
 

 

Chapter 2. 
Convective-Stratiform Separation of Radar Reflectivity Fields for Real-Time Correction of 

Range-Dependent Biases in Radar Rainfall Estimates due to 
Vertically Nonuniform Profile of Reflectivity 

 

 

 

1. Introduction 
 
It is well known that vertically nonuniform profile of reflectivity is one of the biggest sources of 
error in quantitative precipitation estimation (QPE) using radar (Smith et al. 1991, Seo et al. 
2000).  In a nutshell, the vertical profile of reflectivity (VPR) effects are a height-to-range 
translation, according to the sampling geometry of the radar, of the reflectivity morphology of 
the precipitating cloud into range-dependent biases in radar QPE.  Because radar reflectivity of 
hydrometeors depends very strongly on their phase, i.e., frozen, melting or liquid, the VPR 
effects figure prominently in radar estimation of stratiform precipitation.  In convective 
precipitation, on the other hand, VPR is relatively vertically uniform and hence is not, in general, 
a significant source of error.  To mitigate the VPR effects, the National Weather Service 
Hydrology Laboratory (NWS/HL) has developed the Range-dependent bias Correction 
Algorithm (RCA, Seo et al. 2000).  In short, RCA estimates the mean VPR over the precipitating 
area in the entire scanning domain of the radar, and estimates multiplicative correction factors 
applicable to the raw radar reflectivity data as a function of range and elevation angle.  While 
estimating mean VPR over the entire radar umbrella is less susceptible to sampling errors and 
computationally much less expensive than estimating local mean VPR, correction based on 
umbrella-wide mean VPR can produce unintended consequences in areas of embedded 
convection as explained below.  Given that, in situations of mixed precipitation, stratiform 
precipitation occurs generally over a larger area than convective precipitation, it is likely that the 
umbrella-wide mean VPR is representative more of the stratiform precipitation than the 
convective.  Correction of range-dependent biases based on such a mean VPR would generally 
reduce raw reflectivity at the ranges where the radar beam intercepts the freezing level and 
increase raw reflectivity beyond the above ranges where the radar beam samples ice particles.  
Accordingly, applying correction factors based on stratiform VPR in areas of convective 
precipitation would produce unrealistically large or small precipitation estimates depending on 
the height of the freezing level.  For this reason, separating convective precipitation from 
stratiform, so that mean VPR may be sampled from and bias correction may be applied to the 
areas of stratiform precipitation only, has been recognized as a necessary first step before RCA.  
The purpose of this work is to develop an automatic algorithm for convective-stratiform 
separation based on volume scan radar reflectivity data, referred to herein as the Convective-
Stratiform Separation Algorithm (CSSA), in support of RCA.  The CSSA-RCA tandem 



described above represents a ‘stratify-and-adjust’ strategy of first separating convective and 
stratiform areas of precipitation, and then estimating mean VPR and correcting range-dependent 
biases in the stratiform areas only.  The net effect sought by the approach is equivalent to 
estimating local mean VPR and applying local correction of range-dependent bias.  It is noted 
that such local estimation and correction is computationally too expensive to be operationally 
viable in the current WSR-88D environment. 
 
Though we use the terms “convective” and “stratiform” rather freely throughout this paper, we 
are not necessarily interested in convective-stratiform separation in the storm-dynamical sense.  
Rather, our interest is primarily reflectivity-morphological, with the objective of separating 
instantaneous VPRs at all individual azimuth and range (hereafter abbreviated as “azran”) bins in 
the precipitating area into convective and stratiform groups such that VPR correction specific to 
precipitation type yields the biggest improvement in radar estimation of surface precipitation.  It 
must also be noted that, in addition to supporting VPR correction, convective-stratiform 
separation may also be used to apply precipitation type-specific Z-R relationships.  This 
microphysical aspect of convective-stratiform separation, however, cannot be effectively dealt 
with without first resolving the VPR effects, and hence is not considered in this work. 
 
This chapter is organized as follows.  In Section 2, we describe how the separation attributes, i.e. 
the physical and statistical attributes of local reflectivity morphology that possess skill in 
convective-stratiform separation, are selected.  In Section 3, we describe how the separation 
attributes are used to estimate the conditional probability of the precipitation at some bin being 
convective.  Section 4 describes how the separation procedure is evaluated.  Section 5 provides 
conclusions and future research recommendations. 
 
