RUC/Rapid Refresh Review NCEP Production Suite Review - 2007

NOAA/ESRL/GSD/AMB

Stan Benjamin **Steve Weygandt Bill Moninger** John M. Brown Kevin Brundage Dezso Devenyi Georg Grell Ming Hu **Brian Jamison** Steven Peckham Susan Sahm Tom Schlatter Tanya Smirnova **Tracy Lorraine Smith** NCEP/EMC – Geoff Manikin NCEP/NCO

Major transitions:

 RUC13 change package – ~3Q 2008 – radar reflectivity assimilation, TAMDAR, mesonet, RUC/WRF physics

• Rapid Refresh - JIF for ~4Q 2009

Fresh, tasty results - dev/testing for RUC, observation impact studies, Rapid Refresh -- GSI, WRF

http://ruc.noaa.gov

http://rapidrefresh.noaa.gov/rr

Tues 11 Dec 2007

RUC Upgrade at NCEP - Spring 2008

1h fcst RUC comp refl - 09z 17 Jul 07

Obs refl - 09z 17 Jul 07

RUC 13 change package

- Components
 - Assimilation of new obs radar reflectivity, TAMDAR wind/temp/RH, mesonet winds
 - Improved surface, precip, reflectivity forecasts
- Status
 - in real-time parallel testing at NCEP (since Aug 2007)
 - Real-time and retrospective tests by 2Q FY08.
 - Implementation by 3Q FY08.

NCEP RUC parallel web site: http://www.emc.ncep.noaa.gov/mmb/ruc2/para Comparisons between para and oper RUC

Early 2008 Changes for oper RUC upgrade

- Assimilation
 - Use of **radar reflectivity** in RUC diabatic digital filter initialization in RUC model
 - Mesonet winds using mesonet station uselist
 - TAMDAR aircraft observations (TAMDAR impact parallel RUC tests at GSD)
- Model physics
 - RRTM longwave radiation eliminates sfc warm bias
 - Mod to Grell-Devenyi decrease areal coverage, nonlocal subsidence warming
 - Mod to RUC land-sfc model fresh snow density nighttime temps over snow cover
- <u>Post-processing</u> add reflectivity fields, improved RTMA downscaling

RUC parallel web site:

http://www.emc.ncep.noaa.gov/mmb/ruc2/para

Early 2008 Changes for oper RUC upgrade

- Assimilation
 - Use of **radar reflectivity** in RUC diabatic digital filter initialization in RUC model
 - Mesonet winds using mesonet station uselist
 - TAMDAR aircraft observations (TAMDAR impact parallel RUC tests at GSD)
- Model physics
 - RRTM longwave radiation eliminates sfc warm bias
 - Mod to Grell-Devenyi decrease areal coverage, nonlocal subsidence warming
 - Mod to RUC land-sfc model fresh snow density nighttime temps over snow cover
- <u>Post-processing</u> add reflectivity fields, improved RTMA downscaling

RUC parallel web site:

http://www.emc.ncep.noaa.gov/mmb/ruc2/para

New observations assimilated -- RUC upgrade

Cycle hydrometeor, soil temp/moisture/snow					Hourly obs in 2008 RUC		
plus atmosphe	ere state v	<u>ariables</u>			Data Type	~Number	
1-hr	\ 1-h	nr \ 1	-hr		Rawinsonde (12h)	80	
fest	fost A fost A f				NOAA profilers	30	
ισε					VAD winds	110-130	
Backgroun	d Analy	sis		PBL – prof/RASS	~25		
Fields	Fie Fie			Aircraft (V,temp)	1400-7000		
					TAMDAR (V,T,RH)	0 - 800	
RUC 3dvar					Surface/METAR	1800-2000	
					Buoy/ship	100- 200	
			1		GOES cloud winds	1000-2500	
	Obs	Obs			GOES cloud-top pres	10 km res	
					GPS precip water	~300	
	_				Mesonet (temp, dpt)	~7000	
					Mesonet (wind)	2000-4000	
11	12	13	Time		METAR-cloud-vis-wx	~1600	
			<u>(UTC)</u>		Radar reflectivity	1km	
RUC Hourly Assimilation Cycle							

RUC Diabatic Digital Filter Initialization (DDFI)

Initial DFI in RUC model at NCEP - 1998 - adiabatic DFI Diabatic DFI introduced at NCEP - 2006

