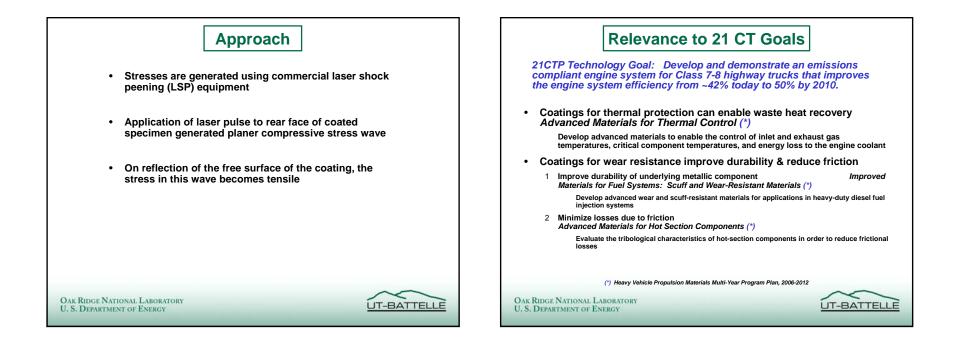
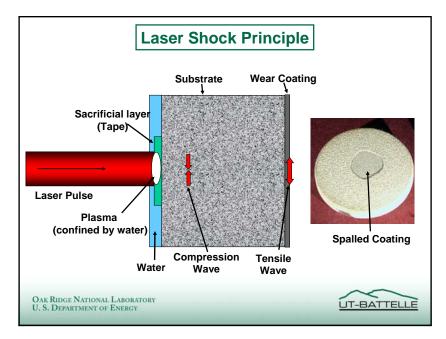

# Motivation (Behind Both Annexes)


- Considerable effort has been directed towards increasing fuel efficiency and lowering emissions in diesel engines because of rising fuel prices and their environmental impact (NOx and particulates).
- New materials technologies (e.g, alloys, coatings, ceramics) for fuel systems, exhaust after-treatment, valve train, air handling, structural and insulating materials are required to meet these objectives.
- However, the integration of new technologies into the diesel engine community first requires:
  - Research that validates the applicability of these technologies to improve performance (i.e., surface durability and functionality) while lowering or maintaining acceptable life-cycle costs.
  - Commercialization of new materials technologies that have undergone thorough interrogation, test standardization, and component design.






| <b>21CTP Technical Gool:</b> Develop and demonstrate an emissions compliant engine system for Class 7-8 highway trucks that improves the engine system efficiency from -42% today to 50% by 2010.         Project Objectives         Promote commercialization of new materials technologies by developing standard testing and characterization methods in conjunction with national and international standards communities.       Were filtering for wara 42% today to 50% by 2010.         Completed preliminary investigation of characterization techniques for assessment of contact damage and quantitative adherence measurements for certain of contact damage and quantitative adherence measurements for certain for wara and thermal management.       Planned Duration         October 2001 to September 2006       DDE Funding/Industry Cost Share       FY04: \$200K; FY05: \$190K       Laser Shock Method Provides for Quantitative Assessment of Coating Adherence         Principal Investigator(s)       Matt Ferber, Oak Ridge National Laboratory/UT-Battelle (865) 576-0818; ferbermk@ornl.gov       Accomplishments       Demonstrated capability of laser shock method to initiate debonding and spallation in both metallic and ceramic coatings         Significant Future Milestones       Develop model to predict tensile stress magnitude generated in thin coatings due to the laser shock process-June 2006         Priopect ID/Agreement ID       Program Structure       Sub-Program Element       R&D Phase       Date         PM 9098       Materials Technology       HY Propulsion Materials       Applied Research | IEA Annex on Materials for Transportation<br>Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|
| Technology Development Manager       Significant Future Milestones         Sid Diamond, DOE/OFCVT       Develop model to predict tensile stress magnitude generated in thin coatings due to the laser shock process-June 2006         Project ID/Agreement ID       Program Structure       Sub-Program Element       R&D Phase       Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Project Objectives       trucks that improves the engl         Promate commercialization of new materials technologies by developing standard testing and characterization methods in conjunction with national and international standards communities.         FY 2005 Focus       Completed preliminary investigation of characterization techniques for assessment to contact damage and quantitative adherence measurements for ceramic coatings for war and thermal management.         Planned Duration       October 2001 to September 2006         DOE Funding/Industry Cost Share       FY04: \$200K; FY05: \$190K         Principal Investigator(s)       Matt Ferber, Oak Ridge National Laboratory/UT-Battelle | ne system efficiency fro<br>Sacrificial hyr<br>(Tape)<br>Laser Palae<br>Plasma<br>(confined by water)<br>Laser Shock Method Provi<br>Demonstrated Cappal<br>debonding and spall | shutture<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compression<br>Compress | y 2010.         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sid Diamond, DOE/OFCVT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Significant Future<br>Develop model to pr                                                                                                                                       | edict tensile stress magnitu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                               | R&D Phase<br>Applied Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date<br>8-12-05 |  |  |  |