2.  Identification of Separation Attributes 
 
Any procedure that attempts at convective-stratiform separation may be made an analogy with 
linear regression in which the predictand is the probability that the particular bin is in the 
convective (or stratiform) area and the predictors are a set of reflectivity-morphological attributes 
that possess significant skill in separating convective areas from stratiform.  Herein, we refer to 
such attributes as ‘separation attributes.’  In identifying separation attributes, we assume that 
only the volume-scan reflectivity data are available.  It is acknowledged that the height of the 
freezing level may also be available from sounding, surface observations or model output, which 
may be used to guide estimation of bright band height from the volume-scan reflectivity data.  
As may be seen in Fulton et al. (2001), however, it is difficult to make an objective use of the 
resulting information in an azran bin-specific manner.  For this reason, we do not require that the 
freezing level be known from an external source. 
 
To arrive at a set of skillful separation attributes, we tested a large number of physical and 
statistical attributes obtainable from volume-scan reflectivity data.  For a complete list, the reader 
is referred to Fulton et al. (2001).  The attributes were selected from the following process: 1) 
consider a candidate attribute, 2) estimate the attribute for each azran bin from the volume scan 
reflectivity data, 3) apply a threshold on the attribute field to render into a binary mask of 
convective and stratiform areas, 4) intersect the new binary map with all other such maps derived 
from other attributes, 5) visually assess whether the additional masking in Step 4 improves 



convective-stratiform separation, 6) if it does, retain the attribute: if not, reject, 7) repeat Steps 1 
through 6 until all skillful attributes are identified.  For further details with graphical examples, 
the reader is referred to Fulton et al. (2001). 
 
From the above process, we identified the following four separation attributes; 1) the maximum 
reflectivity in the vertical, rx (dBZ), 2) the (minimum) local spatial correlation of rx, min{ρa

rx (), 
ρr

rx ()}, 3) the (minimum) local spatial correlation of the height of the apparent convective core, 
min{ρa

ht (), ρr
ht ()}, and 4) the vertically integrated liquid water, VIL (kg/m2).  In the above, 

ρa
rx () and ρr

rx () denote the local spatial correlation of rx along the azimuthal and radial 
directions, respectively, at the separation distance of 1 (bin), ht denotes the height of the apparent 
convective core (km), ρa

ht () and ρr
ht () are the same as ρa

rx () and ρr
rx (), respectively, but for ht.  

The height of the apparent convective core, ht, is defined as the maximum height of the radar 
reflectivity exceeding some significant reflectivity (an adaptable parameter) at each azran bin.  
For notational brevity, we denote min{ρa

rx (), ρr
rx ()} and min{ρa

ht (), ρr
ht ()} as ρrx and ρht, 

respectively.  The Z-M relationship used to estimate VIL is the WSR-88D default, M=3.44x10-

6Z4/7 where Z is the reflectivity factor in mm6/m3 and M is the liquid water content in kg/m3.  For 
further details with graphical examples of the attribute fields, the reader is referred to Fulton et 
al. (2001). 
 
The motivation for using rx is to detect convective precipitation regardless of the stage of 
development of convection.  Examination of a large number of volume scans indicates that rx 
works well for identification of convective precipitation as long as little bright band 
enhancement is present.  The motivation for using the spatial statistics of rx and ht is to detect 
stratiform precipitation and, in particular, bright band enhancement.  The correlation coefficients 
are examined in both azimuthal and radial directions because, e.g., rx may be better correlated 
azimuthally than radially in the area of bright band.  The correlation coefficients for the ij-th 
azran bin are calculated locally over an area that is “I” bins-wide azimuthally and “j” bins long 
radially.  Sensitivity analysis indicates that a reasonable choice for i and j is between 5 and 7 for 
both rx and ht.  In estimating ρrx and ρht, we used the same number of bins regardless of the 
range, even though the averaging area at a close range is much smaller than that at a far range.  
Further work is needed to examine the dependence of the local statistics on range, and to assess 
its impact on CSSA-RCA.  Because the azimuthal width of an azran bin is range-dependent, 
sample spatial correlation coefficients along the azimuthal direction can only be calculated at 
different physical lag distances.  To convert the sample spatial correlation coefficients at varying 
spatial lag distances to those at the fixed separation distance of 1 km, we assumed that the 
correlation structure is negative exponential (with no nugget effect). 
 
