



3. Uncertainty Analysis in the Planning of an Experiment

Introduction

Uncertainty analysis is a powerful tool for improving the value of experimental work, and can be applied during all phases of an experimental program.  However, the greatest value of uncertainty analysis is almost certainly obtained when it is used during the planning of an experiment.  In citing a dozen uses of uncertainty analysis, Kline (1985a) highlighted five specific uses within the planning phase

1. Enforcing a complete examination of experimental procedures,

2. Identifying situations in which improved instrumentation and/or procedures are needed to obtain desired accuracy of results,

3. Minimizing instrumentation costs to obtain a given output accuracy,

4. Identifying instruments and procedures that control accuracy (usually one or a few from the total set of those involved in a given experiment), and

5. Informing beforehand when an experiment cannot meet desired accuracy requirements and is thus “hopeless”.  Such experiments can sometimes be redesigned, or if they must be abandoned, considerable time and money can be saved.  (An example might be trying to measure the normal velocity through a fish screen with a 3-dimensional ADV when the sweeping velocity is extremely large compared to the normal component.)
So important is uncertainty analysis in the planning phase of an experiment that it was prominently featured in both of the primary conclusions obtained from the landmark 1983 symposium on uncertainty analysis sponsored by the ASME Journal of Fluids Engineering (JFE).  Those two conclusions were (Kline 1985b):

1. Uncertainty analysis is an essential ingredient in planning, controlling, and reporting experiments.  The important thing is that a reasonable uncertainty analysis be done.  All differences of opinion about appropriate methods are subsidiary to this conclusion.

2. It is particularly important to use an uncertainty analysis in the planning and checkout stages of an experiment!

In emphasizing the importance of uncertainty analysis during the planning stages of an experiment, Hugh Coleman wrote to Kline (1985b) “All experimentalists should be taught that an uncertainty analysis PERFORMED IN THE PRELIMINARY DESIGN PHASE OF AN EXPERIMENT will often yield results and insights far out of proportion to the relatively small investment of time required for the analysis.” (Coleman’s emphasis).

So, uncertainty analysis in the planning phase of an experiment is a worthy endeavor.  This chapter attempts to highlight this fact with discussion and examples of the use of uncertainty analysis techniques that lend themselves to the planning phase.  The material presented here is drawn primarily from two sources, R.J. Moffat’s 1985 paper from the ASME/JFE symposium, titled “Using Uncertainty Analysis in the Planning of an Experiment”, and Coleman and Steele’s 1999 book, Experimentation and Uncertainty Analysis for Engineers, 2nd ed.

General Uncertainty Analysis

In all but the simplest of experiments, the end result of an investigation is not measured directly, but rather is determined by calculation from a data reduction equation.  The end result, and the uncertainty in it, are a product of the direct measurement of other parameters and, in most cases, assumed values of material properties or other physical “constants”.  In all the phases of experimentation we will consider how the uncertainties in these individual variables propagate through the data reduction equation into the end result.

In the planning phase of an experiment, we will consider the uncertainties of individual variables and their propagation into the result in the most basic ways possible.  This level of analysis is often called general uncertainty analysis, as opposed to detailed uncertainty analysis, which is applied to later phases.  In the planning phase we are considering alternative methods for arriving at the experimental result.  We have not selected specific instruments or equipment, and thus we are in no position to address the details of systematic versus random errors, since any systematic errors in the instruments we eventually choose are as likely to be positive and negative.  At this stage we consider all uncertainty to be caused by random errors.  Later, when we get into the detailed design of an experiment, the debugging and data collection phases, and the data analysis and reporting phases, we will be more interested in those details, but for now our focus is on achieving the maximum amount of early guidance for a small amount of expended effort.  By using uncertainty analysis at this stage to help select the correct experimental approach, we can avoid expending unnecessary effort on methods that might never achieve our objective.

Uncertainty Propagation Equation

Recall from Chapter 2 that for the general case of an experimental result, r, computed from J measured variables X1…J, the data reduction equation is:
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and the uncertainty in the experimental result is given by
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where Ur is the uncertainty in the result, UX1 is the uncertainty in the variable X1, etc.  This is the most general form of the uncertainty propagation equation (Coleman and Steele 1999).  When applying the uncertainty propagation equation, the individual uncertainties should all be expressed with the same odds, e.g., at 95% confidence.  In the planning phase, this assumption is implicit.  In addition, the measured variables and their uncertainties are assumed to be independent of one another.

