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Abstract. An approach is described which has the potential to unify
edge preserving smoothing with segmentation based on differential edge
detection at multiple scales. The analysis of n-D data is decomposed
into independent 1-D problems. Smoothing in various directions along
1-D profiles through n-D data is driven by local structure separation,
rather than by local contrast. Analytic expressions are obtained for
the derivatives of the edge preserved 1-D profiles. Using these expres-
sions, multidimensional edge detection operators such as the Laplacian
or second directional derivative can be composed and used to segment
n-D data. The smoothing and segmentation algorithms are applied to
simulated 4-D medical images.

1 Introduction

Nonlinear edge preserving smoothing often is performed prior to medical im-
age segmentation. The goal of the nonlinear smoothing is to improve the accu-
racy of the segmentation by preserving significant changes in image intensity,
while smoothing random noise fluctuations. Methods include median filtering
and gray-scale morphology [6], and spatially varying smoothing driven by lo-
cal contrast measures [1] or nonlinear diffusion [8, 9]. By comparison, spatially
invariant linear smoothing uniformly blurs boundaries in reducing noise, thus
adversely affecting the accuracy of the subsequent segmentation.

Rather than irreversibly altering the data prior to segmentation, the approach
described here has the potential to unify nonlinear edge preserving smoothing
with segmentation based on differential edge detection at multiple scales. The
analysis of multidimensional (n-D) image data is decomposed into independent
1-D problems that can be solved relatively quickly. Smoothing in various di-
rections along 1-D profiles through n-D data is driven by a measure of local
structure separation, rather than by a local contrast measure. The elementary
1-D smoothing algorithm is described in Section 2 and is generalized to arbitrary
dimension in Section 3.
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In addition, analytic expressions are obtained for the derivatives of the edge
preserved 1-D profiles. Using these expressions and the methods described in
Section 3, multidimensional edge detection operators such as the Laplacian or
the second derivative in the direction of the image intensity gradient can be com-
posed and used to segment n-D data. Computer simulations are used in Section 4
to evaluate the performance of 4-D versions of the n-D smoothing and segmen-
tation algorithms. Preliminary results of a 3-D version of the n-D smoothing
algorithm were presented in [2].

Potential applications of these methods include 4-D spatiotemporal segmen-
tation of respiratory gated cardiac positron emission tomography (PET) trans-
mission images to improve the accuracy of attenuation correction [4], and 4-D
spatiotemporal segmentation of dynamic cardiac single photon emission com-
puted tomography (SPECT) images to facilitate unbiased estimation of time
activity curves and kinetic parameters for left ventricular volumes of interest [3].

2 1-D Recursive Multiscale Blending

Given linearly smoothed versions of a 1-D signal f(x) and its first two deriva-
tives at J scales, one can perform nonlinear edge preserving smoothing as follows.
The linearly smoothed versions of f(x) are denoted by f̄(x, aj), and the linearly
smoothed first and second derivatives are denoted by f̄(1)(x, aj) and f̄(2)(x, aj),
respectively, for j = 1, . . . , J . The scale coordinate a controls the width of the
convolution kernels used in the linear filtering. The kernels are based on the
uniform cubic B-spline basis function and its first two derivatives [7]. The cu-
bic B-spline has a support of 4a and approximates a Gaussian with a standard
deviation, σ, of

√
1/3 a. Dyadic sampling of the scale coordinate a is used, yield-

ing aj = 2j−1a1.
The nonlinearly smoothed versions of f(x), denoted by f̃(x, aj), are obtained

by recursively blending the linearly smoothed versions:

f̃(x, aj) =
{

f̄(x, a1) j = 1
[1− Cj(x)] f̃(x, aj−1) + Cj(x)̄f(x, aj) j = 2, . . . , J.

(1)

The blending functions {Cj(x); j = 2, . . . , J} are constrained to range between
zero and one and play a role similar to that of the spatially varying diffusion
coefficients used in typical implementations of edge preserving smoothing via
nonlinear diffusion (e.g., [8, 9]). When Cj(x0) = 0, smoothing stops in the neigh-
borhood of x0 and f̃(x0, aj) remains unchanged from the value f̃(x0, aj−1) ob-
tained using nonlinear smoothing at the previous, finer scale. When Cj(x0) = 1,
smoothing is unabated and f̃(x0, aj) is set to the value f̄(x0, aj) obtained using
linear smoothing at the current, coarser scale. Although the recursive multiscale
blending cannot be characterized as nonlinear diffusion, it shares the desirable
property of generating no spurious extrema, in the following sense. It can be
shown that the nonlinearly smoothed signal f̃(x, aj) is a convex combination of
the linearly smoothed signals {f̄(x, ai); i = 1, . . . , j} for all x, and therefore is
bounded by the extrema of the linearly smoothed signals.
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Fig. 1. Augmented scale-space finger-
print for a noisy ramp edge of width four
and a contrast to noise ratio of 2.5.
Solid fingerprint lines depict the zero-
crossing locations of f̄(2)(x, a) (i.e., edge
and ledge locations) over a continuum
of scales. Dashed lines depict the zero-
crossing locations of f̄(1)(x, a) (i.e., ridge
and trough locations). Below the finger-
print, the noiseless edge is shown with the
noisy edge.