In practice, the binary decision approach used above to select separation attributes is not very 
desirable because a single set of thresholds cannot possibly work well consistently and reliably 
for all sites, all seasons, and under varying conditions of radar calibration accuracy.  As such, for 
the separation algorithm to be operationally viable, it is necessary that the likelihood of a 
particular azran bin belonging to the convective area be objectively quantified on a continuous 
scale (rather than binary-mapped).  One such commonly used scale is the probability measure, 
which we adopt here also.  The CSSA problem then amounts to estimating the conditional 
probability that the azran bin in question is in the convective area given the separation attributes 
observed at that bin; i.e. Prob [ Bin ∈ convective | rx=rx0, ρrx=ρrx0, ρht=ρht0, VIL=VIL0], where 



Prob[ ] denotes the probability of the event bracketed occurring, and rx0, ρrx0, ρht0 and VIL0 
denote the observed values of rx, ρrx, ρht and VIL, respectively, at that bin. 
 
To estimate the conditional probability, a number of techniques are available; neural network, 
fuzzy logic, optimal linear estimation, Bayesian estimation, direct empirical estimation, and 
others.  Given the number of separation attributes identified, the difficulty of updating 
parameters on line due to lack of ground truth, and the importance of producing unbiased 
estimates, we chose optimal linear estimation based on indicator (i.e., binary) variable 
transformation.  For further discussion on the choice, the reader is referred to Fulton et al. 
(2001). 

 
3. Estimation of Conditional Probability 
 
In this section, we describe how the conditional probability, Prob [ Bin ∈ stratiform | rx < rxci, ρrx 
≥ ρrxj , ρht ≥ ρhtk, VIL < VILl; i=1,...,n1, j=1,...,n2, k=1,...,n3, l=1,...,n4] is estimated, where rxi, ρrxj, 
ρhtk and VILl are the i-th, j-th, k-th and l-th thresholds for rx, ρrx, ρht and VIL, respectively, n1, n2, 
n3 and n4 denote the number of thresholds used for rx, ρrx, ρht and VIL, respectively.  (Note that 
Prob[ Bin ∈ convective | • ]=1-Prob[ Bin ∈ stratiform | • ].)  The first step is to approximate the 
above conditional probability with the following conditional expectation involving indicator 
variables (i.e., the binary encoding of the attributes by applying thresholds): 
 
Prob[ Bin ∈ stratiform | rx < rxi, ρrx ≥ ρrxj, ρht ≥ ρhtk, VIL < VILl ; i=1,...,n1, j=1,...,n2, k=1,...,n3, 
l=1,...,n4] 
≈ E[Is | Irxi = irxi, Iρrxj = iρrxj, Iρhtk = iρhtk, IVILl=iVILl; i=1,...,n1, j=1,...,n2, k=1,...,n3, l=1,...,n4] (1) 
 
In Eq.(1), the indicator random variables, Is, Irxi, Iρrj, Iρhk and IVILk are defined as: 
 
        0  if the bin is in the convective area 
is={ (2) 
        1  otherwise 
 
          1  if rx < rxi
irxi = { (3) 
          0  otherwise 
 
             0  if ρrx <ρrxj

Iρrxj = { (4) 
             1  if otherwise 
 
            0  if ρht < ρhtk

iρhk = { (5) 
            1  otherwise 
 
             1  if VIL < VILl
IVILl = { (6) 

0 otherwise 



 
The conditional expectation of Is in Eq.(1) is estimated via the following linear estimator: 

 
   E[Is | Irxi = irxi, Iρrxj = iρrxj, Iρhtk = iρhtk, IVILl=iVILl ; i=1,...,n1, j=1,...,n2, k=1,...,n3, l=1,...,n4] 
 
   ni               nj                nk                 nl
= Σ λrxi irxi + Σ λρrxj iρrxj + Σ λρhtk iρhtk + Σ λVILl iVILl (7) 
  i=1            j=1              k=1              l=1 
 
where λrxi, λρrj, λρhk and λVILl denote the weights associated with the indicator variables, irxi, iρrj,  
iρhk and iVILl, respectively.  The weights are obtained by solving the following indicator version 
of ordinary kriging (Deutsch and Journel 1992, Seo 1996): 
 
