Top/QCD at the Linear Collider: Experimental Aspects

David Gerdes University of Michigan

Loopfest May 7, 2002

Outline

- Top Quark Physics
 - Measurements at threshold
 - Measurements above threshold
- QCD
 - Precision measurement of α_{s}
 - Q² evolution

Machine Parameters

	TESLA(500)	TESLA(800)	NLC(500)	NLC(1000)	Tevatron
E (GeV)	500	800	500	1000	2000
Lum. x 1E33	31	5	20	34	0.1
Rep rate (Hz)	5	3	120	120	
Bunches/pulse	2820	4500	190	190	
Bunch sep (ns)	337	189	1.4	1.4	396
$\sigma(\mathbf{x})$ at i.p.	553 nm	391 nm	245 nm	190 nm	30 µm
$\sigma(\mathbf{y})$ at i.p.	5 nm	2 nm	2.7 nm	2.1	30 µm
o(z) at i.p.	0.4 mm	0.3 mm	110 nm	110 nm	30 cm
δB (%)	3.3	4.7	4.7	10.2	0
P(e–) (%)	80–90	80–90	80–90	80–90	
P(e+)(%)	60	60			

Top Production at the LC

- $\sigma_{tt} \approx 0.6 \text{ pb at } \sqrt{s} = 500 \text{ GeV}$
- ⇒ 200,000 *tt* pairs / year at TESLA design luminosity.
- Why "do top"?
 - $\Gamma_{t} \sim 1.3 \text{ GeV} >> \Lambda_{QCD}, \text{ so top}$ decays before hadronization: Unique opportunity to observe the weak interactions of a bare quark.
 - $-m_{t}, \Gamma_{t}, g_{tth}$ etc. are precision EWK parameters.
 - Possible role in EWSB dynamics

Top Quark Threshold

Large top width provides IR cutoff, so can use pQCD to compute threshold cross section. Convergence is sensitive to mass definition used: pole and kinematic masses not IR–safe.

Hoang, Manohar, Stewart, Teubner, hep-ph/0107144

Best results come from using the 1S mass definition (1/2 the mass of the lowest *tt* bound state, evaluated in the limit $\Gamma_t \rightarrow 0$) combined with a velocity resummation.

Also, reduces previous large correlation between m_t and α_s .

Machine Effects on Top Threshold Lineshape

Note: can reduce beamstrahlung at cost of luminosity: optimization issue for experimentalists.

David Gerdes, University of Michigan Top/QCD at the Linear Collider: Experimental Aspects

Threshold Measurements

Recent analysis by R. Miquel, M. Martinez (Chicago LCWS '02):

- Assume 300 fb⁻¹ and 9 scan points plus one well below threshold for background determination.
- Use the cross section and, in addition, the observables A_{FB} and P_{peak}

Threshold Results

- Mass: $\Delta m_t = 16 \text{ MeV}, \Delta \alpha_s = 0.0011$
 - Using cross section only: $\Delta m_t = 24$ MeV, $\Delta \alpha_s = 0.0017$.
 - = Γ_t , g_{tth} fixed at SM values; assume m_h =120 GeV, $\alpha_s(M_z)$ =0.120.
 - Theory error: ~100 MeV.
- Width: allow to vary in a 3-parameter fit.

– $\Delta\Gamma_{t}$ = 32 MeV, Δm_{t} = 18 MeV, $\Delta \alpha_{s}$ = 0.0015

- 2% exp. uncertainty on width

Top-Higgs Yukawa Coupling at Threshold

- Small effect in all observables, diminishes rapidly for m_b>120 GeV
- If all other parameters fixed (best-case scenario), find $\Delta g_{tth}/g_{tth} = +17\%-24\%$
- Fit m_t , Γ_t , g_{tth} simultaneously with 0.001 constraint on α_s : $\Delta g_{tth}/g_{tth} = +33\% -57\%$ (with correlations up to 85%) Also $\Delta m_t = 30$ MeV, $\Delta \Gamma_t = 33$ MeV.
- \Rightarrow This measurement looks hard.