The multiscale blending functions {Cj(x); j = 2, . . . , J} are defined via the
following analysis (presented in more detail in [2]) of the augmented scale-space
fingerprint for f(x). The augmented scale-space fingerprint is a graphical depic-
tion of the locations of the zero-crossings of the first two derivatives of the linearly
smoothed signal as a function of scale (Fig. 1). At a particular scale aj , each
zero-crossing location of f̄(2)(x, aj) is labeled as either a local maximum (edge)
or local minimum (ledge) in gradient magnitude, depending on its proximity to
nearby zero-crossing locations of f̄(1)(x, aj) (i.e., ridges and troughs). For each
edge location, the distance separating the ridge, trough, or ledge on either side
of the edge is calculated. The blending function Cj(x) is then assigned a value
ranging between zero and one at the edge location, based on the separation dis-
tance and the heuristic that larger separation distances are mapped to smaller
blending function values. Cj(x) is then defined for all x by interpolating the
values at the edge locations with a piecewise quartic spline whose first through
third derivatives are zero at the edge locations.

3 n-D Smoothing and Segmentation

Edges can be preserved in n-D data by applying the 1-D smoothing algorithm
described in Section 2 independently along the coordinate axis directions, as
well as along the diagonal directions of the 2-D planes spanned by the coordi-
nate axes, and averaging the results. This will be referred to as multidirectional
1-D processing, and builds on the work described in [9], in which processing was
performed only along the coordinate axis directions. The information obtained
along the diagonal directions allows the characterization of the first and second
order differential properties of the data in any direction. Using this additional
information, multidimensional edge detection operators such as the Laplacian
or the second derivative in the direction of the image intensity gradient can be
composed and used to segment the data as follows.

The n-D data array is denoted by f(x), where x = [x1 · · · xn ]T is the position
vector for the domain of the data and “[ ]T” denotes the matrix transpose. The
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1-D profile passing through the point x0 in the direction v0 is denoted by

fx0,v0(s) = f(x0 + sv0), (2)

where v = [v1 · · · vn ]T is a unit vector and s is an arc length parameter. The
relationships between the first and second derivatives of fx,v(s) and the first and
second order partial derivatives of the n-D data f(x) are

dfx,v

ds
= v · ∇f = vTg

d2fx,v

ds2
= v · ∇[v · ∇f] = vTHv, (3)

where g(x) is the gradient vector and H(x) is the Hessian matrix. One can write
vTHv as the inner product wTh of the (n2+n

2 )-element vectors

w =
[
v2
1 2v1v2 · · · 2v1vn v2

2 2v2v3 · · · 2v2vn · · · v2
n−1 2vn−1vn v2

n

]T (4)

h =
[
H11 H12 · · · H1n H22 H23 · · · H2n · · · H(n−1)(n−1) H(n−1)n Hnn

]T
, (5)

where Hij = ∂2f
∂xi∂xj

. Thus, given derivative estimates in all 1-D profiles along the
coordinate axis directions and the diagonal directions of the 2-D planes spanned
by the coordinate axes (for a total of n2 directions), one can compute least
squares estimates of the gradient vector g(x) and the vector h(x) of Hessian
matrix elements as follows. The n2 direction vectors for the 1-D profiles and the
corresponding w vectors are stored in the matrices

V =
[
v1 · · · vn2

]T
W =

[
w1 · · · wn2

]T
. (6)

The first and second derivatives along the 1-D profiles are stored in the vectors

f (1)(x) =
[

dfx,v1
ds · · · dfx,v

n2

ds

]T

f (2)(x) =
[

d2fx,v1
ds2 · · · d2fx,v

n2

ds2

]T

. (7)

It can be shown that the unweighted least squares estimates for the gradient
vector g(x) and the vector h(x) of Hessian matrix elements are

ĝ(x) =
[
VTV

]−1
VTf (1) ĥ(x) =

[
WTW

]−1
WTf (2). (8)

Using these estimates, one can compose multidimensional edge detection oper-
ators such as the Laplacian, trace(Ĥ), or the second derivative in the direction
of the gradient, weighted by the squared magnitude of the gradient, ĝTĤĝ.