Diabatic Digital Filter Initialization (DDFI) New - add assimilation of radar data

Radar reflectivity assimilation in RUC

RUC radar assimilation test case

K=15 LH temp. tend. (K / 15 min) Contour interval = 0.5 K

Data gap regions (larger at low levels)

Latent heating in diabatic forward DFI step specified <u>only</u> where 3-d radar data available

NSSL

mosaic

= 20 kft

40

45

35

Z

30

1700 UTC 27 Jan 2004

5

10

15

20

25

NSSL

5 kft

NSSL

10 kft

mosaic

mosaic

Radar assimilation in RUC - winter storm example

Also, added simulated radar reflectivity field to RUC output

RUC 3-h forecasts valid 00z 25 Mar 2007

Radar reflectivity assimilation

Part 2 – convection suppression

- Define suppression areas as follows:
- No reflectivity > 20 dbZ within 100 km
- Depth of radar coverage
 > 300 hPa
- Augmented by GOES fully clear areas

Design in RUC model: Specify min cap depth as 0 hPa to limit convection in DFI step and first 30 min in actual forecast

Convective suppression example

Control - radar assim without suppression Add conv suppression to radar assimilation

NSSL 3-h precipitation

Real-time 3-h forecasts valid 15z 7 June 2007

Valid 15z 7 June 2007

convective suppression - How does it work? -

Reduces latent heating, vert. motion in erroneous conv areas

Overall effect of RUC radar assimilation -RUC3h QPF

-Overnight convection example - 09-12z July 06

NSSL 12z 3-h accum. Precip.

No radar assimilation

w/ Radar assimilation

RUC "analysis" composite reflectivity (actually 1h fcst) - fairly good agreement

NSSL Q2 composite refl

0900z reflectivity Tues 17 July 2007

0900z

Radar assimilation impact on 3-h precipitation skill scores

Significant improvement in ETS and bias
Spring - daytime

(On RUC assimilation of TAMDAR data) - AMDAR and TAMDAR definitions

- "AMDAR" (Automated Meteorological Data and Recording) – commercial aircraft, mostly large jets
- "TAMDAR" (Tropospheric AMDAR) automatic reports from (currently) ~50 turboprops flying regionally in the US Midwest
 - Provided by AirDat LLC
 - Agreement between Northwest Airlines (Mesaba regional subsidiary) and AirDat LLC
 - New agreement between NWS/FAA and AirDat for use of TAMDAR

05-Jun-2007 00:00:00 -- 05-Jun-2007 23:59:59 (287984 obs loaded, 102442 in range, 9337 shown) NOAA / ESRL / GSD Altitude: -1000 ft. to 20000 ft. Good w and T not-TAMDAR

NOAA / ESRL / GSD Altitude: -1000 ft. to 20000 ft.

Good w and T

3h Fcst errors - RUCdev (no TAMDAR), RUCdev2 (w/ TAMDAR)

800

1000

0.0

1.0

2.0

m/s

3.0

4.0

5.0

dev rgn2, humidity rms 3h fcst valid at 0Z 2006-04-01 thru 2006-10-30 dev2 rgn2, humidity rms 3h fcst valid at 0Z 2008-04-01 thru 2008-10-30 diff rgn2, humidity rms 3h fcst valid at 0Z 2006-04-01 thru 2006-10-30 RH 200 oressure (hPa) 400 800 WTAM 800 noTAM 1000 0.0 8.0 12.0 20.0 4.0 16.0 %

<u>TAMDAR – regional aircraft</u> <u>with V/T/RH obs</u> GSD impact study with RUC parallel cycles

2005-2007 (ongoing)
10-30% reduction in RH, temperature, wind fcst error w/ TAMDAR assimilation <u>Mesonet station wind uselist</u>: ~4400 out of 12,100 stations Basis:

- * mean wind speed diff from RUC 1h forecast < 1.0 m/s (over 10-day period in October 2007 - 18-21z-daytime)
- * <u>All</u> winds used from METAR, RAWS, OK-Meso, other selected providers

Network	uselist	total	% low 10m spd bias
UrbaNet	357	810	44
Citizens	659	3422	19
AWS	2207	5226	43
OK-Meso	80	116	69
GoMOOS	10	11	91
MesoWest	454	972	47
RAWS	826	1696	49
METAR	1284	2069	62
WXforYou	20	97	21

