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This is the fourth in a series of papers on social experimen-
tation. The first three papers focused on the rationale for
social experiments and the design and interpretation of the
experimental comparison. In this paper, we discuss the is-
sues involved in designing the experimental sample to
achieve the most valid and precise estimates of the experi-
mental impact. Specifically, we address the following issues:

■ Site selection and the external validity of the experi-
mental impact estimates;

■ Sample size and the statistical power of the design;

■ The point in the sample intake process at which ran-
dom assignment is conducted and the power of the
design;

■ Allocation of the sample among multiple treatments;

■ The optimal number of experimental sites; and,

■ Random assignment of groups of individuals.

Site Selection and the External
Validity of the Estimates

As noted in the first paper in this series, experimental esti-
mates are internally valid�that is, they provide unbiased
estimates of the impact of the experimental treatment on
the population to which it was applied. For the experimen-
tal estimates to be externally valid, the experimental
sample must accurately represent the population of inter-
est for policy. External validity is sometimes characterized
as generalizability. In order to provide the most reliable
guidance for policymakers, experiments should be both in-
ternally and externally valid. In designing experiments, then,
it is important to pay careful attention to a number of threats
to the external validity of the estimates.

Ideally, the experimental sample would be a random sample
of the population of interest for policy.1  Just as random
assignment creates two groups that do not differ systemati-
cally in any way, random selection of the experimental
sample from the broader population of interest would pro-
duce a sample that does not differ systematically from that
population. Thus, if the experimental sample is a random
sample of the population of interest, the impact estimates
are unbiased estimates of what the impact of the program
would be in the larger population.

In most applications, however, simple random sampling from
the population of interest is not feasible. It would probably
not be possible, for example, to conduct an experiment with
a simple random sample of all AFDC recipients in the U.S.,
or even in a single state. Such a sample would be spread so
thinly over a large number of program offices and geographic
areas that the costs of experimental administration and data
collection would be prohibitive. Instead, experimental
samples are generally clustered in a small number of sites.

It is still possible to obtain a random sample of the overall
population (e.g., all AFDC recipients in the U.S. or in a
given state) if the experimental sites are randomly selected
from all sites in that population and experimental partici-
pants are randomly selected from the population of interest
within each site. Such a sample design is known as a multi-
stage random sample. This type of sampling procedure
was used in the national evaluation of the Food Stamp Em-
ployment and Training Program (FSETP).2  In that
experimental study, a sample of 60 local food stamp agen-
cies (FSAs) was randomly selected from among 410 FSAs
containing 85 percent of the national population of pro-
gram participants.3  An intensive site recruiting effort

1  Random sampling should not be confused with random assignment.
In random sampling, a group of individuals is randomly selected from a
larger population in order to obtain a sample for analysis that is repre-
sentative of the population from which it was drawn.  In random
assignment, the analysis sample is randomly divided into two or more
groups to be subjected to different policy regimes.

2  See Puma et al. (1990).

3  FSAs serving less than 50 participants per year were excluded from
the sampling frame.

Estimates of program effectiveness are just that � estimates. They are facts,
not truth, and once we have them we are still left with the problem of decid-
ing what, if anything, they tell us about truth and whether what they tell
us is enough to guide our actions. Conversely, in setting out to collect facts,
we want to design evaluations so that their results will be a useful guide to
action once we get them.

� Stephen D. Kennedy, Chief Social Scientist, Abt Associates
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resulted in the agreement of 55 FSAs to participate in the
evaluation.4  A sample of 12,000 potential FSETP partici-
pants was then randomly selected within these experimental
sites and randomly assigned to the program or a control
group.

As this example illustrates, one of the potential barriers to
obtaining a representative sample of the population of in-
terest is the need to obtain the cooperation of local program
staff. Program staff typically resist participating in social
experiments for a variety of reasons, including the added
burden of experimental sample intake and random assign-
ment procedures, fear of disruption of ongoing program
activities, and ethical concerns about denial of service to
controls.5  If the refusal rate is high among selected sites,
selection bias can creep into the impact estimates via self-
selection of sites. For example, if only the most effective
schools agree to participate in an experimental test of a re-
medial education program, the experimental estimates are
likely to overstate the impacts of the program.

In the face of the expected cost and difficulty of recruiting a
randomly selected sample of sites that is representative of
the population of interest, many social experiments have
opted instead for convenience samples of sites that, for
one reason or another, are easy to recruit. Often these are
sites that have expressed interest in participating in the
experiment or that have established relationships with the
researchers or funding agency for other reasons. In other
cases, where the visibility and added resources associated
with participation in a demonstration project are viewed as
a benefit to the local program, sites have been selected by
sponsoring agencies on political grounds. Often, such se-
lections are a fait accompli before the research team has
been selected.

At best, convenience samples of sites leave the experimenter
with no knowledge of the relationship between the estimated
program impacts in the experimental sites and what those
impacts would be in the broader population of interest for
policy. At worst, by concentrating the experimental sample
within a self-selected set of sites, they inject the very selec-
tion bias that social experiments are intended to avoid. In

most cases it is, of course, possible to compare the charac-
teristics of the experimental sites and participant sample
with those of the broader population from which they were
drawn. Such comparisons can identify ways in which the
experimental sample differs from the population of interest.
But they can never demonstrate conclusively that it is truly
representative of that population because it is always pos-
sible that the two differ in unmeasured characteristics that
affect the outcomes of interest.

An alternative to both random selection of sites and conve-
nience samples that is sometimes used is purposive
selection of sites that are well-matched to the population
of interest in observable characteristics. For example, sites
for the Washington State Self-Employment and Enterprise
Development (SEED) Demonstration were selected by
choosing the combination of sites that minimized a weighted
index of differences between the sites and the state overall
on a number of characteristics.6

This approach is an improvement over convenience samples
of sites in that it assures that the experimental sites are
well-matched to the overall population on at least the most
salient observable characteristics. Indeed, it can be argued
that purposive selection is preferable to random selection
of sites when the number of sites is small because in small
samples sampling error can create large differences between
the sample and the population from which it was drawn.7

Purposive selection directly controls such differences in
observable characteristics. And if sites are selected solely
on the basis of observable characteristics, there is no rea-
son to expect systematic differences in unobservable
characteristics between the study sites and the overall popu-
lation once they are matched on observable characteristics
(as there is when the sites are self-selected or selected on
political grounds). The principal disadvantage of purposive
selection is that, unlike random selection, there is no way
to quantify the sampling error involved. And as with ran-
dom sampling, the experimenter still has to convince local
program staff in the purposively selected sites to partici-
pate in the experiment, and any refusals to participate can
inject selection bias into the sample.

A final site selection strategy that is sometimes used is
purposive selection of sites that represent different social,

4  Among the original 60 randomly selected sites, 13 refused to partici-
pate in the study, 6 of them in 3 states that refused at the outset to
participate.  Seven of the selected sites were found not to be implement-
ing the program in the study year and were dropped from the sample.
Backup sites were randomly selected for sites that refused.  However,
time constraints limited the site selection and recruiting process, and it
was ultimately decided to implement the study in a sample of 55 sites.
Subsequent problems with random assignment procedures in 2 sites re-
duced the final sample to 53 sites.  See Puma et al. (1990) for further
details.