Loopfest Wish List for Top Threshold

- Measurements may be dominated by theory systematics.
- Much progress in recent years on threshold cross section. How much more can calculation be improved? Better quantification of systematics?
- Improved calculations of other threshold observables (NLL calculations currently used for A_{FB} , P_{peak} , e.g.)

tte Top Yukawa Coupling

- $e^+e^- \rightarrow ttH \rightarrow WbWb bb$
- Very complicted final state:
 - Up to 8 jets
 - 4 b's
 - Many kinematic constraints
- Tiny cross section (~2 fb), with backgrounds ~3 orders of magnitude higher.
- Interfering backgrounds from EWK (ttZ), QCD (g→bb)
- Non–interfering backgrounds
 - Dominantly $e^+e^- \rightarrow tt$
 - Formally smaller number of partons, but can enter the selection due to hard gluon radiation, detector effects, and their very large cross sections

ttH Analysis Strategy (Juste, Merino)

- Lots of luminosity: 1 ab⁻¹ at 500 GeV
- Loose preselection on semileptonic final states (9 event variables)
 - Retains ~45% of signal while reducing bkgs by 2–3 orders of magnitude.
 - Still have only ~36 signal events, ~3800 bkgd events, about half of which are tt.
- Then apply multivariate analysis to remaining events. Neural net that uses the 9 preselection variables plus 14 more.

ttH Sensitivity

• For the semileptonic channel, L=1 ab^{-1} , m_H=120, find

$$\left(\frac{\Delta g_{ttH}}{g_{ttH}}\right)_{stat} \approx 0.33$$

- Only N~11 signal events, ~54 background events survive.
- Assuming $\sqrt{2}$ improvement from fully hadronic channel,

$$\left(\frac{\Delta g_{ttH}}{g_{ttH}}\right)_{stat} \approx 0.23$$

- NB: K-factors not used for signal or bkgd processes. Know K~1.5 for ttH @ 500 GeV (Dawson and Reina; Dittmaier et al.); would improve sensitivity by 22%. K-factors for backgrounds?
- Factor of 3–4 improvement at $\sqrt{s} = 800$ GeV.

Top Production/Decay Form Factors

General neutral-current couplings:

$$\Gamma^{\mu}_{t\bar{t}\gamma,Z} = ie \left\{ \gamma^{\mu} \left[F^{\gamma,Z}_{IV} + F^{\gamma,Z}_{IA} \gamma^{5} \right] + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m_{t}} \left[F^{\gamma,Z}_{2V} + F^{\gamma,Z}_{2A} \gamma^{5} \right] \right\}$$

SM: only F^{γ}_{1V} , F^{z}_{1V} , F^{z}_{1A} are nonzero.

 $F_{_{2V}} \Rightarrow weak magnetic dipole moment (\neq 0 in some strong EWSB models)$ $F_{_{2A}} \Rightarrow weak electric dipole moment, violates CP. (\neq 0 in some SUSY models)$

General charged-current couplings:

$$\Gamma^{\mu}_{tbW} = \frac{-g}{\sqrt{2}} V_{tb} \left\{ \gamma^{\mu} \left[F_{1L} P_{L} + F_{1R} P_{R} \right] + \frac{i \sigma^{\mu\nu} q_{\nu}}{2m_{t}} \left[F_{2L} P_{L} + F_{2R} P_{R} \right] \right\}$$

SM: only F_{11} is nonzero.

Couplings Measurement

Information about the form factors is encoded in the helicity angles:

Focus on the semileptonic (4–jet) final state:

- Charge of lepton tags t or t
- Can also use charge of b-tagged jet (ϵ =57%, purity = 83%)
- Four-momentum of the leptonic t-quark from the opposite hadronically-decaying top.

