Uncertainties in SUSY Precision Calculations

Sven Heinemeyer, CERN

CERN, 10/2004

- 1. Introduction
- 2. Precision Observables in the MSSM
- 3. Status and Perspectives
- **4**. Conclusions

S. Heinemeyer, CERN theory seminar, 06.10.2004

1. Introduction

Q: Which Lagrangian describes the world?

Q': What describes the world better: SM or MSSM ?

A: Two possible ways:

• Search for <u>new SUSY particles</u>

Problem:

SUSY particles are too heavy for todays colliders, only upper limits of $\mathcal{O}(100 \text{ GeV})$.

- \rightarrow waiting for Tevatron (2005...?)
- \rightarrow waiting for LHC (2007...?)
- Search for indirect effects of SUSY via Precision Observables

Precision Observables (POs):

Comparison of electro-weak precision observables with theory:

Test of theory at quantum level: Sensitivity to loop corrections

Very high accuracy of measurements and theoretical predictions needed

- Which model fits better?
- Does the prediction of a model contradict the experimental data?

Example: Prediction for M_W in the SM and the MSSM :

Example: Prediction for M_W in the SM and the MSSM :

MSSM uncertainty: unknown masses of SUSY particles

SM uncertainty: unknown Higgs mass **Example:** Prediction for M_W in the SM and the MSSM :

MSSM uncertainty: unknown masses of SUSY particles

SM uncertainty: unknown Higgs mass

The Minimal Supersymmetric Standard Model (MSSM)

Superpartners for Standard Model particles

$$\begin{bmatrix} u, d, c, s, t, b \end{bmatrix}_{L,R} \begin{bmatrix} e, \mu, \tau \end{bmatrix}_{L,R} \begin{bmatrix} \nu_{e,\mu,\tau} \end{bmatrix}_{L} & \text{Spin } \frac{1}{2} \\ \begin{bmatrix} \tilde{u}, \tilde{d}, \tilde{c}, \tilde{s}, \tilde{t}, \tilde{b} \end{bmatrix}_{L,R} & \begin{bmatrix} \tilde{e}, \tilde{\mu}, \tilde{\tau} \end{bmatrix}_{L,R} & \begin{bmatrix} \tilde{\nu}_{e,\mu,\tau} \end{bmatrix}_{L} & \text{Spin } 0 \\ g & \underbrace{W^{\pm}, H^{\pm}}_{1,2} & \underbrace{\gamma, Z, H_{1}^{0}, H_{2}^{0}}_{1,2,3,4} & \text{Spin } 1 \text{ / Spin } 0 \\ \begin{bmatrix} \tilde{g} & \tilde{\chi}_{1,2}^{\pm} & \tilde{\chi}_{1,2,3,4}^{0} & \text{Spin } \frac{1}{2} \end{bmatrix}$$

Enlarged Higgs sector: Two Higgs doublets

physical states: h^0, H^0, A^0, H^{\pm}

Goldstone bosons: G^0, G^{\pm}

Input parameters: $\tan \beta = \frac{v_2}{v_1}$, M_A^2 or $M_{H^{\pm}}^2$

Problem in the MSSM: many scales

S. Heinemeyer, CERN theory seminar, 06.10.2004

 $\underline{\tilde{t}}$ sector of the MSSM: (scalar partner of the top quark)

Mass matrix for \tilde{t}_L, \tilde{t}_R :

 $X_t = A_t - \mu \cot \beta$; large mixing possible

⇒ Physical parameters: $m_{\tilde{t}_1}$, $m_{\tilde{t}_2}$, $\theta_{\tilde{t}}$ ⇒ Soft SUSY-breaking parameters: $M_{\tilde{t}_L}$, $M_{\tilde{t}_R}$, A_t

⇒ Soft SUSY-breaking parameters determine SUSY mass patterns

Possible extensions:

<u>cMSSM</u> (complex MSSM):

Possibly complex parameters:

- $-\mu$: Higgsino mass parameter
- $-A_{t,b,\tau}$: trilinear couplings $\Rightarrow X_{t,b,\tau} = A_{t,b} \mu^* \{\cot\beta, \tan\beta\}$ complex
- $-M_{1,2}$: gaugino mass parameter (one phase can be eliminated)
- $-m_{\tilde{q}}$: gluino mass
- \Rightarrow can induce CP-violating effects

NMFV MSSM (non-minimal flavor violation):

 \rightarrow Mixing of scalar quark families (beyond CKM)

e.g. sbottom/sstrange mixing :

$$\begin{pmatrix} \tilde{b}_L, \tilde{b}_R, \tilde{s}_L, \tilde{s}_R \end{pmatrix} \begin{pmatrix} \tilde{B} & 0 \\ 0 & \tilde{S} \end{pmatrix} \begin{pmatrix} \tilde{b}_L \\ \tilde{b}_R \\ \tilde{s}_L \\ \tilde{s}_R \end{pmatrix} \rightarrow \begin{pmatrix} \tilde{b}_L, \tilde{b}_R, \tilde{s}_L, \tilde{s}_R \end{pmatrix} \begin{pmatrix} \tilde{B} \neq 0 \\ \neq 0 & \tilde{S} \end{pmatrix} \begin{pmatrix} \tilde{b}_L \\ \tilde{b}_R \\ \tilde{s}_L \\ \tilde{s}_R \end{pmatrix}$$

NMSSM, ...

2. Precision Observables in the MSSM

Precision observables: M_W , $\sin^2 \theta_{\text{eff}}$, m_h , $(g-2)_{\mu}$, b physics, ...

2.) Effective mixing angle:

$$\sin^2 \theta_{\rm eff} = \frac{1}{4 |Q_f|} \left(1 - \frac{\operatorname{Re} g_V^f}{\operatorname{Re} g_A^f} \right)$$

Higher order contributions:

$$g_V^f \to g_V^f + \Delta g_V^f, \quad g_A^f \to g_A^f + \Delta g_A^f$$

Corrections to M_W , $\sin^2 \theta_{eff}$

 \rightarrow can be approximated with the $\rho\text{-parameter:}$

ho measures the relative strength between neutral current interaction and charged current interaction

$$\rho = \frac{1}{1 - \Delta \rho} \qquad \Delta \rho = \frac{\Sigma_Z(0)}{M_Z^2} - \frac{\Sigma_W(0)}{M_W^2}$$

(leading, process independent terms)

 $\Delta \rho$ gives the main contribution to EW observables:

$$\Delta M_W \approx \frac{M_W}{2} \frac{c_W^2}{c_W^2 - s_W^2} \Delta \rho,$$

$$\Delta \sin^2 \theta_W^{\text{eff}} \approx -\frac{c_W^2 s_W^2}{c_W^2 - s_W^2} \Delta \rho$$

 \Rightarrow Experimental bound: $\Delta \rho \lesssim 2 \times 10^{-3}$

S. Heinemeyer, CERN theory seminar, 06.10.2004

Example of application:

Prediction for M_W and $\sin^2 \theta_{\rm eff}$ in the SM and the MSSM :

Example of application:

Prediction for M_W and $\sin^2 \theta_{\rm eff}$ in the SM and the MSSM :

3.) Theoretical prediction of the lightest MSSM Higgs boson mass: m_h

Contrary to the SM: m_h is not a free parameter

MSSM tree-level bound: $m_h < M_Z$, excluded by LEP Higgs searches Large radiative corrections:

Dominant one-loop corrections: $\sim G_{\mu}m_t^4 \ln\left(\frac{m_{\tilde{t}_1}m_{\tilde{t}_2}}{m_t^2}\right)$

The MSSM Higgs sector is connected to all other sector via loop corrections (especially to the scalar top sector)