5  In a subsequent paper, we discuss ways to address these concerns.

6  See Orr et al. (1989).

7  The great sampling statistician Leslie Kish put the matter this way: �If
a research project must be confined to a single city in the United States,
I would rather use my judgment to choose a �typical� city than select one
at random.  Even for a sample of 10 cities, I would rather trust my knowl-
edge of U.S. cities than a random selection.  But I would raise the question
of enlarging the sample to 30 or 100 cities.  For a sample of that size a
probability selection should be designed and controlled with stratifica-
tion.�  (Kish, 1965)
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economic, or programmatic environments in dimensions
thought to affect the impact of the program, rather than to
match the distribution of those characteristics in the over-
all population. For example, in testing a training program
for welfare recipients one might try to pick some sites with
high welfare benefit levels and some with low benefits,
some sites in areas with high unemployment rates and some
in areas with low unemployment rates, etc. Such an ap-
proach can help researchers to understand how the impact
of the experimental program varies with these conditions.
But if these conditions do influence program impacts and
their distribution among the sample sites differs from their
distribution in the population of interest for policy, then
the experimental estimate of the average program impact
in the sample will not be an unbiased estimate of the aver-
age impact that could be expected in the broader
population. To obtain an unbiased estimate of what the
impact would be in the broader population, one would have
to �reweight� the sample to reflect the composition of that
population in these dimensions. Doing so will reduce the
precision of the impact estimates relative to the estimates
that would have been obtained from a more representative
sample. This approach also suffers from the other short-
comings of purposive sampling discussed above.

Achieving externally valid impact estimates requires not
only that the experimental sites be representative of all
sites in the broader population of interest, but also that the
sample of individuals within those sites be representative
of that population. As discussed in the previous paper in
this series, this means that the intake and random assign-
ment process must be designed to yield a sample of the
relevant population�whether that is the overall target
population, eligible applicants, or potential participants.
It also means that the intake process must be designed to
be as similar as possible to that which would be employed
in an ongoing program, or�in the case of an evaluation of
an ongoing program�that the implementation of the ex-
periment disturb the existing intake process as little as
possible.

In practice, it is often extremely difficult to achieve an
externally valid experimental sample. Experimenters
often lack the resources needed to recruit a truly represen-
tative sample of sites and to compel or induce
local program administrators in all of the selected sites to
participate in the experiment. The results of their efforts
in this regard must be judged not only in comparison to the
ideal of a perfectly representative sample, but also in com-
parison to the strengths and weaknesses of the alternative
available evidence. If the only alternative source of
information for policymakers is the anecdotes and success
stories of local program operators, experimental evidence

from even a badly nonrepresentative convenience sample
may be an enormous contribution. The choice would be
more difficult if the alternative were a nonexperimental
study based on nationally representative data on the popu-
lation of interest. In that case, one would have to weigh the
risks of using a potentially internally invalid method (the
nonexperimental estimator) against the risks of using a
potentially externally invalid method (the experiment).
There is little that can be said in general about this tradeoff;
each case must be examined on its own merits.

A final point that must be recognized is that the exact policy
context within which the experimental results will be used
is often not known when the experiment is designed. It is
therefore critical that the experimental treatment and
sample selection procedures be carefully documented, so
that future policymakers will know how closely they corre-
spond to the program or policy with which they are
concerned and its intended target population.

Sample Size and the
Statistical Power of the Design

As explained in the second paper in this series, even the
best designed study�either experimental or
nonexperimental�cannot measure the exact impact of a
program, or even say with certainty whether the program
had an impact at all. What a well-designed experiment
can do is to provide an unbiased estimate of the impact,
say whether we can be confident that the impact is non-
zero, and specify a confidence interval around the estimate
within which we can be reasonably certain the true impact
falls. In designing an experiment, one of our central objec-
tives is to ensure that the confidence with which we can
say whether the program had a nonzero impact is great
enough, and the interval within which we can bracket the
true impact is narrow enough, for policy purposes. These
objectives are captured by the statistical concept of the
power of the design.

Measuring the Power of the Design

The power of the design is the probability that, for a speci-
fied value of the true impact, we will reject the null hypothesis
of zero impact. Suppose, for example, that we want to esti-
mate the impact of a training program on its participants�
earnings. If the true impact of the program is positive, we
would like the test of statistical significance of the experi-
mental estimate to reject the null hypothesis of zero effect.
The greater the probability that it will do so, the greater is
the power of the design.
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Exhibit 1 shows how the power of the design can be calcu-
lated for one specific value of the true impact, say a $100
increase in earnings. That is, it shows how to calculate the
probability that, if the true effect of the experimental pro-
gram is to increase earnings by $100, the experimental
impact estimate will be significantly greater than zero. The
normal curve to the left of the exhibit is the sampling dis-
tribution of the impact estimator under the null hypothesis
that the true impact is zero. The dark-shaded area under
the right-hand tail of that distribution is the critical region
for the test of the null hypothesis at the 5 percent signifi-
cance level.8  (Note that one must specify the significance

level of the test in order to calculate the power of the de-
sign.)  As explained in the second paper in this series, if
the experimental estimate falls in the critical region, we
reject the null hypothesis of zero impact. To calculate the
power of the design, then, we must determine the prob-
ability that the experimental estimate will fall in the critical
region when the true impact is $100.

The answer to that question is given by the sampling dis-
tribution of the experimental estimate when the true impact
is $100; this is the distribution to the right in Exhibit 1. It
is centered on $100 and its shape is determined by the
standard error of the experimental estimator. The probabil-
ity that the experimental estimate will fall in the critical
region if the true impact is $100 is given by the shaded
area under this curve to the right of the critical value I

c
.

Derivation of the Power of the Design,
For True Impact = 100 EXHIBIT 1

8 The exhibit develops the power of the design for a one-tailed test.
Similar reasoning applies to two-tailed tests, although that case is more
difficult to show graphically.

Power of the Design, For True Impact = 100,
With Larger Sample Size EXHIBIT 2
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This probability is the power of the design for a true im-
pact of $100�in this illustrative example, 70 percent. That
is, there is a 70 percent chance that we would reject the
null hypothesis of zero effect when the true effect is $100.
(Later in this paper, we will explain how the numerical
value of this probability is calculated; here, our interest is
in its conceptual derivation.)

Power and Sample Size

As this example makes clear, the power of the design de-
pends on the shape of the two sampling distributions in
Exhibit 1. And as noted in the second paper in this series,
the shape of the sampling distribution of the experimental
estimate depends on the size of the experimental sample.
In particular, the larger the experimental sample, the more
tightly the sampling distribution will be clustered around
its mean. Exhibit 2 shows what happens to the power of
the design to detect an impact of $100 if we use a larger
experimental sample than the sample in Exhibit 1. As
shown in the exhibit, the tighter sampling distribution
around a true impact of $100 increases the probability of
the experimental estimate exceeding any value to the left
of $100, including the critical value for the test of signifi-
cance. Moreover, the tighter sampling distribution around
the null hypothesis of zero impact lowers the critical value
for the significance test; this also has the effect of increas-
ing the proportion of the area under the sampling
distribution around $100 that lies above the critical value
(compare the shaded area under the right-hand curve in
Exhibit 2 with the corresponding shaded area in Exhibit
1). For both reasons, then, increasing the size of the ex-
perimental sample increases the power of the design.9

Power and the Significance
Level of the Test

A second way in which we could increase the power of the
design would be to raise the significance level for the test
of the null hypothesis of no effect. Suppose, for example,
that instead of testing at the 5 percent significance level,
we were to test at the 10 percent significance level. This
would lower the critical value, I

C
, thereby increasing the

proportion of the area under the right-hand sampling dis-
tribution that falls in the critical region�i.e., it would
increase the probability of rejecting the null hypothesis of
zero effect when the true effect is $100.