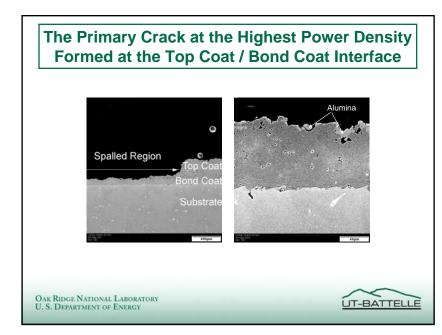
# Technique was Capable of Generating Controlled **Failures in Both Ceramic and Metallic Coatings**

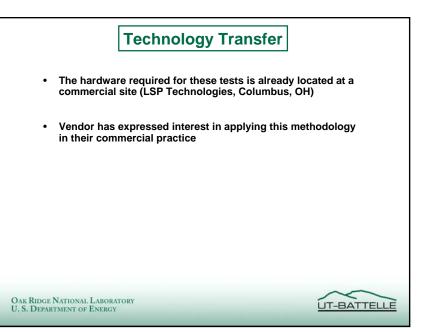






Metallic Bond Coat Only


Laser Power Density = 1.1 GW/cm<sup>2</sup>

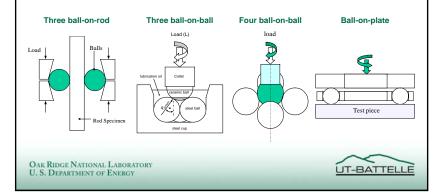

## Laser Power Density = 0.9 GW/cm<sup>2</sup>

Ceramic & Metallic

Bond Coat Only








# Future Work • Sensitivity and reproducibility of the technique must be evaluated • Tests in progress - to be completed in June 2006 • A model for predicting stress magnitude must be developed • Current activities focus on adaptation of available computer codes for shock physics • Validation of model will be completed September 2006