Measurement of m_h , Higgs couplings \Rightarrow test of the theory

LHC: $\Delta m_h \approx 0.2$ GeV, LC: $\Delta m_h \approx 0.05$ GeV

 $\Rightarrow m_h$ will be (the best?) electroweak precision observable

Example of application: m_h prediction as a function of A_t

4.) Prediction of the anomalous magnetic moment of the muon: $(g-2)_{\mu}$

(\rightarrow see talk by Dominik Stöckinger on Friday for more details)

Coupling of muon to magnetic field : $\mu - \mu - \gamma$ coupling

$$\bar{u}(p') \left[\gamma^{\mu} F_1(q^2) + \frac{i}{2m_{\mu}} \sigma^{\mu\nu} q_{\nu} F_2(q^2) \right] u(p) A_{\mu} \qquad F_2(0) = (g-2)_{\mu}$$

Feynman diagrams for MSSM 1L corrections:

Enhancement factor as compared to SM:

$$\begin{array}{rcl} \mu - \tilde{\chi}_i^{\pm} - \tilde{\nu}_{\mu} & : & \sim m_{\mu} \, \tan\beta \\ \mu - \tilde{\chi}_j^0 - \tilde{\mu}_a & : & \sim m_{\mu} \, \tan\beta \end{array} \end{array}$$

Scan over $m_{1/2}$, m_0 , A_0 tan $\beta = 10,50$ selected points give correct amount of cold dark matter

[Ellis, S.H., Olive, Weiglein '04]

Severe bounds on e.g. $m_{1/2}$

3. Status and Perspectives

Experimental error:

- current error
- future expectations
- \Rightarrow sets the scale, has to be matched by other errors

Theory error:

- what higher-order corrections are available
- what is missing
- \Rightarrow error due to missing higher order corrections
- (\rightarrow focus on SUSY, no detailed SM results)

Parametric error:

- current uncertainty in the prediction due to error in the input parameters
- future uncertainty
- \Rightarrow focus on SM parameters
- \Rightarrow derive information about (unknown) SUSY parameters
- (SUSY parametric uncertainties highly model dependent)

Status and Perspectives (A) Prediction of M_W and $\sin^2 \theta_{eff}$:

Done:

• MSSM, Δr : full one-loop corrections

[P. Chankowski, A. Dabelstein, W. Hollik, W. Mösle, S. Pokorski, J. Rosiek '94] [D. Garcia, J. Solà '94]

- MSSM: Z-boson observables, one-loop
 [D. Garcia, R. Jiménez, J. Solà '95] [D. Garcia, J. Solà '95]
 [A. Dabelstein, W. Hollik, W. Mösle '95] [P. Chankowski, S. Pokorski '96]
- MSSM, Δρ: leading O(αα_S) corrections
 [A. Djouadi, P. Gambino, S.H., W. Hollik, C. Jünger, G. Weiglein '97]
 [S.H., W. Hollik, G. Weiglein '98]
- MSSM, Δr : leading gluonic $\mathcal{O}(\alpha \alpha_{s})$ corr. [*S.H. '98*]
- MSSM, $\Delta \rho$: leading $\mathcal{O}\left(\alpha_t^2, \alpha_t \alpha_b, \alpha_b^2\right)$ corrections $(M_{\text{SUSY}} \to \infty)$ [S.H., G. Weiglein '02, '03]

Missing:

- MSSM, $\Delta \rho$: leading $\mathcal{O}\left(\alpha_t^2, \alpha_t \alpha_b, \alpha_b^2\right)$ corrections $(M_{\text{SUSY}} \neq \infty)$
- MSSM, Δr , $\sin^2 \theta_{\text{eff}}$: subleading $\mathcal{O}\left(G_{\mu}^2 m_t^2\right)$

Effect of latest corrections:

S. Heinemeyer, CERN theory seminar, 06.10.2004

Current:	s a theory		s 2 otheory	10 10-5
	δM_W	$\approx \pm 10$ MeV,	$\delta \sin^2 \theta_{\rm eff} \approx$	$\pm 10 \times 10^{\circ}$
δm_t :	$\delta M_W^{\sf para}$	$pprox \pm 26$ MeV,	$\delta \sin^2 \theta_{eff}^{para} \approx$	$=\pm 14 imes 10^{-5}$
$\delta(\Delta lpha_{had})$:	$\delta M_W^{\sf para}$	$pprox \pm$ 6.5 MeV,	$\delta \sin^2 \theta_{\text{eff}}^{\text{para}} \approx$	$=\pm 13 imes 10^{-5}$
	δM_W^{exp}	$pprox \pm$ 34 MeV,	$\delta \sin^2 \theta_{\text{eff}}^{\text{exp}} \approx$	$3 \pm 16 imes 10^{-5}$
-uture:	$\delta M_W^{\mathrm{theory}}$	$\gtrsim\pm2$ MeV,	$\delta \sin^2 \theta_{\rm eff}^{\rm theory} \gtrsim$	$\pm2 imes10^{-5}$
δm_t :	$\delta M_W^{\sf para}$	$pprox \pm 1$ MeV,	$\delta \sin^2 \theta_{eff}^{para} pprox$	$\pm 0.4 \times 10^{-5}$
$\delta(\Delta lpha_{had})$:	δM_W^{para}	$pprox \pm 1$ MeV,	$\delta \sin^2 \theta_{\rm eff}^{\rm para} \approx$	$\pm 1.8 \times 10^{-5}$
[GigaZ]:	δM_W^{exp}	$pprox \pm$ 7 MeV,	$\delta \sin^2 \theta_{\rm eff}^{\rm exp} \approx$	$\pm 1.3 \times 10^{-5}$
SUSY parametr	ric errors	depend strongly	on the scenario)

 $\Rightarrow M_W$ under control, $\sin^2 \theta_{\rm eff}$ barely precise enough

S. Heinemeyer, CERN theory seminar, 06.10.2004

Most recently: Leading corrections in the NMFV MSSM [S.H., W. Hollik, F. Merz, S. Peñaranda '04]

 \rightarrow mixing of \tilde{t}/\tilde{c} and \tilde{b}/\tilde{s} : LL mixing $\sim \lambda \times M_{SUSY}^2$ (corresponds to $(\delta_{LL})_{23}$):

 \Rightarrow large NMFV mixing λ can be strongly constrained

Status and Perspectives (B) Prediction of m_h in the r/cMSSM:

More recently done (this millennium):

- subleading (non)-log $O(\alpha_t^2)$ terms $\Rightarrow \delta m_h \lesssim 1 - 4 \text{ GeV}$ [A. Brignole, G. Degrassi, P. Slavich, F. Zwirner '01] [J. Espinosa, R. Zhang '01]
- $``\Delta m_b" effects \Rightarrow \text{leading } \mathcal{O}(\alpha_b \alpha_s) \text{ terms} \\ \Rightarrow \delta m_h \text{ for large } \tan \beta \\ [M. Carena, D. Garcia, U. Nierste, C. Wagner '00] \end{cases}$
- Remaining $\mathcal{O}(\alpha_b \alpha_s)$ corrections $\Rightarrow \delta m_h \lesssim 0 - 3$ GeV for very large μ , tan β [A. Brignole, G. Degrassi, P. Slavich, F. Zwirner '01] [S.H., W. Hollik, H. Rzehak, G. Weiglein '04]
- Leading $\mathcal{O}\left(\alpha_t \alpha_b, \alpha_b^2\right)$ corrections $\Rightarrow \delta m_h \lesssim 0 - 3 \text{ GeV}$ for "extreme" parameters [A. Dedes, G. Degrassi, P. Slavich '03]
- "Full" 2-loop EP (not for OS calculation)
 [S. Martin '02, '03]

More recently done (cont.'):

