Overview of X-ray Reflectivity and Diffuse Scattering from Liquid Surfaces

Oleg Shpyrko Center for Nanoscale Materials Argonne National Laboratory

Liquid and Soft Matter Scattering Interest Group Oct 17, 2005 Recently discovered surface-induced layering in metallic liquids: ordering in disordered system

Disordered Interface (classical Van-der-Vaals treatment)

Ordered Interface: Surface-Induced Layering

X-ray Reflectivity: a probe of nearsurface structure on atomic scale

Reflectivity from solid surfaces: Surface profiles are static:

Low thermal diffuse scattering surrounding strong truncation rods/Bragg peaks

Reflectivity from liquid surfaces: Thermal capillary fluctuations: height-height correlation function diverges logarithmically, roughness scales as ~ T/γ

Capillary fluctuations contribute to significant diffuse scattering

Scattering from rough surfaces: height-height correlation function

Smooth surfaces (atomically flat solids): $g(R) = 0 \text{ and } \frac{d\sigma}{d\Omega} \approx \frac{1}{q_z^4} \delta(q_x) \delta(q_y)$

Liquid Surfaces:

$$\begin{array}{l} \mathsf{q}_{xy} \\ \mathsf{g}(\mathsf{R}) = \mathsf{A} + \mathsf{B} \ln(\mathsf{R}) \text{ and } \frac{d\sigma}{d\Omega} \approx \frac{1}{q_z^4} \frac{1}{q_{xy}^{2-\eta}} \\ & \text{where } \eta = \frac{k_B T}{2\pi\gamma} q_z^2 \end{array}$$

Sinha et al., Phys. Rev. B 38, 2297 (1988)

"capillary exponent"

Scattering from liquid surfaces

Scattering cross-section:

$$\frac{d\sigma}{d\Omega} = \frac{A_0}{\sin^2 \alpha} \left(\frac{q_c}{2}\right)^4 \frac{1}{8\pi q_z^2} |\Phi(q_z)|^2 \left(\frac{1}{q_{\max}}\right)^\eta \frac{\eta}{q_{xy}^{2-\eta}}$$

Experimentally measured reflectivity:

Is layering in In weaker than in Ga and Hg?

• Quasi-Bragg peak is evidence of layering

• Layering for In appears to be weaker than for Hg and Ga

• After thermal effects are removed, surface structure factor is <u>the same</u> for all three metals!

Tostmann et al., Phys. Rev. B 59, 783 (1999)

Capillary excitations are T-dependent, intrinsic surface structure is <u>NOT</u>!

Fluctuation-averaged density profile is not a meaningful way of describing liquid surfaces

<u>Intrinsic profile</u>: Local structure along z, which remains unchanged and fluctuates conformally with respect to the surface.

<u>Average profile</u>: ensemble average of intrinsic profiles smeared out by thermal surface fluctuations

Analysis of capillary contributions is needed to determine intrinsic structure

Need to convolve the function with the experimental resolution function in q_{xy}

Singularity at $q_{xy}=0$ represents specular reflection

Power-law decay for large q_{xy} are known as diffuse scattering "tails"

Simple analytic solution exists for isotropic "circular" resolution function

 $\frac{d\sigma}{d\Omega}$

q_{res}

q_v

q_x

If resolution function is simple symmetric circle with radius q_{res} :

$$\int_{res} \frac{1}{q_{xy}^2} \left(\frac{q_{xy}}{q_{\max}}\right)^\eta d^2 q_{xy} = \left(\frac{1}{q_{\max}}\right)^\eta \int_{q_r} \int_{\phi} \frac{1}{q_r^{2-\eta}} q_r dq_r d\phi =$$
$$= \frac{2\pi}{q_{\max}^{\eta}} \int_{q_r} \frac{1}{q_r^{1-\eta}} dq_r d\phi = \frac{2\pi}{q_{\max}^{\eta}} \frac{q_r^{\eta}}{\eta} \Big|_0^{q_{res}} = \frac{2\pi}{\eta} \left(\frac{q_{res}}{q_{\max}}\right)^\eta$$

Therefore:

$$\frac{R(q_z)}{R_F(q_z)} = |\Phi(q_z)|^2 \left(\frac{q_{\rm res}}{q_{\rm max}}\right)^\eta = |\Phi(q_z)|^2 \exp[-\sigma_{\rm cw}^2 q_z^2]$$

where $\sigma_{\rm cw}^2 = \frac{k_B T}{2\pi\gamma} \ln\left(\frac{q_{\rm res}}{q_{\rm max}}\right)$ is a "capillary roughness"

Further corrections: sample curvature, beam divergence, incident slits, Gaussian or Lorenzian-like beam shape profile, etc.

(Usually secondary for most practical purposes)

Reflectivity scans $\alpha = \beta$, varied simultaneously Diffuse scattering scans, only β is varied

Capillary excitations well-accounted for in liquid potassium (up to a η -limit)

O.G. Shpyrko et. al, Phys. Rev. B 67, 115405 (2003)

Metallic properties define layering, not high surface tension (liquid K, cont'd):

O.G. Shpyrko et al., Phys. Rev. B 67, 115405 (2003)

Similar study can be done for surface of liquid water – until η ~1

O.G. Shpyrko et al., Phys. Rev. B 69 245423, (2004)

Water shows no sign of layering

O.G. Shpyrko et al., Phys. Rev. B 69 245423, (2004)

Specular singularity is essential for x-ray reflectivity technique

Specular singularity contains surface-sensitive information and can be separated from *isotropic* bulk background

Otherwise scattering from ~ micron thick bulk would dominate ~ 1 nanometer thick near-surface region by a factor of 1,000!

But how important is bulk scattering analysis?

Closed-packed liquid bulk structure is similar to layered surface profile

Bulk and surface structure factors have similar shapes, q-positions

Bulk background is subtracted by azimuthal off-specular measurement

Recipe:

Measure background off specular plane (for example, move 20 to non-zero position).

Bulk scattering is isotropic with respect to q

Bulk scattering profile in momentum space

Think about these cuts:

Shape of bulk scattering profiles in q_z - q_{xy} space

Donut / Bunt-cake (hmmm... donuts...)

"Cutting the Donut"

20 background scans can be simulated based on experimentally measured S(q)

Shape of background scans switches from concave to convex

Below layering peak position

Above layering peak position

"Donut-slice" analysis corrects surface structure factor for Bi in a meaningful way

Summary:

Dynamics (capillary excitations) and structure can be deconvolved by careful analysis of diffuse scattering

Resolution effects are crucial!

At high η specular singularity disappears (reflectivity can no longer be observed)

Bulk scattering is not completely isotropic – important at high Q_z