4 4-D Smoothing and Segmentation Simulations

A 4-D version of the n-D smoothing algorithm was applied to simulated respira-
tory gated PET transmission images generated using the Mathematical Cardiac
Torso (MCAT) phantom [5]. The 4-D image array was composed of 40 con-
tiguous 5 mm-thick transverse slices at 15 respiratory phases. Each transverse
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slice had 80×80 pixels with pixel size 5×5 mm. Diaphragm and heart motion
of 15 mm in the superior-inferior direction was simulated, in conjunction with
chest wall diameter changes of 9.8 mm in the left-right direction and 20 mm in
the anterior-posterior direction. Gaussian white noise was added to the images
to yield contrast to noise ratios of 5.0 at the air-soft tissue boundary and 3.5 at
the soft tissue-lung boundaries (Fig. 2a).

The 1-D smoothing algorithm was applied independently along the x, y, z,
and t axes of the noisy 80×80×40×15 dataset, as well as along the 12 diagonal
directions of the 2-D planes spanned by the axes. Multiscale linear 1-D filtering
was performed in each of the 16 directions using a pre-smoother followed by
cubic B-spline-based smoothing and differentiation operators operating at three
different scales. The filters combined to yield kernels with supports 1×7, 1×11,
and 1×19, which approximated Gaussians with σ = 1,

√
2, and

√
6 pixels, respec-

tively. For comparison, linear smoothing was also performed using a 5×5×5×5
separable filter, which approximated a 4-D Gaussian with σ = 0.70 pixels. This
small scale separable filter was designed to yield the same noise reduction for in-
dependent, identically distributed Gaussian noise, as that obtained by averaging
the outputs of the 16 large scale (1×19 B-spline-based) linear 1-D smoothing fil-
ters (Figs. 2c,e). Fig. 2g shows the result of averaging the outputs of the 16 large
scale nonlinear 1-D smoothing filters obtained using recursive multiscale blend-
ing. The differences between the results are subtle. The large scale nonlinear
multidirectional 1-D filter and the small scale separable filter blurred the edges
the least, while the large scale linear multidirectional 1-D filter blurred the edges
the most (Fig. 2b). The linear and nonlinear multidirectional 1-D smoothing re-
sults were obtained using an average of 5.8 minutes of processing for each of the
16 directions (195 MHz R10000-based SGI workstation).

Results of segmenting the images using 4-D second directional derivative op-
erators are shown in Figs. 2d,f,h. For the linear and nonlinear multidirectional
1-D processing, the 4-D gradient vector and Hessian matrix were calculated in
17 minutes using the methods described in Section 3. For respiratory phase 8,
3-D models for the second directional derivative zero-crossing surfaces were con-
structed in less than one minute using the methods described in [4]. The large
scale nonlinear multidirectional 1-D operator and the small scale separable oper-
ator yielded comparable segmentations. Relatively accurate lung surface models
were constructed, to which were attached spurious surface elements. For the
large scale linear multidirectional 1-D operator, there were fewer spurious sur-
face elements and the lung surface models were less accurate.

5 Future Directions

The computer simulations in Section 4 demonstrate that nonlinear edge pre-
serving smoothing and segmentation of 4-D medical images can be performed
in a timely manner on a workstation. Unlike typical implementations based on
nonlinear diffusion, recursive multiscale blending requires only a small, fixed
number (3–5) of iterations. Although performed serially here, the computations



6 IPMI 2001: 17th International Conference, pages 431–437 (preprint)

(a) original noisy image

0 5 10 15

0

0.05

0.1

pixel

1 
/ c

m

(b) edge at diaphragm

(c) 5×5×5×5 linear smoothing (d) 5×5×5×5 linear smoothing

(e) 16×(1×19) linear smoothing (f) 16×(1×19) linear smoothing

(g) 16×(1×19) nonlinear smoothing (h) 16×(1×19) nonlinear smoothing

Fig. 2. Smoothing and segmenting simulated 4-D respiratory gated PET transmission
images. (a) Noisy 52×26 pixel sub-image from a coronal cross section. The right dome
of the diaphragm is the larger, semicircular structure on the left. The heart is the
smaller, circular structure on the right. (b) Profile through right dome of diaphragm,
depicted by the white segment in (a). The circles and the dot-dashed line depict noise-
less and noisy simulated values, respectively. The dashed, dotted, and solid lines depict
values obtained by (c) small scale separable, (e) large scale linear multidirectional 1-D,
and (g) large scale nonlinear multidirectional 1-D filtering, respectively. (d,f,h) Seg-
mentation results for (c,e,g), respectively, are depicted as solid lines. The dotted lines
depict the true soft tissue-lung boundaries.
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can be massively parallelized. Additional work is needed to optimize the multi-
scale blending functions with respect to spurious zero-crossings in the derivatives
of the nonlinearly smoothed data. With the goal of improving the preservation
of fine details, further investigation is needed to perform weighted least squares
estimation of a 4-D dataset and its partial derivatives from the results of per-
forming recursive multiscale blending in multiple directions.
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