

Penina Axelrad (Co-Chair) - U. of CO, Boulder John LaBrecque (Co-Chair) - NASA HQ Jonathan Hartley (Facilitator) - ESTO/GSFC

23-24 January 2001

Focus:

- Enabling technologies for navigation sensors and actuators for LEO and MEO orbiters and distributed spacecraft constellations
- Results of this session will flow into the Distributed Spacecraft Infrastructure session to address the hardware aspects of autonomous closed-loop control

Sensor technologies to be considered that may require flight validation:

- GPS, RF cross-links, optical, and inertial instruments for the purposes of precise orbit determination and relative navigation
- Critical actuator technology includes low impulse micro- and nano-thrusters, accelerometers, and associated closed-loop architectures
- Extended applications of these technologies to science measurements such as occultations and reflections are also included in the scope of this session

Primary science drivers for precision navigation requirements:

- Topography and Gravity field determination over land, ice and oceans
- Efficient spatial and temporal coverage of the Earth for imaging
- Real time POD and formation flying for Radar and lidar measurements
- Co-ordinated measurements from constellations of satellites

Agenda

Tuesday, Jan 23, 2001

<u>Topic</u>

Introduction and Overview

<u>Presenter</u>

Co-Chairs

Oceanography	John Ries - UT Austin
Oceanography	Steve Nerem - U. Colorado
Reference Frames Gravity	Peter Bender - U. Colorado
Navigation for NASA Solid Earth Sci9ence Interferometer Missions	Paul Rosen - JPL
Lidar/Altimetry	Dave Harding - GSFC
GPS Reflections	Jim Garrison - Purdue
Real-time onboard position determination (navigation	Steve Lichten - JPL
of satellites to the centimeter-level using new GPS tracking system)	
GNC in LEO/MEO	Jesse Leitner - GSFC
POD & GNC	Larry Young - JPL
Propulsion control	Scott Benson - GRC
Highly Compact, Ultra-low Power Tightly Coupled Micro GPS/INS	Michael Watson - MSFC
GPS Modernization	Dave Turner - Aerospace Corp
Interim Summary of Issues	All participants

Agenda

Wednesday Jan 24, 2001

- Identify convergence of Science needs and candidate Technology approaches
 - new capabilities enabled
 - reductions in implementation and life-cycle costs
- Define specific capability/technology needs for each measurement class
- Describe and illustrate the current state of the art for the technology
- Itemize the major technology components and current technology readiness level
- Identify ongoing investments
- Identify technology development gaps
- Formulate draft technology development roadmaps
 - Show key development and flight validation objectives and milestones
 - Ground development and validation needed
 - include technology flight validation where necessary
- Summary Plenary Session
 - 10-minute presentations by Chairs of each Breakout Session
- Adjourn

Participants

- Penina Axelrad •
- John C. Ries •
- Pepper Hartley •
- Stephen Lichten •
- Larry Young •
- Tae Kim •
- Scott Luthcke •
- Eric Stoneking •
- **Ed Moulton** •
- Matt Nicholson •
- Charles Kodak •
- Tim Brand •
- R. Joseph Cassady •
- Steve Nerem •
- Scott Benson •
- Chuck Minning •

UT/CSR NASA/ESTO JPL JPL MITRE/CAASD GSFC **Orbital Sciences** Honeywell **SPAWAR GSFC/SLR Draper Lab Primex** Aero U of CO NASA/GRC JPL

U of CO

•	Dennis Duven	JHU/APL
•	Jim Garrison	Purdue
•	Roger Griffin	Boeing
•	Robert Henderson	JHU/APL
•	Kenneth Wallace	ARINC
•	Michael Watson	MSFC
•	Brian Murphy	GSFC
•	David Chichka	CIT
•	Jesse Leitner	GSFC
•	Peter Bender	JILA/U of CO
•	Don Burrowbridge	OSC
•	Bernard Minster	UCSD/SIO
•	Dave Turner	Aerospace Corp
•	Bill Kligstein	JPL

Precision Navigation Recommendations

Issues:

- Scientific and technological advance in some NASA Earth Science applications depends on improvements in Precision Orbit Determination (POD)
- POD is reaching a noise floor of about 1 cm

Recommendations:

- Develop and demonstrate reliable drag-free flight capability
- Recommend to DoD enhancements in GPS as part of GPS III
 - Improved satellite response to non-conservative forces
 - Improved phase center determination
 - Improved maneuver control and advisories
 - Improved signal structure, power
 - Improved navigation message for clock and ephemerides
 - Satellite Laser Ranging (SLR) tracking of GPS satellites for improved ephemerides
- Demonstrate centimeter level real time POD using GDGPS
- Demonstrate nanometer laser based inter-spacecraft ranging and formation flying for gravity measurement and optical interferometry

Drag-Free Technology: Benefits

- Science Benefits
 - Gravity missions (GRACE Follow-On)
 - Synthetic Aperture Radar (SAR) interferometry, topography
 - SAR orbits could maintain very close repeats for interferometry
 - Ocean, Ice, and land altimetry science enabled by POD
 - Only gravity errors remain, which will be minimal after GRACE
- Other Benefits
 - Much improved navigation with GPS if GPS satellites were drag-free
 - Autonomous spacecraft navigation accuracy significantly improved
 - Orbit prediction accuracy improved
 - No orbital decay due to atmospheric drag
 - Repeat orbits automatically maintained without maneuver interrupts
 - Improved formation flying (differential surface forces cancelled)

Drag-Free Component Technologies

Thrusters

- Field Effect Electric Propulsion, Ion, Colloid, Hall, Pulsed Plasma Thruster
- 1-10 micro-Newtons (μN) per thruster
- < 0.1 μ N/Hz^{1/2} noise
- Near-continuous, clean, and adjustable thrust
- 1-200 mHz
- Long lifetime

Precision Accelerometers

- 10⁻¹³ m/s²/ Hz^{1/2}
- 1-200 mHz
- No US supplier
- Flight validation required to test accelerometer

Drag-Free Control Algorithms

- 10⁻¹⁰ m/s²/ Hz^{1/2} or better
- 1-200 mHz

mN Thruster Technology

Pulsed Plasma Thruster (PPT)

Field Emission Electric Propulsion (FEEP) Thruster

Hall Current Thruster (HCT)

Colloid Thruster

Drag Free: Accelerometer Principles

- Proof-Mass : motionless with respect to the cage
- Position detection : capacitive sensors with high resolution
- Actuators : Electrostatic levitation
- Measurement : from restoring voltage
 -> tri-axial acceleration of SC

Drag Free: Technology Demonstration

- The components of a drag-free system are in a relatively advanced stage of development.
- A flight demonstration of a drag-free system is needed before science missions can begin implementing such a system off-the-shelf with a high Technology Readiness Level (TRL).
- Low cost/ high reliability implementation should be objective of development program

Real Time Centimeter Level Precision Orbit Determination (POD)

- NASA Software of the Year (2000) can provide centimeter level POD in real time.
- Space based correction broadcast being implemented
- Receiver hardware implementation being supported by ESTO/ATIP
- Flight demonstration is recommended within the near term
- Utility to OES science and applications include:
 - -Reduced operations costs
 - -Onboard formation flying capability
 - -Onboard data processing
 - -Real time precision altimetry
- Autopilot control would enable airborne repeat pass interferometry- important to natural hazards and applications programs

FS

ESE Tech - 14

Navigation System Enhancement

- Provide for Satellite Laser Ranging (SLR) tracking of GPS satellites for better orbit determination and tie between systems (GPS III and earlier)
- Improved determination of GPS antenna phase center (GPS III)
- Improved signal structure for higher SNR (GPSIII)
- Better GPS satellite design to reduce drag, solar pressure and other poorly modeled non-conservative forces (GPS III)
- Improve long term stability of Terrestrial Reference Frame to 100 µm/yr. (IERS, IGS,ILRS,IVS)
- Provide polar orbiting geodetic GPS satellites to improve GPS constellation ephemeris (NMP).

Nanometer Inter-spacecraft Ranging

Science Requirement: Nanometer interspacecraft laser ranging will enable gravity measurement for planetary mass flux, optical interferometer telescopes, gravity wave detection.

Requires: Ultrastable laser sources and interferometers.

Flight Demonstration: Demonstrate formation flying with nanometer metrology in LEO/MEO orbit.