| IEA – Evaluat                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e Rol    | ling Contact F                                                                                                                                                   | atigue                                                                                                               |                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 2NT CENTURY TRUCH                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                                                                                                                  | -2C                                                                                                                  | $\mathcal{IP}$                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                                                                  | ngine system for Class 7-<br>om ~42% today to 50% by                                                                 |                                                                            |
| Project Objectives         • Enable greater use of next generation ceramic and coated-metal roller elements for diesel engines.         • Correlate RCF test methods that are used internation FY 2005 Focus         • Evaluate the coupled effects of machining-induced surface damage & ceramic microstructure on RCF.         Planned Duration         October 2003 to September 2006         DOE Funding/Industry Cost Share         FY04: \$180K; FY05: \$150K |          |                                                                                                                                                                  | -cracking (left) and spallati<br>used by rolling contact fatig                                                       |                                                                            |
| Principal Investigator(s)<br>Andy Wereszczak, Oak Ridge National Laboratory/UT-<br>(865) 576-1169; wereszczakaa @orni.gov<br>Technology Development Manager<br>Sid Diamond, DOE/OFCVT<br>(202) 586-8032; sid.diamond @ee.doe.gov                                                                                                                                                                                                                                    | Battelle | interpretations used<br>• Method developed to<br>properties of ball be<br>spectroscopy.<br>Significant Future M<br>• Develop the C-sphe<br>characterization of s | npleted on RCF test metho<br>in Germany, Japan, UK, &<br>o evaluate and discriminate<br>arings in-situ using resonar | USA.<br>the elastic<br>nce ultrasound<br>ity to exploit the<br>hed ceramic |
| Project ID/Agreement ID Program Structure                                                                                                                                                                                                                                                                                                                                                                                                                           | Sul      | o-Program Element                                                                                                                                                | R&D Phase                                                                                                            | Date                                                                       |
| PM_9134 Materials Technology                                                                                                                                                                                                                                                                                                                                                                                                                                        | HV P     | ropulsion Materials                                                                                                                                              | Applied Research                                                                                                     | 7-05                                                                       |

# Objectives

- Enable greater use of next generation (i.e., longer lasting, more durable, lower losses due to friction) ceramic and coated metal roller elements for diesel engines
- Correlate rolling contact fatigue (RCF) test methods used internationally



# Approach

- Vary the machining of Si<sub>3</sub>N<sub>4</sub> ceramic balls to study its ultimate effect on RCF performance
- Develop a test coupon that can readily exploit the evaluation of RCF-limiting flaws in ceramic balls
- Collaborate with international partners and correlate RCF test methods
- Work with domestic suppliers of Si<sub>3</sub>N<sub>4</sub> ball compositions to ultimately improve RCF performance

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



# Relevance to 21 CT Goals

21CTP Technology Goal: Develop and demonstrate an emissions compliant engine system for Class 7-8 highway trucks that improves the engine system efficiency from ~42% today to 50% by 2010.

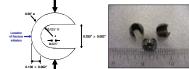
The substituted use of ceramic roller elements in diesel engines enables

- Higher thermal efficiency
- Longer characteristic life
- Reduction in parasitic losses
- Reduced weight



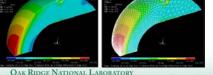
# Accomplishments

### · RCF test facility established at ORNL


- Testing plan and new test specimen conceived and testing initiated to study subsurface damage effects on RCF performance (satisfied FY05 milestone)
- Method developed to evaluate and discriminate the elastic properties of ball bearings in-situ using resonance ultrasound spectroscopy (RUS)
- Summary report completed on RCF test methods and result interpretations used in Germany, Japan, UK, and USA

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

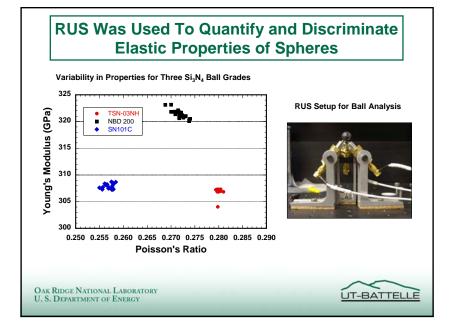



# "C-Sphere" Specimen Developed to Study Surface Flaws and Their Ultimate Influence on RCF

C-Sphere Specimen is Made By Machining a Groove in a Sphere and then Diametrally Loaded to Failure