Note, however, that raising the significance level of the
test also increases the probability of rejecting the null hy-
pothesis when it is in fact true from 5 percent to 10 percent.
Thus, in specifying the significance level of the test, there
is a tradeoff between two risks: the risk of falsely conclud-
ing that there is a positive effect (i.e., rejecting the null
hypothesis) when in fact there is no effect and the risk of
failing to reject the null hypothesis of zero effect when in
fact the true effect is positive. The probability of the former
error is given by the significance level of the test of the
null hypothesis. The probability of the latter error is one
minus the power of the design.10  Thus, in the design de-
picted in Exhibit 1, we run a 5 percent risk of falsely
concluding that the program effect was positive when in
fact it was zero and a 30 percent risk of falsely concluding
that the program effect was zero when it was in fact $100.

In making the tradeoff between these two risks, research-
ers typically accept a higher risk of mistakenly concluding
that the effect is zero than of falsely concluding that it is
positive, on the grounds that the costs of the latter error
are greater than the costs of the former error. Suppose, for
example, we are testing a new program which, if found to
be effective, will be implemented on an ongoing basis, at a
cost of $100 million per year. If we mistakenly conclude
that the program is effective when in fact it has zero effect,
over time billions of dollars will be wasted on it. If we
make the converse error�concluding that the program has
zero impact when its true effects are positive�we miss an
opportunity to implement an effective program, but we do
not waste large sums of money.11

However one views these risks, it is essential that the
tradeoff be made explicitly. Far too often, researchers un-
thinkingly apply the �conventional� significance levels of
5 or 10 percent without examining the implications for the
power of the design. The result can be an extremely weak
test of the null hypothesis�i.e., only a low probability of
detecting a positive impact if it exists. In such cases, one
should consider increasing the sample size to strengthen
the design, lowering the significance level to achieve a
better balance between the two types of risk, or�if it is
not possible to obtain a sufficiently large sample to yield
adequate power�not conducting the experiment at all.

9  When the critical value is initially above the mean of the right-hand
distribution in Exhibit 1, these two effects are offsetting.  It can be
shown, however, that their net effect is to increase the power of the
design.  Thus, an increase in sample size always increases the power of
the design.

10  Rejecting the null hypothesis when it is true (i.e., falsely concluding
that there is a positive effect) is known as a Type-I error.  Failing to
reject the null hypothesis when it is false (i.e., failing to detect a true
positive effect) is known as a Type-II error.

11  Similar reasoning applies to the evaluation of an ongoing program.  A
false positive results in the continuation of a waste of resources, whereas
a false negative results in unnecessarily terminating the program.  The
social cost of the latter will depend on the alternative use of the re-
sources formerly devoted to the program.
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Power Functions

The discussion so far has been cast in terms of the power
of the design at a single positive value of true impact. Ob-
viously, the power of the design can be calculated similarly
for any value of true impact. If power is calculated for all
possible levels of true impact, the resulting probabilities
trace out the power function for the design. Exhibit 3
shows an illustrative power function. The height of the curve
measures the power of the design for each value of true
impact (the horizontal axis). The curve has the character-
istic shape of power functions, with a minimum when true
impact is zero (where the null hypothesis is true) and power
rising asymptotically toward 1.0 at values of true impact
further away from zero.12

The power function is conditional on the significance level
of the test and the sample size. For a given significance
level, the power function corresponding to a larger sample
size will lie above the power function for a smaller sample
size�i.e., the larger sample size will have greater power
for all true impact values (except zero). For a given sample
size, the power function for a higher significance level (say,
10 percent) will lie entirely above the power function for a
lower significance level (say, 5 percent); this illustrates
the tradeoff between the two types of risk discussed above.

Minimum Detectable Effects and the
Design of Experiments

Choosing the sample size and significance level for an ex-
periment is equivalent to choosing the power function for
the experiment. In practice, however, rather than attempt-
ing to calculate all the possible power functions
corresponding to different sample sizes and significance
levels, experimenters typically specify the desired power
for a specified value of true effect and significance level of
the test, then solve for the sample size that will yield that
level of power.13  To do so, they use the concept of mini-
mum detectable effect�the smallest true impact that
would be found to be statistically significantly different
from zero at a specified level of significance with specified
power.

Suppose that in the case of the training program discussed
above, we would like to have an 80 percent probability of
detecting a true impact of $100 if it occurs and that we are
willing to take a 10 percent risk of rejecting the null hy-
pothesis of zero when it is in fact true. We therefore want
to know the sample size that will yield a minimum detect-
able effect of $100 with 80 percent power at the 10 percent
significance level. Exhibit 4 shows how we can calculate
this sample size.14

Power

0 True Impact

Power Function EXHIBIT 3

12  The minimum value of the power function is equal to the signifi-
cance level and occurs at zero.  This follows from the definition of power
as the probability of rejecting the null hypothesis when the true effect is
I

0
.  When I

0
 is zero, then this probability is the same as the probability

of rejecting the null hypothesis of zero effect when it is true--i.e., the
significance level.

13  This is equivalent to specifying the family of power functions defined
by a given significance level and then choosing among them on the
basis of their levels at a single value of true impact.

14  This method of illustrating the derivation of minimum detectable
effects is adapted from Bloom (1995).
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As before, the left-hand curve in the exhibit is the sam-
pling distribution of the experimental estimate under the
null hypothesis of zero effect; the shaded region in its right
tail is the critical region for rejection of the null hypothesis
at the 10 percent significance level. In large samples, the
critical value that defines this region (I

C
 will be 1.64

times the standard error of the impact estimate (SE
I
). The

right-hand curve in the exhibit is the sampling distribution
of the experimental estimate when the true impact is $100.
To have an 80 percent probability of rejecting the null hy-
pothesis of zero effect when the true impact is $100, 80
percent of the area under this sampling distribution must
lie to the right of the critical value 1.64 SE

I
. This will be

the case when the mean of the distribution ($100) lies 0.84
standard errors above the critical value.15  As shown in the
exhibit, then, to make this condition hold exactly we need
only choose the sample for which $100 equals 2.48
(=1.64+.84) times the standard error of the impact esti-
mate. That is, we choose n

T
 and n

C
, the numbers assigned

to the treatment and control groups, so that:

1 100 = 2.48 SE
I

= 2.48 ·
V        V

n         n

Y Y

T C

+

where V
Y
 is the variance of Y, the outcome of interest.

Alternatively, for any specified combination of treatment
and control group samples we can calculate the minimum
detectable effect (MDE) achievable with 80 percent power
at the 10 percent significance level:

2 MDE = 2.48 · 
V        V

n         n
Y Y

T C

+

Choice of a different level of power or significance simply
changes the multiplicative constant in equations 1 and 2.
For example, for 80 percent power at the 5 percent signifi-
cance level, the constant would be 2.80. Thus, more
generally:

3 MDE =  · k
V        V

n         n

Y Y

T C

+

where k is a constant that reflects the chosen levels of power
and significance.

As is clear from equation 3, all that is required to compute
the minimum detectable effect for any given value of k and
combination of treatment and control sample sizes is knowl-
edge of the variance of the outcome. This is usually available
from existing data. For example, the variance of the earn-
ings of low-income workers can be computed on the basis
of data from nonexperimental evaluations of training pro-
grams or from national surveys like the Current Population

Calculation of Minimum Detectable Effects EXHIBIT 4

15  The numerical values in this example are obtained from a standard
table of values of the t-statistic.  Recall that the t-statistic is defined as
the impact estimate divided by its standard error.
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Survey.16  In using existing data sources for this purpose, it
is of course important to ensure that the population repre-
sented in the data is closely similar to the planned
experimental population.