Analysis strategy (M. Iwasaki, 2002): assume 100 fb⁻¹ at $\sqrt{s} = 500$ GeV

- Force 4–jet final state using JADE clustering algorithm ($\varepsilon = 60\%$)
- Cut on 2-jet invariant mass (W identification) and 3-jet mass (top ID) (50%)
- b-tag using SLD-esque algorithm ZVTOP. (67%)

Reconstructed Helicity Angles and Results

Axial form factors from maximum likelihood analysis:

68% C.L. sensitivities

	F_{1A}^{γ}	F_{1A}^Z	F_{2A}^{γ}	F^Z_{2A}
$P_{e^-} = -0.8$	0.011	0.013	0.016	0.049
$P_{e^-}=-0.8, P_{e^+}=0.5$	0.009	0.011	0.021	0.033
No polarization	0.011	0.014	0.013	0.059
$P_{e^-} = +0.8$	0.011	0.015	0.014	0.052

Vector form factors from L–R asymmetry (200 fb⁻¹)

•
$$F_{1V}^{\gamma} \sim 0.05$$

• $F_{1V}^{Z} \sim 0.01$
• $F_{2V}^{\gamma} \sim 0.04$
• $F_{2V}^{Z} \sim 0.01$

Top Quark Strong Moments

- Top may play a role in new strong interactions, which can modify top couplings through higher-dimension operators.
- Simplest, CP-conserving form:
- $\kappa, \widetilde{\kappa}$ both zero in SM.

$$L = g_s t T_a \left(\gamma_\mu + \frac{i}{2m_t} \sigma_{\mu\nu} (\kappa - i \tilde{\kappa} \gamma_5) q^\nu \right) t G_a^\mu$$

Affects energy spectrum and angular distribution of hard gluon radiation above threshold.

Precision Measurement of α_{s}

- Why?
 - RG extrapolation of the gauge couplings constrains / tests physics at the GUT scale. Currently limited by ~few percent uncertainty on α_s .
 - Measure Q²–dependence over wide range to test QCD or reveal new physics.
- Main technique: event shape observables
 - E.g. thrust, sphericity, jet masses, jet rates...
 - Fit each observable to a pQCD prediction, allowing $\alpha_{\!_{S}}$ to vary.
 - Statistical uncertainties currently ~0.001, experimental systematics at level of ~0.001–0.004.

Theory Uncertainty Dominates

P. N. Burrows, hep-ex/9612008

Points: measured values with exp. errors

Gray bands: theory uncertainty

Ratio Method (GigaZ)

- Measure inclusive ratios $\Gamma_z^{had}/\Gamma_z^{lept}$, $\Gamma_\tau^{had}/\Gamma_\tau^{lept}$, which depend on α_s through radiative corrections.
- LEP data (16M Z's): $\Delta \alpha_s = \pm 2.5\%$ (stat.) $\pm 1\%$ (exp. syst.)
- GigaZ: $\Delta \alpha_s = \pm 0.4\%$ (stat.)
- Theory uncertainties controversial: 1–2%, maybe as high as 5%.
- If theory uncertainties clarified/improved, this could be a competitive ~1%–level measurement.

- What we have:
 - 5 partons at tree level
 - 4 partons at one loop
 - parts of 3 parton amplitudes at 2 loops
 - Ratio method calculated to NNLO
- What we need for a 1% measurement:
 - Full NNLO calculation of jet rates!
 - For ratio method, need NNNLO calculation, as well as NLO(?) EWK corrections.
 - This is left as an exercise...

Q^2 Evolution of α_s

- For the preceding measurements, we normalize to $\alpha_s(M_z^2)$, using the QCD β -function to connect measurements at different scales.
- But want to test this running explicitly, since the β-function itself is an important prediction of QCD.
- Linear collider is well-suited to high-precision measurements under similar experimental conditions over a large lever arm in Q².

Measurement of Q² Evolution

- LC at √s=91, 500, 1000 GeV
- Use jet rates/shapes at all energies, and ratio technique at Z pole.
- Assume 1% theory uncertainty.

Resulting improvement in extrapolation to GUT scale with 1% measurement:

David Gerdes, University of Michigan Top/QCD at the Linear Collider: Experimental Aspects

Conclusions

- Top and QCD illustrate many of the challenges and rewards of the LC physics program.
- At the same time, they only scratch the surface of the physics we hope to do there!
- We need calculations and theories worthy of the machine and detectors we are going to build.
- For the LC physics program to reach its potential, your help is essential!