Nondimensional Forms

Two nondimensional forms of eq. (2) are useful in the planning phase.  Dividing each term by r2 and multiplying the terms on the right-hand side by (Xi/Xi)2, we obtain
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In this equation, Ur/r is the relative uncertainty in the result and the factors UXi/Xi are the relative uncertainties of each variable.  The factors in parentheses that multiply the relative uncertainties of the variables are called uncertainty magnification factors (UMFs).  They indicate the influence of uncertainty in a particular variable on the uncertainty in the result.  When the UMF is greater than 1, uncertainty in a variable is magnified as it propagates through the data reduction equation; if less than 1, the uncertainty in the variable is reduced.  The UMF depends on the value of a variable relative to the result and the manner in which it is incorporated into the data reduction equation, but it is independent of the actual uncertainty in the variable, so it is useful before we know details about measurement methods and their uncertainties.  Since the UMFs are always squared when inserted into eq. (3), only their absolute values are important.

The second nondimensional form is obtained by dividing by Ur2, which produces
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Each term on the right-hand side gives the fractional contribution of the squared uncertainty in a given variable to the squared uncertainty in the result.  In percentage terms we can define uncertainty percentage contributions (UPCs) as
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The UPCs include the effects of both the UMF and the uncertainty of the variable, so they are useful in the late planning phase and early design phase, when measurement equipment and methods are being selected and measurement uncertainties can be estimated.

Simplified Form

The most useful form of the uncertainty propagation equation for planning purposes is probably eq. (3), in which the squares of the relative uncertainties are related through the UMFs.  In a great many cases eq. (3) can be further simplified.  When the data reduction equation is of the form
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with a, b, and c, and k being constants, applying eq. (3) produces the simplified equation
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In such a case, the UMFs are the exponents and the uncertainty propagation equation can be written down by simple inspection.  One must keep several things in mind when considering the use of this simplified form of the equation.  First, one must solve for the experimental result before applying the equation.  Second, the Xis must be directly measured variables, so an equation of the form R=a(cos()) is not in the proper form if  is measured directly.  Also, an equation of the form Q=CdA(2g(h2-h1))1/2 is acceptable if h2-h1 is measured directly, but not if h2 and h1 are measured separately.

Examples – Simple Cases

Consider the case of flow measurement over a fully contracted, sharp-crested rectangular weir.  We wish to determine the discharge through the weir, using the equation
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The variables that will be measured are the weir length, L, and the upstream head, h1, and each will have an associated uncertainty.  The value of the discharge coefficient, C, is an empirical constant which will also have some uncertainty associated with it.

Before determining how to measure the weir length and upstream head, a general uncertainty analysis can be used to gain an understanding of the relationship between the measurement uncertainties and the uncertainty in the result.

Applying eq. (3), the general uncertainty expression is
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And the UMFs are
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Substituting the UMFs back into eq. (9), we obtain
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which we could have written down by inspection, since the data reduction equation was in the simple form discussed previously.  Notice that the uncertainties in head measurement are magnified in the result due to the exponent of 1.5.  With this equation, we can now examine several questions related to the uncertainty of the proposed discharge measurement.

Suppose for example that the weir length is 2 m, the head is 0.3 m, and the discharge coefficient is 1.71 m0.5/s.  How accurately can the discharge be measured if the relative uncertainty in C is 5%, the weir length is known with an uncertainty of 2 mm, and the head is measured with an uncertainty of 3 mm?

Inserting the values of the variables and their uncertainties, we obtain
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Thus, the relative uncertainty in discharge measurement is 5.2%, with the primary sources of uncertainty being the discharge coefficient and the measurement of the upstream head.

We can also answer “what if” questions related to design or selection of measurement methods.  For example, if the discharge measurement must be made with an uncertainty of 6% or less and the length of the weir has an uncertainty of 2 mm as before, what is the maximum allowable uncertainty in the head measurement?  Working through the equation, we find that
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Similarly, if we were doing a laboratory calibration to determine the discharge coefficient we might ask what uncertainty in head measurement is needed to obtain a C value with relative uncertainty of 2%, if the laboratory facilities are capable of independently measuring the discharge with an uncertainty of 0.5%.  Solving for Uh1 in that case, we obtain
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when we insert the values for the example we obtain
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We have obviously committed a serious error!  One cannot take the square root of a negative number.  The problem is that we forgot to rearrange the data reduction equation to put the result on the left side before applying the simplified form of the general uncertainty equation.  The correct data reduction equation and uncertainty expression are
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Inserting the appropriate numerical values for our example,
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This example shows how easy it is to make a mistake when writing down the uncertainty equation by inspection.  The requirements listed earlier for use of the simplified form must be kept in mind when considering its use.

Using Uncertainty Analysis in the Planning of an Experiment

The examples given thus far are relatively trivial, simple cases.  Before proceeding on to a more detailed example, we should review the role of uncertainty analysis in experimental planning.