An important property of experimental designs is readily
derived from equation 3:  For any given division of the
sample between treatment and control groups, minimum
detectable effects are inversely proportional to the square
root of the overall sample size.17 To see this, let s

T
 be the

share of the total sample N allocated to the treatment group
and s

C
 be the share of the total sample allocated to the

control group. Then equation 3 can be written as:

4 MDE =  · k
V         V

s  N     s  N

Y Y

T C

+

V         V

s  N     s  N
Y Y

T C

+=  ·k
N

1
·

Thus, for example, doubling the sample reduces the
minimum detectable effect by a factor of 1÷1.41 = 0.71.
To halve the minimum detectable effect, one would have to
quadruple the sample.

The minimum detectable effect is an extremely useful in-
dicator of the power of any particular design. Small
minimum detectable effects mean that policy makers can
be quite confident that if the program has even a small
effect on the outcome, the experiment will have a good
chance of detecting it (i.e., of rejecting the null hypothesis
of no effect). Large minimum detectable effects mean that
the effect of the program would have to be large for the
experiment to have a good chance of detecting them. Prior
analysis of the power of the design is the best protection
against ending up in the situation described in an earlier
paper in this series�obtaining experimental estimates with
confidence intervals so broad that they are consistent with
both large effects and no effect at all.

Of course, �small� and �large� are relative terms, and there
is no obvious way to decide what size effects we want to be
reasonably sure of detecting. One rule that is sometimes
suggested is to set the minimum detectable effect at the
level that would make the program cost-effective�i.e., de-
sign the experiment so that if the program is cost-effective
we can be reasonably certain that the experiment will find
a nonzero effect.18 While this rule has a certain intuitive
appeal, it ignores the relationship between minimum de-
tectable effects and the cost of the experiment. Achieving
smaller minimum detectable effects requires larger
samples, which increases the cost of the experiment. Thus,
a truly general rule for deciding on sample sizes and the
power of the design would have to specify the tradeoff be-
tween experimental costs and the social value of more
powerful estimates of program impact.19  In the absence of
such a general rule, the best advice that can be given is
that the experimenters and policymakers compute and re-
view a �menu� of alternative designs, with different costs
and minimum detectable effects on the outcomes of cen-
tral interest, in order to make a judgmental tradeoff between
power and cost.

The Point of Random Assignment
and the Power of the Design

In some cases the power of the design will be influenced
by the design of the random assignment process, as well as
by sample size. This will be the case when interest focuses
on estimating program impacts on participants and not all
of those randomly assigned participate in the program. In
this section, we discuss this case.

As shown in the second paper in this series, under the
assumption that the program had no effect on nonpartici-
pants, an unbiased estimate of program impact on
participants (I

P
) can be obtained by dividing the estimated

impact on the overall treatment group (I
T
) by the partici-

pation rate among those randomly assigned (r):

5 I  = ��
r

I

P

T
16  For one important class of outcomes, the variance can be computed
from the mean of the outcome.  For dichotomous outcomes (i.e., out-
comes that can take on only two values, 0 or 1), the variance of the
outcome is m(1-m), where m is the sample mean.  (Since m is also the
proportion of the sample taking on the value 1, it can also be thought of
as the proportion of the sample with positive outcomes.)  The expres-
sion m(1-m) is maximized when m=.5.  Therefore, even if the mean is
unknown, one can compute the worst case minimum detectable effect
for such an outcome.  Outcomes like �completed high school�, �em-
ployed at follow-up�, and �left welfare� belong to this class.

17 Later in this paper we discuss the optimal allocation of the sample
between the treatment and control groups.

18  This assumes that program costs can be predicted, which is often the
case, at least approximately.

19  A framework within which this could be done is presented in Burtless
and Orr (1986).
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The standard error of the estimated impact on participants
(SE

IP
) can be derived from the standard error of the esti-

mated impact on the overall treatment group (SE
T
) by the

same procedure:20

6 SE    = ���
r

SE

IP

IT

Our measure of the power of the design, the minimum de-
tectable effect on participants (MDE

IP
), is:

7 MDE    =  SE   =  ��k k
IP r

SE
T

IP

Thus, the minimum detectable effect on participants de-
pends not only on sample size and the variance of the
outcome (which determine SE

T
), but also on the participa-

tion rate among those randomly assigned. The lower the
participation rate, the larger will be the minimum detect-
able effect on participants�i.e., low participation rates
result in low statistical power.

The experimenter can influence the participation rate, and
thereby improve the power of the design, through the de-
sign of the random assignment process. Exhibit 5 shows
the intake process for a voluntary program.21  As can be
seen in the exhibit, individuals drop out of the intake pro-
cess at various points between the initial response to
outreach and participation in the program. Since the par-
ticipation rate r in equations 5-7 is defined as the proportion
of those randomly assigned who participate in the program,
this means that the later in the intake process random as-
signment is administered, the higher the participation rate
will be. Thus, the principal way the experimenter can in-
crease the participation rate and reduce minimum detectable
effects is by conducting random assignment as late in the
intake process as possible.22

Consider, for example, the choice between randomly as-
signing all applicants and randomly assigning only eligible
applicants. Suppose that the ineligibility rate is 20 per-
cent, so that for every 100 applicants there are only 80
eligible applicants, and that of those 80, 60 would ulti-
mately participate in the program in the absence of random
assignment. The participation rate for applicants, then,
is 0.60 (= 60÷100), whereas the participation rate
for eligible applicants is 0.75 (= 60÷80). As shown

in equation 7, the minimum detectable effect on partici-
pants for a sample composed of applicants is:

8 MDE    =     =  ��k k��
IP,A

SE
T

SE
T

.60rA

and the minimum detectable effect on participants for a
sample composed of eligible applicants is:

9 MDE    =     =  ��k k��
IP,E

SE
T

SE
T

.75rE

where rA and rE are the participation rates of applicants
and eligible applicants, respectively.

20  This assumes that the participation rate would be constant across
replications of the experiment.  This is almost certainly not strictly true,
but if each individual has a constant probability of participating, in
large samples the variation of the overall participation rate will be so
small as to be negligible.

21  This exhibit is adapted from Exhibit 1 in the third paper in this
series.

22  It might appear that the participation rate could also be increased by
taking administrative measures to reduce the number of individuals
dropping out of the intake process�e.g., by following up with indi-
viduals who fail to apply for the program and encouraging them to do
so, or by tracking down no-shows and encouraging them to participate.
However, if such steps would not be taken in an ongoing program, tak-
ing them in the experiment would result in a different composition of
the participant population from that which would occur in an ongoing
program, thereby undermining the external validity of the experiment.

Design for Estimating Impacts
on Participants in a
Voluntary Program EXHIBIT 5
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The relative power of the two designs is indicated by the
ratio of these two minimum detectable effects:

10 MDE       =
IP,E

k   ��
SE

T

rA

k   ��
SE

T

rA

= ��

rA

r
E

r
A

= �� = 1.25
.75

.60

Thus, random assignment of all applicants results in mini-
mum detectable effects on participants that are 25 percent
larger than if only eligible applicants are randomly as-
signed.

Similarly, random assignment of potential participants will
result in smaller minimum detectable effects on partici-
pants than random assignment of eligible applicants. The
relative power of these two designs can be calculated in
the same fashion as the relative power of assigning all ap-
plicants and assigning only eligible applicants.