Minimize; 
 
J = E[(Is - Is

*)2| Irx=irxi, Iρxr = iρxrj, Iρht = iρhtk, Il=ivill; i=1,...,n1, j=1,...,n2, k=1,...,n3,l=1,...,n4] (8) 
 
subject to; 
 
   n1          n2         n3          n4
   Σ λrxi + Σ λρrj + Σ λρhk + Σ λVILl = 1 (9) 
  i=1        j=1       k=1       l=1 
 
where Is

* in Eq.(8) is given by Eq.(7).  The above constrained minimization is identical to 
ordinary kriging, and is referred to in geostatistics as indicator cokriging.  The weights in Eq.(9) 
are obtained by solving the following linear system: 
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In the above, µ is the Lagrange multiplier, U1, e.g., is the (1xn1) unit vector; U1 =(1,1,..,1),  
Cov(Is,Irx), e.g., is the (n1x1) indicator covariance vector;  Cov(Is,Irx) = 
[Cov(Is,Irx1),...,Cov(Is,Irxn1)]T, and Cov(Irx,Iρr), e.g., the (n1xn2) indicator covariance matrix; 
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The estimation procedure described above amounts to approximating the multivariate conditional 
probability in (1) with a set of bivariate conditional probabilities.  To illustrate equivalence 
between indicator covariance and bivariate probability, we may rewrite, e.g., Cov(Is,IVIL1) in 
Cov(Is,IVIL) as: 
 
   Cov(Is,IVIL1) 
 
= E[Is IVIL1] - E[Is] E[IVIL1] (12a) 
 
= Prob[ Bin ∈ stratiform, VIL < VIL1 ] - Prob[ Bin ∈ stratiform ] Prob[ VIL < VIL1 ] (12b) 
 
= { Prob[ Bin ∈ stratiform | VIL < VIL1 ] - Prob[ Bin ∈ stratiform ] } Prob[ VIL < VIL1 ] (12c) 
 
Note in (12c) that, if VIL is indeed a skillful attribute for differentiating convective precipitation 
from stratiform, the conditional probability, Prob[ Bin ∈ stratiform | VIL < VIL1 ], would be 
greater than the unconditional, Prob[ Bin ∈ stratiform ], thus resulting in a positive indicator 
covariance.  It can be easily shown that, if there is only one attribute available (e.g. VIL) and 
only one threshold (e.g. VIL1) is used, the estimation procedure described above reduces to 
applying the threshold directly; i.e., the azran bin is in the convective area if VIL ≥ VIL1, and in 
the stratiform region if VIL < VIL1. 
 
The estimation procedure described above requires specification of the indicator statistics in 
(10).  Ideally, the statistics should come from a large sample in a site- and seasonality-specific 
manner.  In reality, because estimation of the indicator statistics in the right-hand side of (10) 
requires ground-truth (i.e. identification of areas of ‘true’ convective precipitation: see (2)), large 
sample estimation of indicator statistics is not operationally viable.  As such, the approach taken 
here is to estimate the indicator statistics from a small but very informative sample.  Such a 
sample should contain, in the least, a precipitation event with widespread, well-developed and 
clearly distinguishable areas of convective and stratiform precipitation.  For that, we used the 
southern plains squall line at KINX (Tulsa, OK) on May 9, 1995.  The particular data set used 
includes four volume scans that are approximately an hour apart, and covers the passage of the 
precipitating system from entry into through exit from the radar’s field of view.  Fig. 1 shows the 
field of maximum reflectivity, rx, for one of the volume scans.  Note in the figure the very well 
developed convective front and trailing stratiform region.  To estimate the indicator statistics 
involving Is in the right-hand side of (10), it is necessary to determine the “true” area of 
convective precipitation.  Here, we considered the area containing the convective front separated 
by the solid black line to be the true area of convective precipitation.  Figs 2 through 5 show the 



ρrx, ht, ρht, VIL fields corresponding to Fig 1.  Note in Figs 1 through 5 that the area of stratiform 
precipitation is characterized by small rx, large ρrx, lack of spatial variability in ht, large ρht, and 
small VIL.  In the ρrx field of Fig 2, the discontinuities seen in the area of stratiform precipitation 
are sampling artifacts due to coarse elevation angles in the Volume Coverage Pattern (VCP) of 
the radar. 
 