Any experimental endeavor begins with a question whose answer is sought.  In order to be useful, the answer must be determined with some level of certainty.  It is important to establish this allowable level of uncertainty in the planning phase, although it need not be a refined value; an order of magnitude estimate (i.e., 0.1, 1, 10, or 50%) is often sufficient.

In the planning phase, we usually have several options available to us for arriving at the experimental result.  These will often involve completely different experimental methods and the measurement of different parameters.  For example, one experiment might be performed in a steady-state condition while another is performed in a transient condition.  Different experiments may exploit different physical properties of a material or different parameters of a process.  For each alternative, there may be a different data reduction equation with unique error propagation characteristics.  We want to determine which approach is most likely to yield the desired result, and which measurements may the most critical if a particular method is used.  Once we have selected an experimental method, then we may want to investigate instrumentation issues more closely.  As we do so, we gradually move from the realm of general uncertainty analysis to more detailed uncertainty analysis.

When applying general uncertainty analysis, it becomes necessary to assign uncertainties to the variables that we intend to measure, even if we do not yet know the exact methods of measurement or specific instrumentation that will be used.  Coleman and Steele (1999) observed that there is a universal human reluctance to estimate uncertainties, perhaps out of fear of using the wrong values.  This can be overcome by realizing that there is no “correct” value at this stage; we only seek to gain understanding by assuming “reasonable” values.  If one is still unsure of what value to use, a parametric analysis can be made in which a range of values are used.  Even ridiculously large or small values can be used, as they may help illustrate the sensitivity or insensitivity of the uncertainty in the result to the uncertainties in the measured variables.

We will now illustrate the more detailed application of general uncertainty analysis to a nontrivial, real-world example.  Unfortunately, a single example cannot illustrate all of the nuances and possible outcomes of a planning phase uncertainty analysis.  For the reader seeking additional examples, those given by Coleman and Steele (1999) are highly recommended.

Detailed Example – Radial Gate Calibration Experiments

The calibration of radial (Tainter) gates for flow measurement is a topic of current research interest to those who work with irrigation canal systems, in which radial gates are often used at check structures and canal bifurcations.  Accurate calibration of such gates would allow operators to measure flow rates through the gates without the need for construction of dedicated flow measurement structures (e.g., flumes or weirs) or the purchase of expensive measurement instruments such as acoustic flow meters.  Measurement at control structures also eliminates some of the lag time involved in draining and filling canal reaches upstream from flumes or weirs.  Finally, accurate calibration equations allow canal operators to more accurately set gates to deliver desired flow rates.
In concept, the objective is to develop a calibration method that would allow one to compute the flow rate through a gate from a measurement of upstream and downstream water level and the gate position.  A definition sketch for a radial gate is provided in Fig. 1.
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Fig. 1.  Definition sketch for flow through a radial gate
Clemmens et al. (2003) performed laboratory experiments on a model radial gate and developed a new calibration method called the Energy-Momentum method.  Two key parameters in this method are an upstream energy loss and velocity distribution factor, 1+, and an energy correction factor, Ecorr.  To provide better definition of the behavior of these parameters, a new series of experiments is now being contemplated.  We wish to use a general uncertainty analysis to explore the possible experiments that might be performed.  For this example we will focus on just the 1+ factor.
The parameter 1+ appears in the energy equation applied to the flow from the upstream pool through the gate to the vena contracta point.  When a gate is in a free flow condition, the calibration equation for the gate (derived from the energy equation) is
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where Q is the discharge,  is the contraction coefficient, w is the vertical gate opening, bc is the gate width, g is the acceleration of gravity, H1 is the energy head at section 1, and  an energy loss coefficient for losses that occur between sections 1 and 2.  The velocity distribution at the vena contracta (section 2 in Fig. 1) is assumed to be uniform, hence the constant 1 in the denominator.  If the velocity distribution is actual nonuniform, that will be accounted for in the  factor, so that 1+ accounts for the effects of both velocity distribution and energy loss.  We wish to perform experiments that will yield the values of 1+.

The first question that arises in considering this problem is what level of uncertainty we should try to achieve in determining 1+?  To answer this question we can first consider the final application of eq. (17) for the purpose of flow measurement.  We would like to be able to measure Q in the field with a relative uncertainty of 2%, which is comparable to the rating uncertainty of flumes and weirs.  If we estimate the uncertainty in field measurements or estimates of , w, bc,and H1, we can solve for the allowable uncertainty in 1+.  We will assume that the acceleration of gravity, g, is a constant known with negligible uncertainty.