It might appear that the loss in power associated with as-
signing all applicants could be offset simply by randomly
assigning 25 percent more applicants, so that the number
of participants in the program is the same under the two
approaches. In fact, the increase in sample size would have
to be much larger than 25 percent. To see this, first note
that for these two designs to have the same power, one would
have to set their relative sample sizes so that:

11 MDE       =
IP,A

k   ���
SE

T,A

rA

MDE       =
IP,E

k   ���
SE

T,E

rA
= 

which implies:

12 SE            r
T,A

SE            r
T,E A

E��� = ��

= .80

That is, to achieve the same power, the sample of all appli-
cants would have to be sufficiently larger to reduce the
standard error of the impact estimate by 20 percent. But
since the variance of the impact estimate is inversely pro-
portional to sample size, the standard error of the impact
estimate is inversely proportional to the square root of the
sample size. This means that the applicant sample would
have to be 56 percent (= 1÷.802 � 1) larger than the
eligible applicant sample to achieve the same power.

While the numbers used in this illustrative example are
purely hypothetical, they are typical of the orders of mag-
nitude involved in the choice of placement of random
assignment in the intake process. As these numbers sug-
gest, this choice can have a substantial effect on the power
of the design or, if sample size is increased to offset the
loss of power, the cost of the experiment. In the example,
assigning eligible applicants rather than all applicants
would entail either a 25 percent increase in minimum de-
tectable effects or a 56 percent increase in sample in order
to maintain the same power. In most cases, an increase in
sample size of this magnitude would increase the costs of
implementing the experiment and collecting data by nearly
the same factor. In any specific experiment where impacts
on participants are to be estimated, then, it will be impor-
tant to predict the likely participation rate, so that realistic
estimates of minimum detectable effects can be derived,
and to consider how participation rates and minimum de-
tectable effects will vary with the placement of the point of
random assignment.

Unfortunately, program staff typically resist placing ran-
dom assignment late in the intake process. Late random
assignment increases the burden on staff, as they must con-
tinue to process those who will ultimately be assigned to
the control group, in addition to those who will be allowed
to participate in the program. Moreover, staff often feel that
it is unfair to applicants to require them to invest addi-
tional time and effort, and to raise their expectations, only
to be assigned to the control group. Finally, intake staff
find it much more difficult to inform controls that they are
excluded from the program after they have had extensive
contact with them. For these reasons, it may ultimately be
necessary to conduct random assignment at a point in the
intake process that is not absolutely the latest point at which
it could occur. But experimenters must be cognizant of the
analytic losses and/or monetary costs involved in such a
compromise decision.
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Allocation of the Sample
Among Multiple Treatments

The essence of social experimentation is comparison of
outcomes among randomly assigned groups of individuals.
In this section, we discuss how the relative number of in-
dividuals to be randomly assigned to each experimental
group is determined. We begin with the simple case of a
single treatment group and a single control group, then
generalize the analysis to multiple treatment groups. We
next consider the allocation of the sample when experi-
mental costs vary from one experimental group to another.
Finally, we discuss the issues that arise when multiple treat-
ments are implemented in multiple sites.

Allocating the Sample Among
Experimental Groups

The objective of sample allocation is to maximize the power
of the design. Thus, in a simple experiment with one treat-
ment group and one control group, we want to choose n

t

and n
c
 to yield the smallest possible minimum detectable

effect. In a previous section we showed that, for any given
allocation of the sample between the treatment and control
groups, the minimum detectable effect is inversely pro-
portional to total sample size. Here, we hold total sample
size constant and focus on the allocation of the sample
among experimental groups; i.e., we pose the problem in
terms of choosing the ratio n

T
/n

C
 for any given total sample.

Thus, we wish to choose n
T
/n

C
 to minimize:

13 MDE =  · k
V        V

n         n
Y Y

T C

+

It can be shown that this expression is minimized when
nT/nC = 1, i.e., when equal numbers of individuals are
assigned to the treatment and control groups.

The way we allocate the sample among experimental groups
is, of course, through random assignment. The desired
sample allocation determines the random assignment
ratio�the ratio of the probability that a given individual
will be assigned to one group to the probability that he or
she will be assigned to another. In the simple two-group
case just described, the optimal treatment-control random
assignment ratio is 50/50�i.e., a 50 percent chance of
being assigned to each group. Random assignment ratios
need not be equal across experimental groups. As we will
see, in some cases the optimal sample allocation assigns
very different numbers of individuals to different experi-
mental groups; in those cases, random assignment
probabilities would vary commensurately.

When there are multiple treatment groups, we face a
tradeoff among experimental objectives. Within a fixed to-
tal sample, allocating more of the sample to one treatment
group will increase the power of the design for estimating
the impact of that treatment at the expense of the power of
the design for other treatments. To determine the optimum
allocation in this situation, we must specify the importance
we attach to each of the impact estimates to be derived.
We do this by specifying an objective function W that is a
weighted sum of the minimum detectable effects for the k
treatments:

14 MDE = w MDE  + w MDE  + . . . + w MDE
1 1 2 2 k k

where w
I
 is the �policy weight� attached to the impact es-

timate for the Ith treatment. Since smaller minimum
detectable effects are preferred to larger ones, we wish to
allocate the sample to minimize W, subject to the constraint:

n   + n   + . . . + n        N£
1 2 k+1

where n
I
 is the number of individuals assigned to the Ith of

k+1 experimental groups (k treatment groups, plus a con-
trol group) and N is the total sample size.

Consider, for example, an experiment with two treatment
groups and a control group. Such an experiment can pro-
duce two different types of impact estimate: the impact of
treatment 1 and the impact of treatment 2. If we put equal
weight on these two different estimates (i.e., if w

1
 = w

2

= 1), then we wish to minimize:

        V         V 
=    �� + ��  +    �� + ��

        V         V Y Y Y Y

        n          n         n          n T1 C T2 C

15 W = MDE  + MDE
1 2

subject to the constraint:

n   + n   +  n    N£
T1 T2 C

It can be shown that W is minimized (i.e., the power of the
design is maximized) when n

T1
/n

T2
 = 1 and n

C
/n

T1
 =

n
C
/n

T2
 = 2. That is, in the optimal allocation the samples

assigned to the two treatment groups are of equal size and
the sample assigned to the control group is twice as large
as each of the treatment groups. This means that half the
sample should be assigned to the control group and one
quarter to each treatment group.

To see why we obtain this asymmetric result, consider the
effect of adding one individual to each of the three experi-
mental groups. Adding one individual to treatment group
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1 reduces the minimum detectable effect for that treat-
ment (the first term in equation 15), but has no effect on
the minimum detectable effect for treatment 2 (the second
term); the converse holds for adding an individual to the
sample assigned to the second treatment. In contrast, add-
ing an individual to the control group reduces the minimum
detectable effect for both treatments, because the control
group is involved in both experimental comparisons. Of
course, since sample size enters into the denominator, the
larger the sample already assigned to a particular group,
the less difference the addition of one more individual will
make. If one thinks of starting with an equal allocation
among the three groups and then shifting sample from the
two treatment groups to the control group, it turns out that
the reduction in minimum detectable effect resulting from
each additional control group member exceeds the increase
in minimum detectable effect resulting from the loss of a
treatment group member until the control group is exactly
twice the size of each of the treatment groups.

This result for the three-group case can be generalized to a
simple rule that applies to any number of groups as long as
equal weights are placed on each experimental compari-
son:  allocate the sample in proportion to the number of
experimental comparisons in which each group is involved.
If, for example, the impact of seven different experimental
programs are to be derived on the basis of seven treatment
groups and one control group, each treatment group will
be involved in one experimental comparison and the con-
trol group will be involved in seven comparisons. Thus, if
there is equal policy interest in each of these comparisons,
the optimal allocation would place 1/14 of the sample in
each treatment group and one half (7/14) of the sample in
the control group.