The thresholds, rxi, ρrxj, ρhtk, VILl ; i=1,...,n1, j=1,...,n2, k=1,...,n3, l=1,...,n4, in Eq.(1) were 
specified from a series of sensitivity analysis consisting of the following steps: 1) assume a 
number of thresholds for each attribute, 2) assume threshold settings, 3) estimate the indicator 
statistics, 4) estimate the conditional probability maps for all volume scans, 5) examine the 
results, 6) repeat Steps 1 through 5 until the conditional probability maps exhibit the most skill in 
discriminating convective precipitation from stratiform.  For further details, the reader is referred 
to Seo et al. (2002).  Based on the analysis, we chose three thresholds for each attribute and the 
following settings for the thresholds; irxcj = 38, 40, 42 (dBZ); iρrj = 0.97, 0.98, 0.99; iρhj = 0.900, 
0.990, 0.999; iVILj=5.5, 6.0, 6.5 (kg/m2), for j=1,2,3.  Fig 6 shows the resulting conditional 
probability map obtained from Figs 1, 2, 4 and 5 via the optimal linear estimation procedure 
described above.  Note that the convective front is characterized by higher levels of probability, 
an indication that the probability map possesses a rather high level of separation skill.  The 
absolute magnitude of the conditional probabilities seen in Fig 6 depends on the reflectivity 
morphology in the particular data set used to estimate the indicator statistics.  As such, the 
threshold probability, above which precipitation is classified as convective, may be chosen either 
interactively via visual examination of the probability maps or by maximizing the performance 
measures of choice via sensitivity analysis.  In this work, we chose a threshold probability of 0.8 
based on visual examination of the dependent case (May 9, 1995, KINX).  The same threshold 
probability is then used throughout the independent evaluation described below. 
 
4. Evaluation 
 
To evaluate the performance of CSSA, we ran CSSA and RCA for 22 cases of considerable 
diversity (see Table 1).  For all cases, we used the threshold settings and indicator statistics 
obtained from the previous section.  For each case, the independent validation of CSSA involved 
the following steps: 1) perform convective-stratiform separation using CSSA, 2) estimate the 
mean vertical profile of reflectivity (VPR) using the volume scan reflectivity data within the area 
identified as stratiform, 3) apply the correction factors derived from the mean VPR to the raw 
reflectivity data in the stratiform area only, 4) convert reflectivity to rainfall in all areas using a 
single Z-R relationship and accumulate in time, 5) repeat the above steps for all volume scans 
over the period of interest.  To evaluate CSSA quantitatively, one would have like the “true” 
convective-stratiform fields delineated objectively using, e.g., observations from polarimetric 
radar.  In reality, however, we only had the WSR-88D reflectivity data.  By visually examining 
the separation results against the reflectivity morphology observable from the volume scan data, 
rigorous qualitative evaluation is nevertheless possible.  In Figs 7  through 12, we show the rx 
and the corresponding conditional probability maps for 6 cases from Table 1.  For additional 
graphics for these and other cases, the reader is referred to Seo et al. (2002, 2003).  The figures 
show that, in general, CSSA performs very well for the continental-type mixed precipitation 
events.  Due to the dependence of the separation attributes on range and sampling density of the 
elevation angle, however, the separation skill diminishes at far ranges, and may not be of the 



same quality over certain ranges where volume coverage is sparser.  Also, due to the sensitivity 
of the separation attributes to data quality, unrealistic patterns of probability may occasionally 
occur in areas where outliers exist.  For the hurricane event (Opal at KEVX, Fig 8), which has 
rather different VPRs than continental convective precipitation, CSSA tends to under-identify 
convective precipitation, an issue that will be revisited later in this section. 
 