- evaluation of the Higgs sector of the (c)MSSM: full 1-loop, $q^2 \neq 0$ (+ leading/subleading 2-loop) $\Rightarrow \delta m_h \lesssim 1 - 7$ GeV [M. Frank, S.H., W. Hollik, G. Weiglein '02]
- full 1-loop corrections for charged Higgs sector
 [M. Frank, S.H., W. Hollik, G. Weiglein '02]
- New renormalization (\overline{MS}/OS) for 1-loop result $\Rightarrow \delta m_h \approx 1 - 2$ GeV [*M. Frank, S.H., W. Hollik, G. Weiglein '02*]
- Renormalization at $\mathcal{O}(\alpha_b \alpha_s)$ $\Rightarrow \delta m_h \lesssim 1 - 2 \text{ GeV}$ for very large μ , tan β [S.H., W. Hollik, H. Rzehak, G. Weiglein '04]
- evaluation of the Higgs sector of the NMFV MSSM
 [S.H., W. Hollik, F. Merz, S. Peñaranda '04]

Missing:

- full 2-loop (incl. full renormalization)
- leading 3-loop (\rightarrow possible, but technical difficulties . . .)

Remaining higher-order uncertainties:

[G. Degrassi, S.H., W. Hollik, P. Slavich, G. Weiglein '02]

2-loop momentum independent:

remaining 2-loop, $q^2 = 0$: $\Delta m_h \lesssim 1.5 \text{ GeV}$

- subleading $\mathcal{O}(\alpha_t \alpha_s)$
- subleading $\mathcal{O}\left(\alpha_t^2\right)$

$$-\mathcal{O}\left(\alpha_{\tau}^{2}\right)$$

- 2-loop gaugino contributions

2-loop momentum dependent:

Formally of $O\left(\alpha_s \alpha_t m_t^2 m_h^2 / M_W^2\right)$ (i.e. like the "remaining 2-loop" corrections) 1-loop: $\Delta m_h \lesssim 2 \text{ GeV}$ 2-loop: $\Delta m_h \lesssim 1 \text{ GeV}$ $\rightarrow \top$

Variation of $\overline{\text{MS}}$ renormalization constant: m_h^{max} scenario, $\mu_{\text{dim}} = 0.5 m_t \dots 2 m_t$ [*M. Frank, S.H., W. Hollik, G. Weiglein '02*]

 t/\tilde{t} : 3-loop, 4-loop, ...:

- 1) changing renormalization of m_t at 2-loop: $\Rightarrow \Delta m_h \leq 1.5 \text{ GeV}$ from leading 3-loop corrections
- 2) explicit formula for simplified case:

$$\Delta m_h^2 = \frac{3\alpha_t \overline{m}_t^2}{\pi^3} \log^3 \left(\frac{M_{\text{SUSY}}^2}{m_t^2}\right) \left[\frac{23}{6}\alpha_s^2 - \frac{5}{4}\alpha_s\alpha_t - \frac{33}{64}\alpha_t^2\right]$$

 $(M_A = m_{\tilde{g}} = m_{\tilde{t}_1} = m_{\tilde{t}_2} \equiv M_{\text{SUSY}}, \tan \beta \to \infty) \Rightarrow \Delta m_h \lesssim 1.5 \text{ GeV}$

3) iterative numerical solution of RGEs: [A. Hoang '97] $\Rightarrow \Delta m_h \lesssim 1.5 \text{ GeV}$

$$b/\widetilde{b}$$
: 3-loop, 4-loop, . . . :

changing the renormalization scheme $\Rightarrow \Delta m_h \lesssim 0 - 3 \text{ GeV}$ (depending on parameter space)

 $\begin{array}{l} \hline \text{full intrinsic error:} \ (\text{from unknown higher-order corrections}) \\ \hline \text{today:} \ \Delta m_h^{\text{intr}} \approx 3 \ \text{GeV} \ (\text{depending on parameter space}) \\ \hline \text{needed for future:} \ \Delta m_h^{\text{intr}} \lesssim 0.5 - 0.1 \ \text{GeV} \end{array}$