Early 2008 Changes for oper RUC upgrade

- Assimilation
 - Use of **radar reflectivity** in RUC diabatic digital filter initialization in RUC model
 - Mesonet winds using mesonet station uselist
 - TAMDAR aircraft observations (TAMDAR impact parallel RUC tests at GSD)
- Model physics
 - RRTM longwave radiation eliminates sfc warm bias
 - Mod to Grell-Devenyi decrease areal coverage, nonlocal subsidence warming
 - Mod to RUC land-sfc model fresh snow density nighttime temps over snow cover
- <u>Post-processing</u> add reflectivity fields, improved RTMA downscaling

RUC parallel web site:

http://www.emc.ncep.noaa.gov/mmb/ruc2/para

RUC land-surface model - change for RUC upgrade

Problem: RUC gave too cold 2-m temperature at night over land cover.

Solution: Increased density of snow on ground to ≥100 kg/m3 (from ≥50 kg/m³) to reduce cold bias over fresh snow cover when temps are ≤ -15C.

Result - More accurate 2m temps over snow cover, extreme cold temps removed.

Better 2m temp forecast From para RUC w/ RRTM LW

FCST MADE 09Z 10/30

Grell-Devenyi Convection

2007 Changes to address recent issues

Non-local subsidence warming

No longer treat individual grid columns independently: spread "compensating subsidence" into adjacent grid columns => contributes to more realistic initiation of gridscale precip (and associated subcloud

evaporation and cooling).

Reduce weight given to Arakawa-Schubert closure Result: Reduces the high spatial coverage bias of small amounts

Use smaller depth for cap adequate to deny convective initiation

Result: convection starts later in diurnal cycle

Overall improvement in precip forecasts parallel RUC vs. NCEP oper RUC

Early 2008 Changes for oper RUC upgrade

- Assimilation
 - Use of **radar reflectivity** in RUC diabatic digital filter initialization in RUC model
 - Mesonet winds using mesonet station uselist
 - TAMDAR aircraft observations (TAMDAR impact parallel RUC tests at GSD)
- Model physics
 - RRTM longwave radiation eliminates sfc warm bias
 - Mod to Grell-Devenyi decrease areal coverage, nonlocal subsidence warming
 - Mod to RUC land-sfc model fresh snow density nighttime temps over snow cover
- <u>Post-processing</u> add reflectivity fields, improved RTMA downscaling

RUC parallel web site:

http://www.emc.ncep.noaa.gov/mmb/ruc2/para

RUC-RTMA downscaling **2008 change - improved cold valleys** RUC post code used (w/ mods) for RTMA downscaling

http://www-frd.fsl.noaa.gov/pub/papers/Benjamin%202007e/cp.pdf

Early 2008 Changes for oper RUC upgrade

- Assimilation
 - Use of **radar reflectivity** in RUC diabatic digital filter initialization in RUC model
 - Mesonet winds using mesonet station uselist
 - TAMDAR aircraft observations (TAMDAR impact parallel RUC tests at GSD)
- Model physics
 - RRTM longwave radiation eliminates sfc warm bias
 - Mod to Grell-Devenyi decrease areal coverage, nonlocal subsidence warming
 - Mod to RUC land-sfc model fresh snow density nighttime temps over snow cover
- <u>Post-processing</u> add reflectivity fields, improved RTMA downscaling

RUC parallel web site:

http://www.emc.ncep.noaa.gov/mmb/ruc2/para

Spring 2008 Changes for oper RUC upgrade - forecast performance improvements

- <u>Surface temperature and winds</u>
 - Much lower bias, all times of day and seasons
- Precipitation, reflectivity
 - Much improved QPF all seasons, new reflectivity product consistent with reflectivity observations
- <u>Ceiling and visibility</u>
- Lower tropospheric temperature, RH in eastern US
- Improved RTMA downscaling and accuracy

RUC parallel web site: http://www.emc.ncep.noaa.gov/mmb/ruc2/para

Rapid Refresh status 11 Dec 07

Development, testing, results on

- Planned domain
- **RR-WRF** model configuration
- GSI for Rapid Refresh
- Rapid Refresh cycling

http://rapidrefresh.noaa.gov/rr

Includes

- lots of information
- real-time experimental products

Recent RUC/RR summary

http://ruc.noaa.gov/amb/2007 Oct Review.pdf

Rapid Refresh domain -<u>Almost final</u> configuration --

649x648x50 grid pts

Constraints on domain

Continental Alaska plus coastal margins Dutch Harbor in Aleutians Isthmus of Panama US Virgin Islands and most of Caribbean