Another way to evaluate the performance of CSSA is to examine the VPRs (i.e. the location-
specific, individual vertical profiles of reflectivity, rather than their spatial mean) sampled from 
the area identified as stratiform.  Note that, if CSSA is successful, the VPRs sampled from the 
stratiform area should exhibit relatively small variability (i.e. the individual VPRs should bundle 
up tightly).  To illustrate this, we used VIL-only CSSA as a point of comparison with the four-
attribute CSSA described above.  In VIL-only CSSA, only VIL is used as the sole separation 
attribute in the optimal linear estimation procedure.  As may be seen in Figs 5, VIL is generally a 
rather skillful attribute for convective-stratiform separation, but tends to under- and over-identify 
areas of convective and stratiform precipitation, respectively.  Figs 13a through 15a show 
examples of the VPRs sampled from the areas of stratiform precipitation as identified by VIL-
only CSSA.  Figs. 13b through 15b are the same as Figs 13a through 15a, except that all four 
attributes are used in CSSA instead.  Note that the VPRs from VIL-only CSSA show a 
significantly large number of reflectivity values that are outside of the tightly clustered stratiform 
VPRs.  Those from the full CSSA, on the other hand, show the clusters of stratiform VPRs with 
significantly fewer reflectivity values from convective precipitation. 
 
While the above evaluations are very useful in assessing the performance of CSSA for 
convective-stratiform separation itself, they do not necessary assess the value of CSSA in radar 
QPE.  For that, we compare the radar rainfall maps corrected by CSSA-RCA with the 
uncorrected.  Figs 16a through 21a show radar rainfall maps without CSSA-RCA correction for 
6 cases in Table 1.  Figs 16b through 21b show the matching radar rainfall maps with CSSA-
RCA correction.  In generating radar rainfall accumulation maps, the convective Z-R relationship 
(Z=300R1.4, Z in mm6/m3 and R in mm/hr) and a hail cap of 56 dBZ were used everywhere in the 
radar umbrella throughout the accumulation duration.  The only exception is in Fig 20 
(Hurricane Opal), for which the tropical Z-R relationship (Z=250R1.2) is used.  Note in Fig 16 
that, for a mixed precipitation event such as this squall line, CSSA does the intended job very 
well: little or no adjustment is made to convective precipitation while significantly reducing 
brightband enhancement in stratiform precipitation (see Seo et al. 2003 for graphical display of 
rainfall amounts added or subtracted by CSSA-RCA).  While this type of visual evaluation can 
only be qualitative by nature, it does reveal a great deal of information about the performance of 
CSSA-RCA that cannot be gleaned from quantitative comparison with rain gauge data.  In 
particular, rainfall patterns at very far ranges are very often a telltale indicator of the performance 
of CSSA-RCA.  For example, spatially widening and narrowing rainfall patterns along the range 
are very likely an indication of over- and under-correction, respectively.  CSSA-RCA should 
produce rainfall maps at very far ranges that look physically realistic and are consistent with the 
rainfall patterns elsewhere.  Realistic rainfall patterns at very far ranges are a strong indication 
that correction at other ranges is very likely to be accurate.  Fig 17 illustrates the above points.  
Though the rainfall patterns at the extreme far ranges in the northeastern quadrant still show 
missing precipitation due to lack of detection (see Seo et al. 2003), the rainfall patterns elsewhere 
look physically realistic and consistent over the entire radar umbrella.  Fig 18 shows that, for a 



mostly convective event, the rainfall map from CSSA-RCA correction is not very much different 
from that without correction, except at far ranges.  Fig 19 is another illustration of how CSSA-
RCA may impact radar estimation of stratiform rainfall.  While the absolute accuracy of the 
corrected rainfall maps may not be assessed without comparison with rain gauge data, it does 
provide an assessment of the magnitude of uncertainty in stratiform radar QPE due to the VPR 
effects.  For a hurricane event (see Fig 20), all VPRs are of convective type.  As such, 
convective-stratiform separation does not apply until the precipitation system takes on 
continental character well after landfall.  Note that, with the indicator statistics derived from a 
mixed precipitation event, CSSA misidentifies a large area as stratiform (see Fig 8).  For this 
reason, CSSA is not to be used with RCA for pure tropical events.  The rainfall map shown in 
Fig 20b is based on RCA without CSSA.  Note that the corrected map is physically realistic and 
consistent across all ranges. 
 