Eq. (17) is not in the form that allows the simplified development of the uncertainty propagation equation, so we will need to work out the partial derivatives.  The UMFs are
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Note that we treat 1+ as a single parameter, since we expect to determine it experimentally in that way.  Determining the partial derivatives is somewhat tedious, but many terms cancel to make the resulting eqs. (18) to (22) reasonably compact.  Substituting the UMFs into the general uncertainty equation we obtain:
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We see that in addition to estimating relative uncertainties of the measured variables, we will need to select appropriate values of , w, and H1, since they are contained in the UMF’s.  The contraction coefficient varies from about 0.6 to 0.8 at typical gate openings; a representative value of 0.7 can be used for this analysis.  The values of H1 and w can vary widely during normal gate operations and for gates of different sizes, so we will choose a range of typical values and then solve for the relative uncertainty of 1+ for each condition using a spreadsheet model.  We stated earlier that the desired relative uncertainty in Q is 2%.  For the other variables we need to make reasonable estimates of their uncertainties.  The contraction coefficient, , is usually determined from empirical equations that are believed to have a relative uncertainty of about 1%.  The estimated relative uncertainty in gate opening, w, is also 1% for a field application.  The relative uncertainty in the gate width, bc, for a typical prototype gate is estimated to be 0.25% (includes variation in the width of a gate chamber over the height of a gate).  Finally, the uncertainty of upstream head measurement is estimated to be 6 mm (0.02 ft).

Inserting these values into eq. (23) we obtain the results shown in Table 1.  We limit the gate opening, w, to 0.66H1, since at larger values the gate leaf would not control the flow (critical depth being two-thirds of the upstream head).
	Table 1.  Allowable relative uncertainty in 1+

	
	w, meters

	H1
meters
	0.1
	0.2
	0.33
	1.33
	3.33
	5.33

	0.5
	2.66%
	2.79%
	2.86%
	
	
	

	2
	2.82%
	2.87%
	2.94%
	3.59%
	
	

	5
	2.80%
	2.82%
	2.85%
	3.07%
	3.63%
	

	8
	2.80%
	2.81%
	2.82%
	2.96%
	3.27%
	3.63%


The results in Table 1 show that for small gate openings we must have a smaller uncertainty in 1+ to achieve our goal of a 2% uncertainty in discharge measurement.  We can conservatively conclude that we should try to design our experiments so that we can determine 1+ with a relative uncertainty of 2.5% or less.

Now we will consider the planned experiment.  We rearrange the data reduction eq. (17) to solve for the experimental result, 1+.
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In the laboratory we will most likely measure w as a single quantity, the jet thickness, yj, using either a point gage or a piezometer tap located at the vena contracta.  This simplifies the data reduction equation to
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We will now determine the UMFs for this data reduction equation.
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We see that, again, some of the UMFs contain the measured variables themselves, so we will need to choose representative values of H1 and yj to perform the uncertainty analysis.  Typically, H1 will be significantly larger than yj, so we can quickly see that UMFH1 will be on the order of 1, while UMFyj is on the order of 2.  The complete uncertainty equation is
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In the facility that is available for the experiments, we have initially planned to conduct tests on a model radial gate at heads ranging from 0.13 m up to 0.50 m, and gate openings ranging from 0.05 m to 0.20 m.  The jet thickness, yj, will be about two-thirds of the gate opening, so yj will vary from about 0.033 m to 0.17 m.  We believe that we can construct and measure the width of the model gate chamber with a relative uncertainty of 0.25%.  The laboratory is equipped with a weighing tank for determining discharge whose relative uncertainty is 0.1% or better.  It is reasonable to assume that we can measure the upstream head with an uncertainty of 0.5 mm with a point gage in a stilling well.  Knowing from the previous analysis that we need to achieve a relative uncertainty of 2.5% or better in the experimental result, 1+, we can solve for the required uncertainty in the measurement of yj.  Table 2 shows the results.  Note that we solve for the absolute uncertainty, Uyj, not the relative uncertainty, since we expect variability in our measurements of the jet thickness to be mostly independent of the actual jet thickness.
	Table 2.  Allowable uncertainty in measurement of yj, meters.

	
	yj, meters

	H1, meters
	0.033
	0.066
	0.1
	0.133

	0.13
	0.00047
	0.00158
	
	

	0.2
	0.00044
	0.00106
	
	

	0.3
	0.00043
	0.00093
	0.00162
	

	0.4
	0.00042
	0.00089
	0.00146
	0.00216

	0.5
	0.00042
	0.00087
	0.00139
	0.00198


The results show that any tests carried out at very low gate openings and jet thicknesses will require measurements of jet thickness that have an uncertainty of about 0.4 mm.