RR vs. RUC grid points

Horizontal

- RUC
- RR

451 x 301 - 13km 649 x 648 - 13km (about 3x increase)

Vertical

- RUC
- RR

50 hybrid θ - σ levels 50 σ levels

NCEP/GSD Agreement on Rapid Refresh - signed 12 September 2007

• 2009 – Initial Rapid Refresh – Phase 1

- Model WRF-ARW, Rapid Refresh physics
- Data assimilation GSI with RR-developed enhancements
- Submitted for operations (JIF) by Sept 2009

• 2012 – Ensemble Rapid Refresh – Phase 2

- 6 members, 3 each using ARW and NMM
- Model (ARW, NMM) and GSI will use ESMF framework, not WRF framework
- Model/assimilation systems from GSD and NCEP

RUC to Rapid Refresh

- CONUS domain

 North American
 domain (13km)
- RUC model
 WRF model (RR version)
 <u>(ARW dynamic core)</u>

 RUC 3DVAR
 GSI (Gridpoint Statistical Interpolation) (incl. RR enhancements)

RR version of WRF model

ARW core **Physics** (those from RUC are in red) **Grell-Devenyi convection MYJ (NCEP/NAM) surface layer and** turbulent vertical mixing above surface layer **NCAR-Thompson microphysics Diabatic Digital Filter Initialization (DFI)** similar to that in RUC model GFDL radiation (longwave and shortwave, with cloud effects) **RUC Land-Surface Model** (diversity from Noah LSM in anticipation of ensemble RR by 2012)

Result: Physics behavior similar to that of RUC, preferred for aviation applications and convective environment

Diabatic Digital Filter Initialization (DDFI), used in RUC

- Application into WRF - recently completed for ARW (Tanya Smirnova, Steven Peckham)

Quieter forecasts in WRF using DFI Noise = mean absolute sfc pressure tendency (hPa/h)

Using WRF-13km Rapid Refresh over N. American domain

Successful for reducing noise in 1h WRF fcst, as with RUC

500mb Height 3-h Fcst for 03Z 30 Oct 07 Rapid Refresh WRF

Away from terrain and convection, height contours are smoother with DFI

RUC/RR model forecast

Application of GSI for RR (Gridpoint Statistical Interpolation)

- GSI adapted from global Spectral Statistical Interpolation (SSI) toward unified NCEP analysis
 - Used for operationally in GFS, NAM, RTMA
 - Primary development by NCEP/EMC and NASA/GMAO (via JCSDA), ESRL/GSD now collaborating on regional GSI
- Includes satellite radiance assimilation package
 Not in current RUC, critical for large oceanic coverage in RR
- Work with EMC on RR application of GSI:
 - 1) Use of background from ARW w/ 5 hydrometeor types
 - 2) Cloud analysis (satellite, METAR, radar, LTG obs)
 - 3) Surface obs assimilation (PBL depth, coast-lines)
 - 4) Force convection from radar, lightning data in model DDFI

"RUC specific" enhancement in GSI for Cloud analysis

- Uses techniques from RUC, ARPS cloud analysis
- Utilizes METAR, satellite, radar data
- Modifies background cloud, hydrometeor, water vapor fields
- Cycled testing within GSI framework
- Parallelized version for inclusion in full GSI

Updating cycled cloud / hydrometeor fields with METAR, satellite, radar observations

RR Hourly Assimilation Cycle

Cycle hydrometeor, soil temp/moisture/snow Hourly obs plus atmosphere state variables Data Type

Data Type	~Number			
Rawinsonde (12h)	150			
NOAA profilers	35			
VAD winds	120-140			
PBL – prof/RASS	~25			
Aircraft (V,temp)	3500-10000			
TAMDAR (V,T,RH)	200-3000			
Surface/METAR	2000-2500			
Buoy/ship	200-400			
GOES cloud winds	4000-8000			
GOES cloud-top pres	10 km res			
GPS precip water	~300			
Mesonet (temp, dpt)	~8000			
Mesonet (wind)	~4000			
METAR-cloud-vis-wx	~1800			
AMSU-A/B/GOES radi	ances			
Radar reflectivity/ lightning				
	Īkm			