If there is unequal policy interest in the different experi-
mental comparisons, the sample allocation must be derived
by minimizing the expression for W in equation 15, sub-
ject to the constraint that the sum of the samples assigned
to the various experimental groups cannot exceed the fixed
total sample.

Sample Allocation Subject to a Fixed
Budget

Up to this point, we have taken a fixed total sample to be
the constraint on sample allocation. This will sometimes
be the case, as in an experimental evaluation of an ongo-
ing program in which all eligible applicants who apply
within a given time period are to be randomly assigned.
More commonly, however, the binding constraint is not a
fixed total sample size, but a fixed budget that can be de-
voted to the experimental treatments and data collection.

In that case, minimum detectable effects should be mini-
mized subject to the constraint of a fixed budget, rather
than a fixed total sample size.

If the cost of assigning an individual to one experimental
group is the same as that of assigning him or her to any
other, then having a fixed budget is the same as having a
fixed sample size; the total sample size is simply the bud-
get divided by the (uniform) cost of assigning an individual
to an experimental group. A common situation in which
this is the case is that where the experimental treatments
are not funded through the budget of the agency sponsor-
ing the experiment. This would be the case, for example,
for evaluations of ongoing programs, where the treatment
is provided out of the regular program budget and the evalu-
ation is funded through a separate research budget. In that
case, the cost to the evaluation budget of assigning an in-
dividual to an experimental group is simply the cost of
collecting data on that individual; since the same data are
collected for all experimental groups, this cost does not
vary from one group to another.

If the cost of treatment is included in the experimental
budget, then the cost per sample member will generally
vary from one experimental group to another. When mul-
tiple treatments are tested, some are likely to cost more
than others; in any case, costs per sample member are likely
to be higher in the treatment group than in the control group,
since controls receive no experimental services. Within a
fixed budget, unequal costs per sample member mean that
a larger sample can be supported by assigning more indi-
viduals to the cheaper experimental groups.

The general solution for the optimal sample allocation when
costs vary among experimental groups is to minimize W
(as defined in equation 14) subject to the constraint:

16 n  c  + n  c  + . . . + n      c        C£
1 1 2 2 k+1 k+1

where n
I
 is the number of individuals assigned to the Ith

group, c
I
 is the cost per sample member in the Ith group,

and C is the total budget for experimental treatment and
data collection.

While the solution to this problem is mathematically
straightforward, when there are multiple treatment groups
the solution is somewhat complicated. In the simple case
of a single treatment group and a single control group, the
optimal allocation is:

17
n            c

n            c��� =   ���T

C T

C



SOCIAL EXPERIMENTATION: EVALUATING PUBLIC PROGRAMS WITH EXPERIMENTAL METHODS    13

That is, the sample should be allocated between the treat-
ment and control groups in inverse proportion to the square
root of the relative costs per sample member in the two
groups.

A simple example will illustrate the importance of taking
variations in the cost per sample member into account in
sample allocation. Suppose we have a budget of $500,000
to evaluate a social service program for low-income fami-
lies. For each family assigned to the treatment group, we
will incur a cost of $4,000 for experimental services. Data
collection will cost $500 per family regardless of experi-
mental assignment. Thus, the total cost per treatment group
family will be $4,500 and the total cost per control family
will be $500. If we allocate equal numbers of families to
the treatment and control groups, our budget will support
100 families in each group. Taking the relative costs of the
two groups into account, however, the optimal allocation is
to put three times as many families in the control group as
in the treatment group. With this allocation, our budget
will support 83 families in the treatment group and 250
families in the control group. Minimum detectable effects
under this allocation will be 10 percent smaller than they
would have been with equal-sized groups.23  To achieve
this reduction in minimum detectable effects with equal-
sized groups would have required a 23 percent increase in
total sample size.24  Thus, moving from an equal allocation
to the optimal allocation is equivalent to increasing the
budget for the experiment by 23 percent, or $115,000.

�Unbalanced� Designs

The sample allocation procedures discussed in the pre-
ceding section take into account differences in average cost
per sample member among experimental groups. In some
cases, experimental costs may vary systematically not only
with the experimental group to which an individual is as-
signed, but also with the individual�s characteristics. For
example, negative income tax plans provide larger pay-
ments to low-income families than to higher-income
families.

If one extends the logic of the preceding section to include
this source of variation in cost, in a negative income tax
experiment one would assign relatively more low-income
families to the treatment groups, where they are cheaper
observations than higher-income families, than to the con-
trol group, where they cost the same as higher-income

families. This is in fact what was done in the early income
maintenance experiments.

While taking the variation of experimental cost with fam-
ily type into account in the sample allocation arguably
improves the power of the design that can be supported
with a fixed budget, it is important to recognize that it fun-
damentally changes the nature of the experimental sample.
In all of the allocations considered up to this point, al-
though sample size might vary across experimental groups,
the composition of the groups did not vary systematically�
except for sampling error, each group was well-matched to
every other group. When we allow assignment to experi-
mental group to be affected by individual characteristics,
this is no longer true�the composition of the experimen-
tal groups differs systematically by design. Such designs
are called unbalanced designs, and are somewhat con-
troversial in the literature on social experimentation.25  In
part for this reason, and in part because the cost of experi-
mental treatments seldom varies so systematically with
family characteristics, the only major social experiments
to employ unbalanced designs were the early income main-
tenance experiments. The issues involved in the analysis
of data from unbalanced designs are beyond the scope of
these papers. Therefore, while we note their existence, we
will continue to focus on designs in which all experimen-
tal groups are well-matched.

Allocation to Multiple Treatments in
Multiple Sites

Because program impacts may vary across sites, when
multiple treatments are to be tested in multiple sites it is
essential to avoid confounding site effects with program
effects. To take an extreme case, suppose we were to ran-
domly assign unemployed workers in City A to classroom
training or a control group, and unemployed workers in
City B to on-the-job training or a control group. Compari-
son of the treatment and control groups in City A will
provide unbiased estimates of the impact of classroom train-
ing in City A; likewise, comparison of the treatment and
control groups in City B will yield unbiased estimates of
the impacts of on-the-job training in City B. But if we find
that, say, classroom training in City A was more effective
in raising workers� earnings than on-the-job training in City
B, we will not know whether to conclude that classroom
training is a more effective training strategy than on-the-
job training or that, because of the nature of the workers or
the local economy in the two cities, it is simply easier to
raise the earnings of unemployed workers in City A. Since

23  This result is obtained by calculating the ratio of the minimum de-
tectable effects under the two allocations, using equation 13.

24  This result is derived from the fact that, for any given sample alloca-
tion, minimum detectable effects are inversely proportional to the square
root of total sample size.

25  For an excellent discussion of the advantages and disadvantages of
unbalanced designs, see Hausman and Wise (1985).
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we didn�t try classroom training in City B or on-the-job
training in City A, we can never distinguish between these
two potential explanations. In this example, treatment and
site are completely confounded.

To avoid confounding treatment and site, we would like the
distribution of each experimental group across sites to be
the same as that of every other experimental group. This
can be achieved by randomly assigning individuals to all
experimental groups, in the same proportions, in every site.
If this is done, the overall samples assigned to the differ-
ent treatments, and to the control group, will be
well-matched and fully comparable differential impact es-
timates can be derived.

Perhaps the most common reason for confounding of treat-
ment and site is that tests of different treatments are
conceived and executed as independent studies�often by
the same funding agency. In that situation, it is almost
unavoidable that the experiments will be conducted in dif-
ferent sites, resulting in complete confounding of treatment
and site. Unfortunately, in the policy process the results of
these independent tests are nearly always treated as if they
reflected only the differential impacts of the different treat-
ments. In these cases, much more reliable guidance for
policy could have been obtained at the same cost by com-
bining the tests in a common set of sites.