We anticipate difficulty in reaching this objective, but believe that we can probably achieve a measurement uncertainty for yj of 0.5 mm.  Using that value, we can compute the relative uncertainty in 1+ over the potential range of test conditions (Table 3), and the uncertainty percentage contributions (UPCs) associated with each measured variable (Table 4).

	Table 3.  Relative uncertainty in 1+.

	
	yj, meters

	H1, meters
	0.033
	0.066
	0.1
	0.133

	0.13
	2.62%
	1.20%
	
	

	0.2
	2.80%
	1.32%
	
	

	0.3
	2.90%
	1.42%
	0.96%
	

	0.4
	2.95%
	1.48%
	1.01%
	0.80%

	0.5
	2.97%
	1.50%
	1.04%
	0.83%


	Table 4.  UPCs for the measured variables at different test conditions.

	H1, meters
	yj, meters
	UPCH1
	UPCyj
	UPCbc
	UPCQ

	0.13
	0.033
	4%
	92%
	4%
	1%

	0.20
	0.033
	1%
	95%
	3%
	1%

	0.30
	0.033
	0%
	96%
	3%
	0%

	0.40
	0.033
	0%
	96%
	3%
	0%

	0.50
	0.033
	0%
	97%
	3%
	0%

	0.13
	0.066
	42%
	37%
	17%
	3%

	0.20
	0.066
	8%
	75%
	14%
	2%

	0.30
	0.066
	2%
	83%
	12%
	2%

	0.40
	0.066
	1%
	86%
	11%
	2%

	0.50
	0.066
	1%
	87%
	11%
	2%

	0.30
	0.10
	7%
	61%
	27%
	4%

	0.40
	0.10
	3%
	69%
	25%
	4%

	0.50
	0.10
	1%
	71%
	23%
	4%

	0.40
	0.133
	5%
	50%
	39%
	6%

	0.50
	0.133
	3%
	55%
	36%
	6%


In almost all test cases the uncertainty in the measurement of yj is responsible for the majority of the uncertainty in the result.  In the tests to be carried out at very small heads, the uncertainty in head measurement becomes somewhat significant.  Uncertainty in the gate width is also a significant factor in some test conditions, but it is primarily those in which the total uncertainty in the result is relatively low, so this is probably not a serious concern.
The analysis performed here shows that uncertainty in the measurement of yj may seriously affect the ability to achieve the test objective.  It may be necessary to focus effort on reducing the uncertainty of that measurement through the selection of measurement methods and equipment.  One might also conclude that performing tests at very small heads and gate openings is not worthwhile, although there might be other good reasons for keeping such tests in the plan, such as changes in hydraulic phenomena that only occur at those test conditions.  The key point is that the uncertainty analysis allows one to make informed decisions about test design, rather than relying on intuition or discovering problems by trial.

Numerical Approximation of Partial Derivatives

Developing the general uncertainty equation for a given data reduction equation often requires the determination of numerous partial derivatives.  When the data reduction equation is complex, this can be a very tedious task.  An alternative is to use numerical approximations of the partial derivatives.  They can be computed from
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with the values of all other variables in the data reduction equation held constant while varying Xi.  To implement this, one must choose a value for Xi, such as 0.01Xi, and compute the derivative, then reduce Xi to one-half the starting value and compute the derivative again.  Continue reducing Xi until the estimated value of the derivative converges.  This method can be easily implemented in commercial spreadsheet or mathematical analysis software.

Summary

This chapter has demonstrated the use of general uncertainty analysis for the planning of experiments.  In the planning phase we are trying to determine whether a proposed experiment can satisfy our objectives.  If alternative data reduction equations and experimental methods are available, we consider the alternatives and whether one may be more effective than another.  General uncertainty analysis using UMFs also gives us a first impression of which measurements may be most critical for obtaining a desired level of uncertainty in the experimental result.  As we refine our experimental plan, we can analyze the UPCs to see which measurements are the most critical, considering both the manner in which they propagate into the end result (indicated by the UMFs) and the actual values of the measurement uncertainties.

Several results are possible from an uncertainty analysis performed in the planning phase.  Infeasible approaches may be discarded and feasible methods pursued, experimental methods may be altered, instrumentation needs can be clearly identified, and in some cases experimental programs that will never yield useful results may be abandoned.  Regardless of the outcome, the value obtained from the expenditure of time and money can be increased, usually in an amount far greater than the cost of performing the uncertainty analysis.  In addition, time spent on uncertainty analysis in the planning phase will lay the foundation for the more detailed uncertainty analysis that follows once experiments are underway.
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