n 3 n grid. Of course, when
each of these possible f 3 f subgrids is used once, some
sample units, especially those closest to the center of
the 15 3 15 grid, contribute to more than one subgrid.
The (n 2 f 1 1)2 separate values of Ia, Ja, Pa, and Qa

obtained are therefore not independent. The median
values of these indices and probabilities were selected
to be representative of the pattern at each of the f 3 f
scales examined. All integer values of f from f 5 2 up
to f 5 n could be studied, but f 5 2 was deemed too
small to give useful information; here f 5 3, 5, 7, 9,
11, 13, and 15 were used. Furthermore, the number of
possible subgrids for small values of f may be prohib-
itively large to study comprehensively; for example,
for n 5 15 and f 5 5 there are 121 possible subgrids,
and for n 5 15 and f 5 3 there are 169. For this reason,

for the Heterodera avenae data only nine 5 3 5 sub-
grids were employed, placed so as not to overlap with
each other, and nine 3 3 3 subgrids, placed so that their
centers coincided with those of the 5 3 5 subgrids; the
information within a single 3 3 3 grid is relatively
small. The median values of Ia and Ja, and of Pa and
Qa, were then plotted against f, as in Fig. 2, to estimate
the dominant cluster size and intercluster distance.

Using the process of partitioning (see next section,
A new diagnostic plot), it was possible to identify the
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FIG. 4. Positions of virus-infected pepper plants on a 10 3 10 grid with two insecticide treatments on two replicate dates
(unpublished data of J.-L. Collar and A. Fereres).

units that comprised each major cluster together with
their associated surrounding units, for each set. For
each such individual cluster, its ‘‘center’’ was defined
as that unit that was the focus for crowding, after re-
duction of the sampled data to that cluster alone. Then,
the relationship between the geometric mean of the
counts at a given distance, say, s, from the cluster cen-
ter, and that distance, s, was studied to determine
whether the margins of a cluster were less infested than
the center, a question posed by Webster and Boag
(1992).

The third set of data concerns the presence or ab-
sence of the virus disease Potato virus Y (PVY) (pepper
strain, 0 pathotype) on pepper plants Capsicum an-
nuum, spread by viruliferous Myzus persicae aphids,
collected by J.-L. Collar and A. Fereres (personal com-
munication). Healthy plants were arranged symmetri-
cally in a 10 3 10 grid in an indoor cage and the aphids
were released from the center of the cage. The plants
were treated with insecticide prior to aphid release, and
assessed for virus 30 d after release. One replicate was
done on each of two dates, in each of which one of
two insecticides, Pirimicarb and Ripcord (a.i. Cyper-
methrin) was applied (Fig. 4). Since the virus was either
present or not, the counts are either zero or one. The
SADIE analysis proceeded exactly as for unconstrained
counts. The unknown rate of aphid dispersal from the
cage center was assumed to be related to two observ-
able variables. Firstly, to the concentration of disease

at the grid center, measured by the degree of patchiness
of the virus infection. Secondly, to the relationship be-
tween disease incidence and distance from the grid cen-
ter, measured by the steepness of the regression slope,
b, of logit(p), where p is the proportional disease in-
cidence, on distance from the grid center, and by the
significance of this regression (F-statistic on 1, 13 de-
grees of freedom).

A new diagnostic plot

The new diagnostic plot presented here is the ver-
sion, for counts, of the ‘‘initial and final’’ (IAF) plot
of moves to regularity described for mapped data by
Perry (1995b). Briefly, the output from the transpor-
tation algorithm gives the optimum number of indi-
viduals required to move from each of the cells with
initially more individuals than the sample mean, to cells
with initially fewer, to achieve regularity. When such
flows are plotted, possibly excluding relatively trivial
flows, a good visual impression is gained of clusters
in the data and, conversely, of less dense areas. As for
mapped data (Perry 1995b) such flows are shown
graphically as lines radiating out from units within
clusters to fill initially sparse areas, but now with no
relationship between the length of a line and the po-
sition of the corresponding unit with respect to its clus-
ter center, and with no overlapping of lines. An example
of such a plot for Heterodera avenae, where units with
inflows are indicated by an asterisk (Fig. 5A), showed
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FIG. 5. (A) Initial and final (IAF) plot for Boag’s cereal
cyst-nematode data of Fig. 4A, for all flows, with destination
units indicated by stars. Polygonal lines show the heuristic
partitioning of the sample units into five sets, corresponding
to the major clusters in the data. (B) As for (A) but for Boag’s
potato cyst-nematode of Fig. 3B, partitioned into four sets.

