Ultrasonic Measurements of Plastic Strain in Pipelines

Paul Panetta¹, George Alers²,Bob Francini¹, Aaron Diaz¹ Ken Johnson¹,Marino Morra¹, and Dan Kerr³

¹Pacific Northwest National Laboratory, Richland, WA ²EMAT Consulting, San Luis Obispo, CA ³Pacific Gas & Electric

Department of Energy (DOE), National Energy Technology Laboratory (NETL), Natural Gas Infrastructure Reliability Program

> Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Motivation (Natural gas suppliers)

Third party damage to natural gas pipeline

Damage currently detectable but not accurately characterized

Problems/Difficulties

- Multidirectional stress and strain (not uniaxial)
- Gradients through thickness
- Both stress and texture affect ultrasonic velocity

Pacific Northwest National Laboratory U.S. Department of Energy 2

Outline

Strategy

- Damage modeling
- Ultrasonic measurements
 - Theory
 - Elastic Measurements
 - Plastic Measurements
- Conclusions

Pacific Northwest National Laboratory U.S. Department of Energy 3

Strategy

Third Party Damage

Damage characterization

- Bending
- Dents
- Dents with gouges

 \blacklozenge Fracture mechanics models \Longrightarrow remaining life

Dimensional measurements (incomplete information)

Ultrasonic velocity sensitive to stress, strain, and texture

U.S. Department of Energy 4

- Velocity measurements
 - Longitudinal
 - Shear Horizontal
 - Shear Birefringence (Thickness independent)
 - Rayleigh (Depth dependence)
- Comparison with established ultrasonic theories Pacific Northwest National Laboratory

Fracture Mechanics Approach

Pacific Northwest National Laboratory U.S. Department of Energy 5

Fracture Mechanics Approach to Evaluating Severity of Third-Party Damage

Key factors:

- Line pressure during damage and subsequent re-rounding of pipe
- Localized curvature including membrane stretching and related wall thinning
- Cracking upon re-rounding to highest service pressure and during hydrostatic retesting
- Support conditions for the pipeline

Dent Rerounding

Pacific Northwest National Laboratory U.S. Department of Energy 7

Unknowns in Dent Shape Measurements

In plane and out-of-plane displacements in a dented pipe.

- Can calculate bending strains from out of plane displacements.
- Need in plane displacements to calculate membrane strain.
 - Cannot measure them directly

Ultrasonic Measurement Approach

Battelle

Ultrasonic Waves

Ultrasonic Theory

Measurement system

Arrival time vs. angle for biaxial stress (Pipe)

Elastic region (Pipe Measurements)

Biaxial Stress Experiment (Pipe)

Battelle Pressurize pipe to create biaxial stress U.S. Department of Energy

U.S. Department of Energy 15

Velocity results of biaxial test (elastic region)

Battelle

Plastic Deformation (Laboratory Measurements)

Pacific Northwest National Laboratory U.S. Department of Energy 17

Birefringence as a function of tensile stress

Pacific Northwest National Laboratory U.S. Department of Energy 18

Pacific Northwest National Laboratory U.S. Department of Energy 19

Shear wave birefringence vs. strain

Limitations:

- Stress free
- No texture change
- Known baseline

Current phase accomplishments

Tensile test

- Pipe measurements
 - Shear Birefringence
 - Longitudinal
 - Rayleigh/Surface
 - SH to independently compensate for stress

PG&E Preliminary Measurements

- Ruptured specimens
- Uniaxial
- Biaxial
- Localized damage

Plastic Strain Measurement Concept

Multiple ultrasonic and physical measurements

- Shear Birefringence
- Longitudinal
- Rayleigh/Surface

Stress, strain, and texture effects

• SH to independently compensate for stress

♦ Fracture mechanics models → remaining life

Future Plans

Measure from inside Advanced EMATS (size and capability) Motion Crawler/field test **Pacific Northwest National Laboratory**

U.S. Department of Energy 23

Conclusions

Ultrasonic measurements being developed for measuring plastic strain in pipelines

- Multiple measurements required to isolate effects from:
 - Residual stress
 - Texture effects
 - Unknown baseline
- EMATs well suited for this application
- Provides critical information to damage severity models

Acknowledgements

Department of Energy (DOE) National Energy Technology Laboratory (Natural Gas Infrastructure Reliability Program)

Pacific Gas & Electric (PG&E)

- Measurements:
 - Kayte Judd
 - Seth Gulley
- EMAT System
 - Sonic Sensors