# Stress State in a C-Sphere Specimen


at its Moment of Fracture



U. S. DEPARTMENT OF ENERGY

### The Effects of Four Machining Conditions on RCF Performance are Being Explored

| 12.7 mm /         1         (rosphar)         accepted         0.00 d <sup>+</sup> 0.00 l <sup>+</sup> 0.30 t <sup>+</sup> 2 (rosphar)         practice         0.00 d <sup>+</sup> 0.00 l <sup>+</sup> 0.00 l <sup>+</sup> 13.2 mm /         1         (rosphar)         practice         0.00 d <sup>+</sup> 0.00 l <sup>+</sup> 0.00 l <sup>+</sup> 13.2 mm /         1         (rosphar)         practice         0.00 d <sup>+</sup> 0.00 l <sup>+</sup> 0.00 l <sup>+</sup> 0.2 0 <sup>+</sup> 2 (rosphar)         practice         0.00 d <sup>+</sup> 0.00 l <sup>+</sup> 0.00 l <sup>+</sup> 0.3 0 <sup>+</sup> 0.2 0 <sup>+</sup> 2 (rosphar)         practice         0.00 d <sup>+</sup> 0.00 l <sup>+</sup> 10.3 mm /         1         (rosphar)         practice         0.00 d <sup>+</sup> 0.00 l <sup>+</sup> 0.3 0 <sup>+</sup> 2 (roshar)         practice         0.00 d <sup>+</sup> 0.00 l <sup>+</sup> 0.00 l <sup>+</sup> 0.3 0 <sup>+</sup> 1         rosphar)         practice         0.00 d <sup>+</sup> 0.00 l <sup>+</sup> 0.00 l <sup>+</sup> 0.5 0 <sup>+</sup> -         -         cosp d <sup>+</sup> 0.00 l <sup>+</sup> 0.00 l <sup>+</sup> 0.00 l <sup>+</sup> 0.5 0 <sup>+</sup> -         -         cos d <sup>+</sup> practice for RCF testb ar finabling         Cos vert ional | Diameter & Finish | Step            | Wheel             | Removal             | Removal per pass |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|-------------------|---------------------|------------------|
| dm ago<br>Coarse<br>1/ Gradha<br>1/ Sol<br>1/ Gradha<br>1/ Gradha<br>1/ Sol<br>1/ Gradha<br>1/ Sol<br>1/ Sol                                                                                                                                                                                                                               |                   |                 |                   |                     |                  |
| Correct         3 (finishing)         600 (m)         0.00 (m)           13.2 m /r         1 (roughing)         project         0.00 (m)         0.00 (m)           0.3 0 m         2 (m hain)         project         0.00 (m)         0.00 (m)         0.00 (m)           Correct         3 (finishing)         project         0.00 (m)         0.00 (m)         0.00 (m)           12.7 m /r         1 (roughing)         project         0.00 (m)         0.00 (m)         0.00 (m)           0.3 0 m         2 (m hain)         project         0.00 (m)         0.00 (m)         0.00 (m)           12.7 m /r         1 (m shing)         600 (m)         0.00 (m)         0.00 (m)         0.00 (m)           12.7 m /r         3 (finishing)         600 (m)         0.00 (m)         0.00 (m)         0.00 (m)           12.7 m /r         3 (finishing)         600 (m)         0.00 (m)         0.00 (m)         0.00 (m)           RCF.         Con vot it to d         "Ac         cpic d" p finishic for RCF tests of finishing         0.00 (m)                                                                                                                                                                                                                                                           | 0.50 0"           |                 |                   |                     |                  |
| 11.3. m m /         1         0 couple g) accepted         0.00 f <sup>-</sup> 0.00 f <sup>-</sup> 0.2. 0 f also         100 g/m         100 g/m         0.00 f <sup>-</sup> 0.00 f <sup>-</sup> 12.7. m m /         1 (couple g)         p paratice         0.00 s <sup>-</sup> 0.00 f <sup>-</sup> 12.7. m m /         2 (i dals cc         p paratice         0.00 s <sup>-</sup> 0.00 f <sup>-</sup> 12.7. m m /         2 (i dals cc         p paratice         0.00 s <sup>-</sup> 0.00 f <sup>-</sup> 10.0 g/m         2 (i dals cc         p paratice         0.00 s <sup>-</sup> 0.00 f <sup>-</sup> 10.0 g/m         0.00 s <sup>-</sup> 0.00 f <sup>-</sup> 0.00 f <sup>-</sup> 0.00 f <sup>-</sup> 10.0 g/m         0.00 s <sup>-</sup> 0.00 f <sup>-</sup> 0.00 f <sup>-</sup> 0.00 f <sup>-</sup> 10.0 g/m         - % cc         p paratice         0.00 s <sup>-</sup> 0.00 f <sup>-</sup> 0.00 f <sup>-</sup> - % cc         p paratice         0.00 s <sup>-</sup> 0.00 f <sup>-</sup> 0.20 f <sup>-</sup> - % cc         p paratice         0.00 s <sup>-</sup> 0.00 f <sup>-</sup> 0.20 f <sup>-</sup> - % cc         p paratice         0.00 s <sup>-</sup> 0.00 f <sup>-</sup> 0.20 f <sup>-</sup> - % cc         p paratice         0.00 s <sup>-</sup> 0.00 f <sup>-</sup> 0.20 f <sup>-</sup>    |                   |                 |                   | 0.00 05"            | 0.00 01-         |