5.  Relationship Between Cloud-To-Ground Lightning and Convection Probability 
 
Though the CSSA is designed to identify all convective-type profiles and not only those with 
deep convection, we were able to partly validate is ability to identify deep convection through a 
comparison with cloud-to-ground (CG) lighting observations. 
 
Convective probabilities from 21 volumetric scans were interpolated to a 4-km Cartesian grid 
centered on the radar site, and collated with CG strikes in the same boxes during a 20-minute 
window centered on the nominal volumetric scan time.  Data were taken from sites KRTX, 
KTLX, KPBZ, and KRLX between April 20 and May 27, 2004.  All cases included some 
precipitation, and total CG strike counts ranged from < 50 to over 1300, though a few had no 
lightning.  In our statistical analysis, one grid box in one image contributes one case to the 
sample.  A total of 104,000 cases with CPROB > 0 and/or composite reflectivity ≥ 5 dBZ were 
included in the final analysis; of these 2.2% had CG lightning. 
 
As shown in Fig. 22, there was a striking relationship between CPROB and lightning relative 
frequency, with probabilities under 30% being associated with lightning relative frequency of 
2% or less, and probabilities of 90% or higher being associated with lightning relative frequency 
of 20-50%.  Overall, CPROB explained approximately 28% of the variance in lightning.  By 
comparison, composite reflectivity explained only 18% of the variance. 
 
We caution that CSSA is not intended as a radar detection algorithm for lightning.  This 
experiment only demonstrates a relationship between the radar predictors and the depth and 
intensity of convection, which is in turn correlated with the probability of  CG lightning. 
 
6.   Conclusions and Future Research Recommendations  
 
An automatic algorithm for identification of convective and stratiform precipitation based on 
volume scan radar reflectivity data, referred to as the Convective-Stratiform Separation 
Algorithm (CSSA, Seo et al. 2002), has been developed to support real-time correction of range-
dependent biases in radar Quantitative Precipitation Estimation (QPE).  The algorithm has been 
extended to include vertically-integrated liquid water (VIL) as an additional predictor attribute.  
The resulting 4-attribute CSSA is evaluated in multiple case studies by feeding the separation 



results to the Range-dependent bias Correction Algorithm (RCA, Seo et al. 2000).  Because VIL 
is an existing WSR-88D product, VIL-only based stratiform-convective separation, if found 
viable, may be a significantly less expensive alternative to the full CSSA.  To assess 
performance of the VIL-only CSSA, the two are inter-compared in the multiple case studies. 
 
The major conclusions and recommendations drawn from this work are as follows: 
 
 
• The Convective-Stratiform Separation Algorithm (CSSA) appears physically realistic, based 

on its performance in a selected set of cases and its strong correlation with cloud-to-ground 
lightning events. 

 
• Performance of the Range-dependent bias Correction Algorithm (RCA) is sensitive to that of 

the Convective-Stratiform Separation Algorithm (CSSA).  For RCA to operate as an all-
season and all-storm type application, reliable high-level performance of CSSA is essential. 

 
• Performance of the ‘full’ CSSA, which uses four different attributes as predictors, is generally 

satisfactory whereas that of the ‘VIL-only’ CSSA, which uses VIL as the sole predictor, is 
not.  As such, implementation of the VIL-only CSSA as an interim alternative is not 
recommended. 

 
• Range dependency of the predictor attributes is found to be one of the factors adversely 

affecting the performance of CSSA.  Improvements are recommended to reduce such range 
dependency and to employ efficient computational schemes for evaluation of local-statistical 
attributes. 

 
• Though the performance of CSSA is generally satisfactorily for a wide range of storms, it is 

less robust for certain types of storms, including purely tropical and purely convective.  
Further case studies, both historical and real-time, are recommended to mature the algorithm 
and the operations concept and to develop specific operational guidance. 
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Table 1.  Description of precipitation cases used in this study 
 