Pen Air TAMDAR Data, 22 Oct 2007 (1520 Observations)

Current status - RR testing 11 Dec 2007

2 versions running at this time over full RR domain

- 6h cycle Rapid Refresh using GSI
 - RUC observation (prepBUFR) file only
- cold start Rapid Refresh no cycle
 - GFS initial conditions

• 3h CONUS RR cycle for RUC comparison

• Expected status by January 2008

- 3h cycle Rapid Refresh using GSI

 using full Rapid Refresh prepBUFR observations including satellite radiance data

CONUS Rapid Refresh domain (3-h cycle)

RUC cycled 12-h forecast

GSI- WRF cycled 12-h forecast

CONUS Rapid Refresh domain (3-h cycle)

Radar mosaic 00z 30 Oct 2007

RUC cycled 12-h forecast

GSI- WRF cycled 12-h forecast

Full Rapid Refresh domain (6-h cycle)

Radar mosaic 12z 27 Oct 2007

RUC cycled 6-h forecast

GSI- WRF cycled 6-h forecast

Rapid Refresh output

• Use of NCEP WRFpost (unified post)

Will add RUC diagnostics including advanced visibility, ceiling diagnostics, reflectivity for Thompson microphysics, etc.

• Output will be available on

- Full RR domain, and
- Current RUC grids (#130 (13km), #252 (20km))
 to ensure compatibility with current RUC data
- Other subsets (Alaska is likely)

Proposed 3km HRRR (Hi-Res Rapid Refresh)

Nest initialized w/ Radar-Enhanced RUC/RR **NSSL** verification

HRRR 3-km run initialized From radar-enhanced RUC

 Much improved convection forecast from HRRR (but only if HRRR nested within radarenhanced RR/RUC)

> 6-h forecasts valid 00z 16 Aug 2007

Cold start (no radar) 3-km run

Flow-following (i.e. θ-σ) Finite-volume Icosahedral Model FIM

(Development at NOAA/ESRL-Boulder, planned for EMC-ESMF-globalensemble dynamic component)

Icosahedral grid

Grid = Hexagons, with 12 embedded pentagons
No pole singularities- better representation of circulations in polar regions
<u>Adaptive, hybrid-isentropic vertical coordinate</u> (similar to HYCOM, RUC) -- I
Accurate/conservative transport of atmospheric constituents (water vapor, chemical constituents, aerosols, etc.)
Physics - GFS, very soon - add WRF physics/chem

FIM combines 3 unique features (continued)

Adaptive, hybrid-isentropic vertical coordinate (similar to HYCOM ocean model) -- accurate and conservative long-range transport of atmospheric constituents (water vapor, chemical constituents, fine dust particles, etc.)

Vertical cross section of coordinate surfaces and relative humidity (image) along 110E longitude

<u>Finite-Volume numerical procedures</u> -- conservation of fundamental physical quantities (mass, momentum, water vapor, etc.)

- FIM successfully tested on several real-data cases at 15km and 30km resolution (50 levels) after extensive testing and development
- Full physics (NCEP-GFS) implemented and tested extensively
- Tests of FIM with both θ - σ hybrid and σ vertical coordinates, now with acceptably equal performance using GFS physics
- Plan to run and verify real-time multi-day forecasts beginning late December 2007 using GFS initial conditions
- Also about to start
 - Incorporation of WRF physics and WRF-chem (Grell)
 - ESMF dynamic core from FIM (Henderson)

RUC/Rapid Refresh Development and Testing

Major transitions:

- RUC13 change package Spring 2008
 - radar reflectivity assimilation
 - TAMDAR
 - Improved radiation, convection physics in RUC

Rapid Refresh JIFed for ops by 9/09

- WRF ARW, GSI, North America
- Ensemble Rapid Refresh
 - proposed by 2012, to use ESMF framework

High-Res Rapid Refresh (HRRR) –
 RR nest proposed to NCEP by 2012

- 3km hourly updated 12h forecast
- In testing at GSD
- NE Corridor \rightarrow CONUS, AK

http://ruc.noaa.gov

http://rapidrefresh.noaa.gov/rr