| 0.2 07         2 0 da se <sup>2</sup><br>dan se <sup>2</sup><br>1 dis sha 1 100 pin<br>0.00 01 <sup>-</sup> 0.00 1 <sup>-</sup><br>0.00 01 <sup>-</sup> 0.00 01 <sup>-</sup><br>0.00 01 <sup>-</sup> 1 2 da sa 2<br>0.00 r <sup>2</sup> 4 corpset<br>1 0 0 0 r <sup>2</sup> 6 0 pin<br>1 0 0 0 r <sup>2</sup> 0.00 1 <sup>-</sup><br>0 0 0 r <sup>2</sup> 1 3 dis sha 2<br>0 0 0 r <sup>2</sup> 4 0 pin<br>1 0 0 pin<br>1 0 0 0 r <sup>2</sup> 0.00 r <sup>2</sup> 0.00 1 <sup>-</sup><br>0 0 0 r <sup>2</sup> 1 3 dis sha 2<br>0 0 0 r <sup>2</sup> 4 0 pin<br>1 0 0 pin<br>1 0 0 0 r <sup>2</sup> 0.00 0 r <sup>2</sup> 0.00 0 r <sup>2</sup> 1 3 dis sha 2<br>0 0 0 r <sup>2</sup> 4 0 pin<br>1 0 0 r <sup>2</sup> 0.00 0 r <sup>2</sup> 0.00 0 r <sup>2</sup> 1 3 dis sha 2<br>0 0 0 r <sup>2</sup> 4 0 pin<br>1 0 0 r <sup>2</sup> 0.00 0 r <sup>2</sup> 0.00 0 r <sup>2</sup> 1 3 dis sha 2<br>r veri i o ad         - Xec c pic d <sup>2</sup> p tettic for RCF test at fisibles                                                                                                                                                                                                                                                                                                                                   |                   |                 | 600 grit          |                     |                  |
| damagoi         100 pit         0.00 0.7         0.00 01^-           Correr         1 (fa taba pit)         2 corpt d         0.00 0.7         0.00 1^-           0.50 T         1 (for taba pit)         2 corpt d         0.00 0.7         0.00 1^-           0.50 T         2 may 0         100 pit         0.00 0.7         0.00 1^-           7 may 1         1 (for taba pit)         600 pit         0.00 0.7         0.00 01^-           7 may 2         1 (for taba pit)         600 pit         0.00 01^-         0.00 01^-           7 may 2         3 (for taba pit)         600 pit         0.00 01^-         0.00 01^-           0.50 V         - Xec epte d* pit actice for RCF texb ar finabing         RCF         Con vertional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                 |                   |                     |                  |
| Correc         3 (fin shafe)         600 (fin         0.00 (fin)           12.7 m m         7 (fin shafe)         9 (fin)         600 (fin)         0.00 (fin)           12.7 m m         7 (fin shafe)         600 (fin)         600 (fin)         0.00 (fin)         0.00 (fin)           12.7 m m         7 (fin shafe)         600 (fin)         600 (fin)         600 (fin)         0.00 (fin)           12.7 m m         7 (fin shafe)         7 (fin)         600 (fin)         600 (fin)         600 (fin)           PCT:         Con vest ion al         *Acc         fit all (fin)         7 (fin)         600 (fin)         600 (fin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.52 0"           |                 |                   |                     |                  |
| 12.7 mm /         1         (rough g)         acc pix d         0.00 f         0.00 f           0.80 f         dm s(p)         100 g d         0.00 f         0.00 f         0.00 f           12.7 mm /         fm into pix         dm g d         dm g d         0.00 s         0.00 f           12.7 mm /         fm into pix         dm g d         dm g d         dm g d         0.00 f           RCF.         c que d* p setice for RCP texts at finahing         RCF.         cm vest iond         dm g d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | dam age)        | 100 g rit         | 0.00 05"            | 0.00 01-         |
| 0.90°         2 (i) and set         pratice         0.00°         0.001°           1.80 grid         1.80 grid         0.000°         0.000°         0.000°           1.21 sets         -3 (fai shade g)         600 grid         0.000°         0.000°           0.20 0°         -3 (fai shade g)         600 grid         0.000°         0.000°           0.20 0°         -3 (fai shade g)         600 grid         0.000°         0.000°           0.20 0°         -3 Acc         epte d° p ractice for RCP tests at finabling         RCP-           RCP-         Con vest road         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                 | 600 grit          |                     |                  |