Call Letter Site    Tape #  Period Storm Type   Used For 
 
KAMA Amarillo, TX  N04248 5/30/95 squall line   validation 
KATX Seattle, WA  N10814 2/2/96 stratiform   validation 
KDDC Dodge City, KS  N01158 7/14/93 organized-convective validation 
KEVX Eglin AFB, FL  N09652 10/4/95 hurricane (Opal)  validation 
KFDR Frederick, OK  N01114 5/9/93 squall line   validation 
KFWS Forth Worth, TX  N02983 4/18/95 squall line   validation 
KHGX Houston, TX  N02961 10/17/94 organized-convective validation 
KICT  Witchita, KS  N02075 4/28/94 squall line   validation 
KINX Tulsa, OK   N04206 5/8/95 squall line   estimation 
KMLB Melbourne, FL  A20054 3/25/92 chaotic-convective validation 
KOKX New York, NY  N23993 10/19/96 stratiform   validation 
KRTX Portland, OR  N12384 2/6/96 stratiform   validation 
KLWX Sterling, VA    11/29/03 convective, stratiform validation 
KTLX Norman, OK    1/5/02 stratiform   validation 
KFWS Forth Worth, TX    1/5/02 stratiform   validation 
KJAX Jacksonville, FL    8/1/02 convective   validation 
KRTX Portland, OR    1/24/04 stratiform   validation 
KRTX Portland, OR    1/28/04 stratiform   validation 
KRTX Portland, OR    3/25/04 stratiform   validation 
KLZK Little Rock, AR    1/6/02 stratiform   validation 
KHGX Houston, TX    1/5/02 stratiform   validation 
KJAN Jackson, MS    1/6/02 stratiform   validation 
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Figure 1.  Maximum reflectivity in the vertical (dBZ), from KINX, 9 May 1995. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.   Local horizontal spatial correlation in reflectivity, for case shown in Fig. 1. 
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Figure 3.  Height of apparent convective core, km AGL, for case in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Spatial correlation in height of convective core, for case in Fig. 1. 
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Figure 5. Vertically-integrated liquid (VIL), kg m-2, for case in Fig. 1. 
 
 

 
Figure 6.  Convective probability based on data illustrated in Figs. 1-5. 
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Figure 7. Composite reflectivity (top) and convective probability (bottom).from KDDC,  
Jul 14, 1993 
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Figure 8.  Composite reflectivity (top) and convective probability (bottom).from KEVX, 
Oct 4, 1995 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.  Composite reflectivity (top) and convective probability (bottom).from KFDR, 
May 9, 1993 
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Figure 10.  Composite reflectivity (top) and convective probability (bottom).from KHGX, 
Oct 17, 1994 
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Figure 11.  Composite reflectivity (top) and convective probability (bottom).from KMLB, 
Mar 25, 1992 
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Figure 12.  Composite reflectivity (top) and convective probability (bottom) from KOXK, 
Oct 19, 1996 
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Figure 13.  Reflectivity/height scatter plots with (top) VIL-only CSSA and (bottom) full 
CSSA for KINX (Tulsa OK), 8 May 1995. 
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Figure 14.  As in Fig. 13, except plot for KDDC (Dodge City KS) 14 July 1993. 
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Figure 15.  As in Fig. 13, except plot for KFDR (Frederick OK), 9 May 1993. 



 

 

 
 
 
Figure 16.  Precipitation accumulations (top) without and (bottom) with range 
correction and CSSA for KDDC, Jul 14, 1993 
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Figure 17.  Precipitation accumulations (top) without and (bottom) with range 
correction and CSSA for KTLX, Jan 5, 2002 
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Figure 18.  Precipitation accumulations (top) without and (bottom) with range 
correction and CSSA for KMLB, Mar 25, 1992 
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Figure 19.  Precipitation accumulations (top) without and (bottom) with range correction 
and CSSA for KOKX, Oct 19, 1996 
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 Figure 20.  Precipitation accumulations during passage of Tropical Storm Opal, (top) 
without and (bottom) with range correction.  CSSA was not applied. KEVX, Oct 4, 1995  

 



 

 

 
Figure 21.  Precipitation estimates (top) without and (bottom) with range correction and 
CSSA for KHGX, Oct 17, 1994 
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Figure 22.  Percentage of 4-km grid boxes within radar umbrella with cloud-to-ground 
lightning as a function of convection probability.  Total 104,000 cases with radar 
reflectivity ≥ 5 dBZ, from KRTX, KTLX, KPBZ, KRLX sites, April-May 2004. 
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