clearly the presence of two large, equal-sized central
clusters, one at the top and one at the foot of the sample
area, and gave a good indication of two further smaller
clusters, one each to the right of the larger ones. These
smaller two clusters appeared to extend beyond the
boundary of the sample area. The original data (Fig.
3A) confirmed this visual impression readily. Notice
that units with particularly large counts were identified
by the emanation of several lines. Also, since the max-

imum flow between any two units must be equal to the
sample mean, m, minus the minimum count, and since
the minimum count here, as in most animal data sets,
was zero, the maximum flow was also m 5 4.15. Fig.
3A does not distinguish between the strengths of the
different flows, which vary both between and within
units. However, in principle, flow strength could be
represented graphically by using different thicknesses
of lines, by labeling, or by plotting only a subset of
flows, say those within a certain range.

It is also possible to partition heuristically the sample
units into a small number of sets according to the IAF
plot, such that almost all the inflow units in a set receive
flows from outflow units that are in the same set, and
such that the sets correspond in general location with
the major clusters and their close vicinity. One such
partition into five sets is shown by the polygonal lines
imposed upon the IAF plot of Fig. 5A. In only five
units was there any ambiguity in this partition of the
grid; e.g., the unit at (11, 3) receives flows from units
at (9, 2) and (12, 2) that are in different sets. Such
inflow units were categorized as belonging to the set
from which they received the greatest outflow. In this
case, since the flow from the unit at (12, 2) was 8.42
times that from the unit at (9, 2), the unit at (11, 3)
was assigned to the set to which the unit at (12, 2)
belonged, i.e., that covering the lower-right portion of
the grid. This partition produced sets (Fig. 5A) of un-
equal size: 90, 76, 22 and 34 units in the lower-left,
upper-left, upper-right and lower-right sets, respective-
ly, that resembled closely the shapes of the clusters
visible in Fig. 3A, and three units in the very small set
between the first two of these clusters that could not
be ascribed to either with any certainty.

RESULTS

Heterodera avenae

The frequency distribution of counts was very
skewed; the value of s2/m was 15.6, the median count
was zero whilst the mean was 4.15. The values of Ia

and Pa were respectively 1.46 and 0.007; Ja and Qa

were respectively 1.03 and 0.284. There is considerable
overall pattern, indicated by the large value of Ia, main-
ly caused by more than one cluster, indicated by the
small value of Ja. Median values of Ia, Ja, Pa, and Qa

were calculated for various values of f (Table 2). The
effects of changes in f were apparent, but were, for
these field data, more gradual than those nominal val-
ues shown for the idealized mosaic in Fig. 2. The max-
imum value of Ja occurred between f 5 5 and f 5 7,
and the value of Ia, except for a large value that ex-
ceeded 1.8 for f 5 9, also seemed to plateau between
f 5 5 and f 5 7. Because the two major clusters oc-
curred near the top and foot of the full sample area,
those values of f (5, 7, 9) for which the majority of
subgrids contained part of a single cluster were also
those for which the sampled cluster occurred at an edge
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TABLE 2. Median values of indices of aggregation and randomization test statistics, for the cereal cyst-nematode Heterodera
avenae and the potato cyst-nematode Globodera rostochiensis, for various sizes of sample area, f 2, using an f 3 f contiguous
sample grid.