S. Heinemeyer, CERN theory seminar, 06.10.2004

 $\rightarrow T$

 $\rightarrow \mathsf{T}$

 t/\tilde{t} : 3-loop, 4-loop, ...: changing renormalization of m_t at 2-loop: [G. Degrassi, S.H., W. Hollik, P. Slavich, G. Weiglein '02]

<u> b/\tilde{b} : 3-loop, 4-loop, ...</u> changing renormalization of b/\tilde{b} sector at 2-loop: [S.H., W. Hollik, H. Rzehak, G. Weiglein '04]

(\rightarrow see talk by S.H. in the PhenClub tomorrow for more details)

Parametric uncertainties:

$$\begin{array}{l} \underline{m_t:}\\ \text{today: } \delta m_t^{\text{Tevatron}} \approx 4 \text{ GeV} \Rightarrow \Delta m_h^{m_t} \approx 4 \text{ GeV} \\ \text{future: } \delta m_t^{\text{LHC}} \approx 1 - 2 \text{ GeV} \Rightarrow \Delta m_h^{m_t} \approx 1 - 2 \text{ GeV} \Rightarrow \text{not sufficient!} \\ \delta m_t^{\text{LC}} \approx 100 \text{ MeV} \Rightarrow \Delta m_h^{m_t} \approx 100 \text{ MeV} \end{array}$$

<u> m_b </u>: $\delta m_b \lesssim 100 \text{ MeV} \Rightarrow \text{negligible}$

M_W :

today: $\delta M_W = 34 \text{ MeV} \Rightarrow \Delta m_h^{M_W} \approx 100 \text{ MeV}$ future: $\delta M_W^{\text{GigaZ}} \approx 7 \text{ MeV}$ negligible

$$\underline{\alpha_s}$$
:
today: $\delta \alpha_s(M_Z) \approx 0.002 \Rightarrow \Delta m_h^{\alpha_s} \approx 0.3 \text{ GeV}$
future: $\delta \alpha_s(M_Z) \lesssim 0.001 \Rightarrow \Delta m_h^{\alpha_s} \approx 0.1 - 0.2 \text{ GeV}$

Experimental uncertainties:

 $\Delta m_h^{\rm exp,LHC} \approx 200 \text{ MeV}$ $\Delta m_h^{\rm exp,LC} \approx 50 \text{ MeV} \Rightarrow \text{can hardly be matched (we do our best!)}$

Example I: effect on $\tan \beta$ exclusion:

Example II: m_h prediction as a function of A_t

 $a_\mu \equiv (g-2)_\mu/2$

Overview about the current experimental and SM (theory) result: [g-2 Collaboration, hep-ex/0401008]

Overview of the SM theory evaluation:

Source	contr. to a_{μ} [10 $^{-10}$]	
LO hadr.	$\sim 695\pm7~(e^+e^-)$	[Davier et al, Hagiwara et al. '03]
		[Ghozzi, Jegerlehner '03]
	$711.0\pm 6~(au)$	[Davier, Eidelman, Höcker, Zhang '03]
LBL	8 ± 4	[Knecht, Nyffeler '02]
	13.6 ± 2.5 tbc	[Melnikov, Vainshtein '03]
EW 1L	19	
EW 2L	-4	[Czarnecki, Krause, Marciano '98]
exp. res.	6	[BNL E821 '04]

- \rightarrow "Isospin breaking effects" in τ data problematic [Ghozzi, Jegerlehner '03]
- \rightarrow KLOE data (radiative return) agrees with e^+e^- data
- \Rightarrow general agreement at ICHEP'04 Beijing: discard τ data

 $a_{\mu}^{\mathsf{exp}}-a_{\mu}^{\mathsf{theo},\mathsf{SM}}pprox$ (25.2 \pm 9.2) imes 10⁻¹⁰

Prediction of $(g-2)_{\mu}$ in the MSSM:

Done:

- full 1-loop corrections [*T. Moroi '95*]
- leading QED log at $\mathcal{O}(\alpha^2) \Rightarrow -8\%$ for $M_{\text{SUSY}} \approx 500 \text{ GeV}$ [*G. Degrassi, G. Giudice '98*]
- some leading parts of Barr-Zee diagrams at 2-loop
 [C. Chen, C. Geng '01] [A. Arhrib, S. Baek '01]
 → disagreement by a factor of 4
- all 2-loop diagrams with closed SM fermion/sfermion or chargino/neutralino loop
 [S.H., D. Stöckinger, G. Weiglein '03 '04]

Missing:

• remaining 2-loop contributions (\rightarrow under way)

Still problematic: SM evaluation, $\Delta \alpha_{had}$, ...

Effects of latest corrections: f/\tilde{f} loops (I)

Effects of latest corrections: f/\tilde{f} loops (II)

Effects of latest corrections: chargino/neutralino loops

Results in Split SUSY:

Remaining uncertainties:

1. SUSY 1L diagrams with a mixed f/\tilde{f} loop

- \rightarrow same enhancement factors as SM 1L diagrams with a closed f/\tilde{f} loop attached
- \Rightarrow possibly of similar order

2. THDM corrections to SUSY 1L diagrams

Already known:

QED corrections to $a_{\mu}^{\text{SUSY}}(1\text{L})$: ~ -8% for $M_{\text{SUSY}} = 500 \text{ GeV}$ [G. Degrassi, G. Giudice '98]

- \rightarrow only evaluated for a common SUSY mass scale
- \Rightarrow non-negligible corrections possible

 \Rightarrow Remaining uncertainties estimated to $\sim 6 \times 10^{-10}$ [S.H., D. Stöckinger, G. Weiglein '04]

4. Conclusinos

- Precision observables
 - can give valuable information about the "true" Lagrangian
 - can provide bounds on SUSY parameter space
- M_W , $\sin^2 \theta_{\text{eff}}$: today : $\delta M_W^{\text{theory}} \approx \pm 10 \text{ MeV}, \qquad \delta \sin^2 \theta_{\text{eff}}^{\text{theory}} \approx \pm 10 \times 10^{-5}$ future : $\delta M_W^{\text{theory}} \gtrsim \pm 2 \text{ MeV}, \qquad \delta \sin^2 \theta_{\text{eff}}^{\text{theory}} \gtrsim \pm 2 \times 10^{-5}$ [GigaZ]: $\delta M_W^{\text{exp}} \approx \pm 7 \text{ MeV}, \qquad \delta \sin^2 \theta_{\text{eff}}^{\text{exp}} \approx \pm 1.3 \times 10^{-5}$ $\Rightarrow M_W$ under control, $\sin^2 \theta_{eff}$ barely precise enough • m_h : today: $\delta m_h^{\text{theo}} \approx \pm 3 \text{ GeV}, \quad \delta m_h^{\text{para}} \gtrsim \pm 4 \text{ GeV}, \quad \delta m_h^{\text{exp}} = ???$ future : $\delta m_h^{\text{theo}} \lesssim \pm 0.5 \text{ GeV}, \ \delta m_h^{\text{para}} \gtrsim \pm 0.1 \text{ GeV}, \ \delta m_h^{\text{exp}} = 0.05 \text{ GeV}$ \Rightarrow huge effort necessary to exploit physics potential
- $(g-2)_{\mu}$: under control with full 2-loop result; $\delta a_{\mu}^{\text{theo}} \lesssim 6 \times 10^{-10}$ \Rightarrow still problematic: SM evaluation, $\Delta \alpha_{\text{had}}, \ldots$

S. Heinemeyer, CERN theory seminar, 06.10.2004

Experimental situation:

Current/future Experiments

 \rightarrow provide high accuracy measurements !

Theory situation:

measured observables have to be compared with theoretical predictions (of your favorite model)

Measured data is only meaningful if it is matched with theoretical calculations at the same level of accuracy

We have to start **NOW** to achieve necessary accuracy in time

Theoretical calculations should be viewed as an essential part of all future High Energy Physics programs