In some cases, however, confounding of treatment and site
is unavoidable for practical reasons. This is especially
likely to be the case when a large number of treatments are
being tested and the experiment is to be run through exist-
ing program agencies. Suppose, for example, that we wish
to test six different approaches to increasing the employ-
ment of AFDC recipients. If all six approaches were to be
implemented in the same welfare office, the staff of that
office would not only have to become knowledgeable about
all six treatments, but would have to consistently apply
the rules of each approach to those recipients, and only
those recipients, assigned to that treatment. The burden
on staff and the potential for contamination of the treat-
ment in this situation is probably untenable.

Even in this situation, however, one can avoid complete
confounding of treatment and site if program staff are will-
ing to administer more than one treatment in the same
office. Exhibit 6 shows how the experimental sample can
be allocated across sites to allow differential impacts to be
estimated with no more than three of the six treatments
implemented in any one site (as indicated by the X�s in
the exhibit). For example, as shown in the shaded area of
the exhibit, the impacts of treatments 1 and 2 could be
compared for well-matched samples in sites B and C. Simi-
larly, treatments 2 and 3 could be compared in sites C and
D. As can be seen from the exhibit, each treatment can be

TREATMENT

SITE 1 2 3 4 5 6

A X

B X X

C X X X

D X X X

E X X X

F X X X

Sample Design for Multiple Treatments in
Multiple Sites, When Not All Treatments
Can Be Implemented in Each Site EXHIBIT 5
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compared with all but one of the other five treatments in at
least one site. Each comparison is based on only one-third
or two-thirds of the sample assigned to the treatments be-
ing compared, however, depending on the number of sites
involved. This is therefore a less powerful design than one
in which individuals are assigned to all treatments in all
sites.

Moreover, since different pairs of treatments are compared
in different combinations of sites, the experimental com-
parisons cannot, by themselves, establish the relative
magnitudes of impacts across all six treatments, or even
rank order the six treatments by impact, holding site ef-
fects constant. To do so requires some assumption about
the interaction of treatment and site�e.g., that, although
treatment effects may vary across sites, site effects do not
vary across treatment. Data from this design are most con-
veniently analyzed by multivariate methods, which will be
discussed in a subsequent paper.

The Number of
Experimental Sites

In designing an experiment, one generally has a choice
between concentrating the sample in a small number of
sites or spreading it over a larger number of sites. If cost
were not an issue, it is clear that a larger number of sites is
preferable. Just as increasing the number of individuals in
the sample reduces the standard error of the impact esti-
mate by �averaging out� sampling error, including a large
number of sites should average out site-specific variations
in the impact of the experimental program.

But there are usually substantial costs associated with add-
ing experimental sites. If the treatment is to be administered
by existing program agencies, there are costs of recruiting
those agencies and training them in the experimental pro-
cedures. If it is to be administered by the researchers
themselves, it may be necessary to set up an office in each
site. Similarly, if data are to be collected from sample mem-
bers in person, it will be necessary to hire and train a data
collection staff in each site and it may be necessary to
establish a field office in each site. Even if data are to be
collected from administrative systems, such as welfare
records, additional sites may increase the number of sys-
tems that must be accessed.

The choice of the number of experimental sites is a tradeoff,
then, between the increased power that additional sites
provide and the increased costs they entail. Within a fixed
budget, this is a tradeoff between sample size and number
of sites, because the costs of recruiting and administering

additional sites must be deducted directly from the funds
available for the experimental treatment and/or data col-
lection.

A relatively straight-forward technique is available for es-
timating the optimal number of sites in any particular
experiment.26  Unfortunately, it requires data that may not
be available in all cases. This approach poses the problem
as one of choosing the number of experimental sites (q)
that minimizes the standard error of the impact estimate
subject to a budget constraint that takes fixed site costs
into account. If the sample is evenly distributed across
sites, with n sample members in each site, the standard
error of the overall impact estimate can be expressed as:

18
        4V         V 
=    �� + ��
        nq          q 

Y IS
SE

I

where VY is the variance of the outcome of interest in the
population and 4VY/n is the variance of the impact esti-
mate within a single site.27  VIS is the variance of the
experimental impact across sites (which is independent of
the within-site sample size). Thus, the standard error of
the estimate can be partitioned into a within-site compo-
nent and a between-site component. We wish to choose q
so as to minimize SEI subject to the following budget con-
straint:

19 C = q ( C  + cn )
S

where C is the total budget for the experimental treatment
and data collection, C

S
 is the fixed cost of each additional

site, and c is the marginal cost per sample member.

This formulation makes clear the tradeoff between sample
size and number of sites within a fixed budget. Other things
equal, increases in the number of sites (q) reduce the stan-
dard error of the impact estimate, as shown in equation
18. But, as shown in equation 19, increasing q also in-
creases the fixed site costs of the experiment (qC

s
), so that

to stay within a fixed budget, total sample size (qn) must
be reduced.28  This increases the within-site variance com-

26  This technique is due to Morris (1974).

27  This follows directly from the following expression for the variance of
the within-site impact estimate (V

IW
), setting n

t
 = n

c
 = n/2:

VIW = [(VY / nt) + (VY / nc)]½

= [(2VY / n) + (2VY / n)]½

= (4VY / n)½

28  Note that, if there are no fixed site costs (i.e., if C
s
 = 0), then qn

is a constant (=C/c) and the within-site variance component of equa-
tion 18 is a constant.  In that case, increases in q would reduce the
variance of the impact estimate without limit, and the optimal number
of sites would be the maximum attainable, C/c, with a single sample
member in each site.



16    PART 4: SAMPLE DESIGN

ponent of the standard error of the impact estimate (see
equation 18). The optimal value of q is that which just
balances the gains from additional sites against the loss in
sample size that results from additional fixed site costs.

To solve this problem, we must specify the values of the
parameters in equations 18 and 19. In most cases, the over-
all budget C will be known and the cost parameters C

S
 and

c can be estimated with reasonable accuracy. Moreover,
the within-site variance of the experimental estimator can
usually be estimated from existing data on the outcome of
interest.29  But the between-site variance of the experi-
mental impact is generally unknown.

In some cases, however, it is possible to derive at least a
proxy for the between-site variance of the impact from
nonexperimental data. In the Health Insurance Experiment,
for example, the experimenters used the variance of the
difference in medical expenditures between insured indi-
viduals and uninsured individuals across regions of the
country as a proxy for the between-site variance of the
impact of cost-sharing on medical expenditures. More gen-
erally, there may be prior multi-site nonexperimental impact
studies of the same, or a similar, intervention, from which
an estimate of the cross-site variance (i.e., the variance of
site-specific impacts) can be derived.

If all else fails, the cross-site variance can be �guessti-
mated� as follows. Posit the range that you would expect to
include 95 percent of all site-specific impacts. (In most
cases, the lower bound of this range will be zero.)  If site-
specific impacts are normally distributed, this range will
correspond to 1.96 standard deviations of the distribution
of site-specific impacts. An estimate of the between-site
variance of impacts, then, is approximately the square of
one-half this range.