f
Number of

subgrids Ia Ja Pa Qa

Heterodera avenae
3
5
7
9

9
9

81
49

1.01
1.42
1.66
1.83

0.99
1.31
1.30
1.21

0.395
0.015

,.005
,.005

0.528
0.065
0.005
0.010

11
13
15

25
9
1

1.57
1.42
1.46

1.08
1.00
1.03

,.005
0.020
0.007

0.120
0.485
0.284

Globodera rostochiensis
3
5
7
9

169
121

81
49

1.09
1.25
1.57
1.91

0.99
1.01
1.02
1.04

0.270
0.080
0.005

,.005

0.510
0.445
0.310
0.130

11
13
15

25
9
1

2.26
2.49
2.62

1.05
1.05
1.02

,.005
,.005
,.0005

0.010
0.010
0.1035

of the subgrid and for which the value of Ia was there-
fore slightly inflated (Perry 1996). When f 5 11 there
was a sharp doubling in the proportion of subgrids
containing units from more than one cluster, from about
one-half to unity, the number of subgrids with larger
values of Ia was greatly reduced, and stabilization of
Ia for larger values of f 5 11, 13, 15 occurred around
a value of about Ia 5 1.5. These results, and the IAF
plot (Fig. 5A) both indicated that the main contribution
to the spatial pattern of the data was made by the two
major clusters, and supported an approximately esti-
mated cluster diameter of five to six units (40–45 m)
with an intercluster distance of about four units (;30
m). Significant aggregation was detected for all values
of f $ 5. For f 5 3 there are only nine units in the
subgrid, so the power to detect nonrandomness was
relatively small.

Following the partition of the IAF plot as defined
above, the units contributing to the two partitions cor-
responding to the two major clusters were separately
analyzed to find their focus for crowding, as described
above. The centers of the lower-left and upper-left clus-
ters were estimated from the reduced data sets to be at
(7, 3) and (8, 12), respectively. In neither case were
these units those that contained the maximum count in
their respective cluster. The decline in nematode den-
sity from the center of the former cluster (Fig. 6A) was
roughly sigmoidal, with maximum rate at a distance of
1.5 units (;10 m), from the center. Broadly the same
result, albeit with a slightly more steady decline, was
obtained for the latter cluster, so there was good evi-
dence for nonuniformity of density within each of the
two major clusters.

Globodera rostochiensis

The frequency distribution of counts was skewed (s2/
m 5 5.0, median count 5 9, mean 5 11.0) but less so

than for the other nematode species; no unit was un-
infested. The IAF plot (Fig. 5B) showed clearly one
large cluster in the top left of the sample area, extending
down ten to twelve rows and covering most of its left-
hand side, and about three, or possibly more, further
smaller clusters, located mostly towards the other edges
of the sample area. The values of Ia and Pa were, re-
spectively, 2.62 and ,0.0005; Ja and Qa were, respec-
tively, 1.02 and 0.1035. These results point towards
very strong spatial pattern, indicated by the very large
value of Ia, again with more than one cluster, but here
even the relatively small value of Ja that only just ex-
ceeded unity was associated with a fairly small value
of Qa, indicating that the influence of the subdominant
clusters was limited. The presence of a single dominant
cluster was confirmed by the steady increase in Ia with
f (Table 2). The value of Ja also increased steadily with
f, achieving significance at f 5 11 and f 5 13 despite
the relatively small values of Ja 5 1.05, until, when f
5 15, the inclusion of all of the five smaller edge clus-
ters reduced Ja to the slightly smaller value found for
the full data set.

The units assigned to the large cluster by the par-
titioning of the IAF plot (Fig. 5B) were analyzed sep-
arately and the focus for crowding was found to be at
(6, 9), which was taken as the cluster center. The count
in this unit, 36, was the third largest recorded of the
225 in the full data set. Because of this there was an
almost inevitable sharp decline in density from this unit
to those immediately surrounding it. However, in
marked contrast with the other nematode species, for
G. rostochiensis there was virtually no further decline
in density beyond a distance of ;1 unit from the cluster
center all the way out to the margins of the cluster (Fig.
6B).

Presence of PVY
On 21 June both treatments gave similar results (Ta-

ble 3); large and significant aggregation and limited
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FIG. 6. (A) Decline of geometric mean count (number of
nematodes per soil core at that location; note log10 transfor-
mation on ordinate scale) with distance from center unit (7,
3) of major cluster, at lower left of sample area, for Boag’s
cereal cyst-nematode data of Fig. 3A; (B) as for (A) but for
Boag’s potato cyst-nematode of Fig. 3B and for major cluster
at top left of sample area with center unit (6, 9).

TABLE 3. Indices of aggregation, randomization test statistics, and regression slopes for PVY virus spread; is the regressionb̂
slope, F1,13 is the F statistic for the regression.