| dim sign         100 grd         0.003"         0.001"           12.7 mm /         0.30 rf         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                            |                   |                 | acc ep te d       |                     |                  |
| Pace         3 (fn table g)         600 grd           12.7 m a/         0.50 fr         3.00 fr           0.50 fr         "Acc. epte d" p tactice for RCP tests ar finishing           Convertional         Convertional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.50 0"           |                 |                   |                     |                  |
| 1.2.7 mm /     0.80 fv       0.80 fv     "Acc epied" practice for RCF testb ar finishing       RCF.<br>Conversional     Conversional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | dam age)        |                   | 0.0005"             | 0.00 01-         |
| 0.50 0° "Acc epic d"p ratice for RCF tests ar finabling<br>RCF.<br>Con very ional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fine              | 3 (fin ishin g) | 600 g rit         |                     |                  |
| RCF.<br>Convertional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                 |                   |                     |                  |
| Caveries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.50 0"           | "Acc epted"     | p ractice for RCF | testb ar fin ishing |                  |
| Caveries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                 |                   |                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                 |                   |                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Con vent ion al   |                 |                   |                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                 |                   |                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                 |                   |                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                 |                   |                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                 |                   |                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                 |                   |                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                 |                   |                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                 |                   |                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                 |                   |                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                 |                   |                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                 |                   |                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                 |                   |                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                 |                   |                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                 |                   |                     |                  |
| LIT DATTELLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                 |                   | ~                   | -                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                 | -                 |                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                 | 1                 | IT DAT              | TTELLE           |



# Technology Transfer

- C-Sphere test specimen has potential to enable materials
   developers to readily and inexpensive assess RCF performance.
- RUS can both quantify elastic properties and discriminate variability in ceramic balls
- Domestic Si<sub>3</sub>N<sub>4</sub> ball manufacturers (Saint-Gobain & Ceradyne) have expressed interest in both of the above. The RUS method has the potential to be easily automated.



# Future Work

- Continue to correlate RCF performance with identified flaw population & subsurface damage in Si<sub>3</sub>N<sub>4</sub> balls
- Assess if RUS can non-destructively identify RCF-limiting flaws
- Participate in international RCF round robin study with Germany, Japan, and the UK
- Begin RCF interrogation of tribologically-coated metal specimens





# <section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item>