Whatever the source, if estimates of the parameters in-
volved in equations 18 and 19 can be obtained, an estimate
of the optimal number of sites can be obtained. Archibald
and Newhouse (1988) provides an analytic solution for the
minimization of equation 18 subject to the constraint in
equation 19, developed by Carl Morris.30  A more direct
method is simply to compute the value of SE

I
 from equa-

tion 18 for every integer value of q between 1 and the maxi-
mum number of sites that could be supported by the
experimental budget (= C/C

S
) and choosing the value that

minimizes SE
I
 directly.31  This approach has the advantage

of also showing the loss in power associated with a
nonoptimal number of sites.

As in all design decisions, the quality of the result ob-
tained from this procedure�i.e., the likelihood that the
choice truly maximizes the power of the design�depends
on the quality of the information that went into the deci-
sion. As the forgoing discussion makes clear, in many cases
only relatively low quality information about some of the
critical parameters may be available. But some informa-
tion is almost certainly preferable to none, since some
decision must be made. Even fairly unreliable information
about the critical parameters may be sufficient to estab-
lish the right order of magnitude.

Random Assignment of
Groups of Individuals

Up to this point, we have assumed that the focus of policy
interest is on program effects on individuals and that ex-
perimental subjects are randomly assigned independently.
This will be the case in most social experiments. There are
two situations, however, in which it may be necessary to
randomly assign groups of individuals.

The first occurs when policy interest focuses on impacts at
the aggregate level and random assignment of individuals
is inconsistent with unbiased estimation of aggregate ef-
fects. Consider, for example, an experiment designed to
test the effects of a worker training program on productiv-
ity at the plant level. In such an experiment, one cannot
randomly assign individual workers to the training pro-
gram; only if all the workers in the plant are subject to the
same policy regime will we obtain unbiased effects at the
plant level.32  Instead, one would have to randomly assign
plants to a treatment group, in which the program would
be implemented plant-wide, or to a control group, in which
it would not be implemented at all. All of the principles of
sample design discussed in this paper would then apply if
one simply defines the plant, rather than the individual
worker, to be the unit of analysis.

29  Under the null hypothesis, the within-site variance of the experi-
mental impact estimate is just:

V
I
  =  V

Y
/n

t
 + V

Y
/n

c
,

where V
Y
 is the variance of the outcome and n

t
 and n

c
 are the numbers

of treatment and control group members, respectively, in a single site.
Existing data are usually available to estimate V

Y
.

30  See Morris (1974).  In the case of the Health Insurance Experiment,
the optimal number of sites was in the range of 4-9, for reasonable
values of the parameters (Newhouse, 1993).

31  For each value of q, equation 19 must be solved for n, in order to
calculate SE

I
.

32  This is not to say that all workers in the plant must participate in the
training in order for the estimates to be valid, only that none who would
participate in an ongoing training program should be artificially ex-
cluded through random assignment.
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It may, of course, be difficult to obtain the cooperation of a
sufficient number of plants to generate the sample size
needed for reliable estimates. Whereas experimental
samples of thousands of individuals are quite common, it
may be difficult to recruit more than, say, 10 or 20 plants
to participate in an experiment. Whether such sample sizes
would be sufficient depends on the minimum detectable
effects attainable with that number of observations, which
in turn depends on the variance of the outcome of interest
across plants. Fortunately, aggregate outcomes are frequently
much less variable than outcomes at the individual level.
In any case, minimum detectable effects can be computed
for this case just as for samples of individuals, using the
number of plants as the sample size and the variance of
the outcome of interest at the plant level.

Though experiments of this type are much less common
than those in which individuals are randomly assigned,
several have been conducted in recent years. For example,
the National Home Health Agency Prospective Payment
Demonstration randomly assigned 142 home health agen-
cies to alternative Medicare reimbursement formulae, in
order to test their effects on the use of care.33 Similarly, the
San Diego Nursing Home Incentive Reimbursement
Experiement randomly assigned 36 nursing homes to an
incentive payment system designed to reward facilities for
achieving various admission, treatment, and discharge
objectives, or to a control group that received only the regu-
lar Medicare reimbursements.34

A second case in which random assignment of groups arises
occurs when policy interest focuses on program effects on
individuals, but it is infeasible to randomly assign indi-
viduals. This might be the case, for example, if one were
interested in the effects of alternative teaching methods on
students� achievement, but for institutional reasons it was
not possible to randomly assign students to different classes.
In that situation, one might be forced to randomly assign
whole classes to different experimental groups. Similarly,
when the experimental treatment applies to the family as a
whole the entire family must be randomly assigned as a
group. This was the case in the income maintenance ex-
periments and the Health Insurance Experiment, where
all members of the family were assigned to the same nega-
tive income tax or health insurance plan.

Calculation of minimum detectable effects at the individual
level is more complex in this case, because the standard
error of the impact estimate depends on the correlation
among the outcomes within the �clusters� of individuals

35  See Hansen et al. (1965), or any standard text on sampling statistics,
for a formal definition of the intraclass correlation.

who were assigned together. Specifically, if SE
I*
 is the stan-

dard error of the impact estimate for random assignment of
N sample members individually, the standard error of esti-
mate for a sample of the same size randomly assigned in
clusters of n individuals is:

20 SE   = SE   ·     1 + d (n�1)
I*IC

where d is the intraclass correlation of the outcome.35

The intraclass correlation is a measure of the homogeneity
of sample members, in terms of the outcome Y, within the
clusters randomly assigned. Its values range from -1/(n-1)
to +1, with positive values indicating similarity among
individuals within clusters and negative values denoting
dissimilarity within clusters, relative to the makeup of the
overall population from which they were drawn. When d=0,
the clusters are just as heterogeneous with respect to Y as
the overall population.

As can be seen from equation 20, when d=0 the �design
effect� of cluster sampling (the term under the square root
sign) is one, and the standard error of the estimate based
on random assignment of clusters is the same as the stan-
dard error of estimate based on random assignment of single
individuals. When d is positive (i.e., when individuals
within clusters are more similar than the overall popula-
tion), the standard error of estimate is higher under random
assignment of clusters. When d is negative (i.e., when in-
dividuals within clusters are more dissimilar than the
overall population), the standard error of estimate is lower.
Thus, minimum detectable effects will be larger under ran-
dom assignment of clusters than under random assignment
of individuals if d is positive, and it will be smaller if d is
negative. If d=0, minimum detectable effects will be the
same under the two approaches. Unfortunately, in practi-
cal applications, the intraclass correlation tends to be
postive; i.e., individuals within clusters tend to be more
similar than individuals drawn randomly from the overall
population. Thus, cluster effects generally tend to increase
the standard error of estimate.

Suppose, for example, that we randomly assign classrooms
of 25 students each to alternative teaching methods. Fur-
ther suppose that students have been assigned to classrooms
in part on the basis of ability, leading to a positive intraclass
correlation of grade point average (the outcome of interest)
of 0.20. According to equation 20, clustering will increase
the standard error of estimate, and therefore minimum de-
tectable effects, by a factor of 2.4. That is, when we
randomly assign classrooms rather than individual students,

33 See Goldberg (1997).

34 See Jones and Meiners (1986).
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the experimental effect on grade point averages would have
to be 2.4 times as large to be detectable at a given level of
statistical significance. In order to achieve the same power
as a design in which individual students were randomly
assigned, the sample size would have to be increased by a
factor of 5.76 (=2.42).

As this illustrative example suggests, random assignment
of groups can result in a substantial loss of power, relative
to random assignment of individuals. The size of the loss
will depend on the intraclass correlation of the specific
outcome of interest and the size of the groups randomly
assigned. In cases where random assignment of groups is
the only feasible approach, it is therefore critical to esti-
mate the minimum detectable effects attainable with the
proposed sample size and design, taking cluster effects
into account, to ensure that the design will yield estimates
of sufficient power to be worthwhile.
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