Date
Insecticide
treatment Ia Pa Ja Qa b̂ F1,13

21 June
21 June

Ripcord
Pirimicarb

1.17
1.41

0.138
0.0195

2.15
2.21

,.0005
,.0005

20.526
20.667

16.7
34.4

14 October
14 October

Ripcord
Pirimicarb

1.13
1.34

0.1765
0.0275

1.36
1.08

0.005
0.178

20.345
20.035

4.69
0.05

dispersal was indicated both by the indices of aggre-
gation and by the regression slope, b, of logit-trans-
formed proportional disease incidence on distance from
the grid center. Results for Pirimicarb were slightly
more extreme than for Ripcord. Note the greater power
to detect a single cluster shown by the index based on
crowding than by that based on regularity. However,

on 14 October, the values of Ia, Ja, and b all confirmed
the visual impression in Fig. 4 that aggregation was
less marked and dispersal greater. For Ripcord, aggre-
gation was demonstrated by Ja and the regression slope,
although both were substantially reduced from their
values for June. Results for Pirimicarb in October were
more extreme. The significant aggregation indicated by
Ia was due not to limited dispersal but to the restriction
of diseased plants to the lower-left half of the cage,
and this was confirmed by the nonsignificant regres-
sion; for this treatment the disease had spread right to
the cage boundaries. The possible presence of more
than one disease cluster (Fig. 4) was suggested by the
relatively small value of Ja.

DISCUSSION

Forms of spatial pattern are richer than implied by
a one-dimensional continuum from uniformity through
randomness to aggregation. The patterns of counts in-
vestigated in this paper, not surprisingly, cannot be
adequately described by the single index Ia, introduced
previously (Perry 1995a). The use of Ja as a supple-
mentary index has been justified by the extra insights
afforded in the examples given here. Usually Ja detects
aggregation for a single cluster more powerfully than
can the indices based on regularity (e.g., dispersal of
virus with Ripcord insecticide on 14 October, Table 3).
In other cases it was crucial to the quantification of
spatial pattern at several scales (Fig. 2, Table 2), and,
in conjunction with the partitioned IAF plot, facilitated
a coherent measurement of the cluster centers for
Boag’s nematode data. The use of supplementary visual
diagnostics, such as IAF plots (Fig 5) and density-
distance plots (Fig. 6), and plots not illustrated here of
the frequency distributions from randomizations, con-
tribute important aids to interpretation; these are nec-
essary to help identify which of the diverse list of pos-
sible patterns underlies a particular set of data. Further
indices may need to be developed to aid the interpre-
tation of different aspects of spatial pattern, for ex-
ample to study distributions close to an edge, or the
presence of spatial association between two popula-
tions (Perry et al. 1996, Perry 1997).

There is a current fashion to apply geostatistical tech-
niques such as kriging or variograms (Matheron 1976,
Webster and Oliver 1989) to the analysis of spatial
pattern in ecology. This is fostered by the frequent need
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to consider many variables, some of which vary con-
tinuously, and the ready availability of geographic in-
formation system software (e.g., Fry 1995) to process
these large volumes of data. Such approaches were de-
veloped originally for physical variables studied com-
monly in soil science, such as fertility and chemical
content, that are measured on continuous scales and
display a stationary, stable covariance structure over a
wide area (but see Kleingeld and Lantuejoul’s [1993]
application to diamond numbers). However, counts of
individuals of a particular animal or plant species are
not continuous but discrete, are often, as here, distrib-
uted exceedingly patchily, and frequently comprise a
majority of zero values. By contrast with physical vari-
ables, such population counts are highly dynamic, and
have usually evolved to shift ceaselessly in space and
time for ecological reasons (Taylor 1986). Such vari-
ables might not possess the stable spatial covariance
structure assumed by geostatistical methods. They are
often characterized instead by isolated clusters, which
may be acting as metapopulations with varying degrees
of intercluster dispersal (Perry and Gonzalez-Andujar
1993). Webster and Boag’s (1992) application was
based on the fact that cyst-nematodes move at very
slow rates and may be so ubiquitous in the soil that
they fulfil the criteria required. Certainly it is true that
the main aim of geostatistical analysis, that of local
estimation, has some overlap with that of the analysis
of spatial pattern. However, I believe that in general
the contribution of geostatistical methods to pattern
analysis for population count data may prove limited.
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