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1. Introduction

The quest for a classical theory able to reproduce the results of Quantum Mechanics (QM) has
a pluridecennial history, stemming from the 1935 Einstein-Podolsky-Rosen paper [1], where
the completeness of QM was questioned.
In 1964 Bell showed that for some hidden variable theories (HVTs), specifically, for every

local realistic theory (LRT) [2], correlations among certain observables measured on entangled
states must satisfy a set of inequalities (the Bell’s inequalities, BI), while for QM they can be
violated, with many experiments [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] show-
ing violation of BI’s. In the last decade the study of QM vs. LRT for certain realistic models
[3, 19, 20, 21, 22, 23, 24, 25, 26, 27] has attracted new interest fueled by the development of
Quantum Information science [3]. We note that, some classes of LRTs have not been excluded
by Bell’s inequality experiments because of experimentally induced loophole(s). Experiments
specifically aimed at testing those LRTs are the focus of recent interest. Other differences be-
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tween quantum and classical treatments have also been discovered and pointed out [28].
Recently, a test of nonclassicality at the single qubit level was proposed [29]. This test is

very appealing both because of its simplicity (particularly in comparison with other proposals
to test nonclassicality at a single qubit level [30, 31, 32, 33, 34]) and its ability to show that some
quantum states in a two dimensional Hilbert space cannot be classical. We note that because this
is a test of single particle states, there is no reference made to the question of locality, rather
it is a more fundamental test of nonclassicality with respect to possibility of an underlying
hidden variable theory. It does, however, allow testing of specific classes of states (i.e. those
with observables satisfying certain “classical” properties discussed later), although like the Bell
test, it is subject to a number of loopholes depending on its experimental implementation. The
purpose of this work is twofold: first, we want to start a discussion on the advantages and
limitations of this new proposal, and second, we present the first experimental implementation
of this test, which we have realized with a conditional single-photon source.

2. Theoretical Model

The proposal, [29], is based on the fact that given any two positive real functionsA ,B obeying
the relation

0≤ A (x) ≤ B(x) (1)

that for any probability distribution ρ(x) it must be true that

〈A 2〉 ≡
∫

A 2(x)ρ(x)dx≤
∫

B2(x)ρ(x)dx≡ 〈B2〉. (2)

For quantum systems, one can find pairs of observables Â, B̂ such that the minimum eigen-
value of B̂− Â is greater than zero which we refer to as the the inequality

0≤ Â≤ B̂. (3)

The commutation relations stemming from the classical approach that lead to Eq. (2), prescribe
that for all systems (described by the density matrix ρ̂)

〈Â2〉 ≤ 〈B̂2〉, (4)

where 〈Ô〉 ≡ Tr[Ô ρ̂ ], while on the contrary, quantum theory allows that for certain quantum
states

〈Â2〉 > 〈B̂2〉. (5)

This sharp difference between classical (in the sense discussed above) and quantum theory
predictions at a single qubit level [35] can be tested experimentally on an ensemble of single
particles. In this paper we experimentally apply this method to single-photons using the polar-
ization degree of freedom, as suggested in Ref. [29]. We do note that because, by definition,
hidden variables (such as may be represented by x above) cannot be observed directly, the con-
dition given in Eq. (1) defines and limits the class of hidden variable theories that can be tested
by violation of the “classical” inequality (2) [36].
Quantum objects used to implement this test are horizontally polarized single-photons (|H〉)

produced by a heralded single-photon source. Our two observables are

Â= a0P̂α (6)

and
B̂= b0

[
p1P̂β +(1− p1)P̂β+π/2

]
, (7)
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with numerical constants a0 and b0, P̂θ is the projector on the state |s(θ )〉= cosθ |H〉+sinθ |V 〉
(and P̂θ+π/2 is the projector on the orthogonal state sinθ |H〉− cosθ |V 〉), and 0≤ p 1 ≤ 1.
The expectation value 〈Â〉 can be obtained experimentally by projecting heralded photons

onto the state |s(α)〉, while 〈B̂〉 is realized with an experimental setup that projects heralded
photons onto the state |s(β )〉 with probability p1, and onto the state |s(β + π/2)〉 with proba-
bility (1− p1). This probabilistic projection can be achieved, in principle, with a beam-splitter
with a splitting ratio p1, sending photons towards the two projection systems.
The experimental measurement of both 〈 Â〉 and 〈Â2〉, where Â2 = a20P̂α , is achieved

by projecting the photon onto the state |s(α)〉. To measure 〈 B̂2〉, where B̂2 =
b20

[
p21P̂β +(1− p1)2P̂β+π/2

]
, however, it is necessary to change the beam splitting ratio to

p2 = p21
p21+(1−p1)2

. Thus the operator B̂2 is:

B̂2 = b20
1−2

√
(1− p2)p2

(1−2p2)2
[
p2P̂β +(1− p2)P̂β+π/2

]
, (8)

in terms of the splitting ratio p2. We assume that the beamsplitter randomly and fairly splits the
incoming photons, with the probabilities that are equivalent to the splitting ratio of “classical”
waves.
It can be shown that for the parameters set to a0 = 0.74, b0 = 1.2987, p1 = 4/5, p2 = 16/17,

α = 11/36 π , and β = 5/12 π , the results predicted by quantum theory are 〈 B̂2〉 − 〈Â2〉 =
−0.0449, and 〈B̂〉 − 〈Â〉 = 0.0685, while the minimum eigenvalue of B̂− Â is d− = 0.0189,
where

d− ≡ 1
2

{
b0−a0−

√
a20+b20 (1−2p1)2+2 a0 b0 (1−2p1) cos[2(α −β )]

}
. (9)

We note that the value of d− obtainable with the parameters suggested in Ref. [29] is 0.00057,
too close to zero to ensure the positivity of B̂− Â in our experimental measurement. For this
reason we chose the above set of parameters leading to a value for d− almost two orders of
magnitude larger.
The critical question is whether the above arrangement can serve as a test of all HVTs. As

mentioned in the discussion of Eqs. (1)-(5), the test proposed in Ref. [29] concerns the class of
HVTs satisfying Eq. (1) only. The simplest example of a HVT that does not satisfy this condi-
tion and can mimic QM, relies on a hidden (or simply unmeasured) variable x uniformly distrib-
uted between 0 and 1 (ρ(x) = 1 when 0≤ x≤ 1), and classical quantitiesA (x) = a 0θ (XA−x),
andB(x) = b0[p1θ (XB−x)+(1− p1)θ (x−XB)], where θ (ξ ) is the step function (1 for ξ ≥ 0,
and 0 elsewhere). By choosing XA = cos2α and XB = cos2β and using the experimental pa-
rameters defined above, we obtain the quantum mechanical predictions, 〈B〉− 〈A 〉 = 0.0685
and 〈B2〉− 〈A 2〉 = −0.0449. It is easy to verify that this model does not belong to the class
of hidden variable models falsified by this test, as the condition given in Eq. (1) is not satisfied
for some x. In particular, for XB < x< XA we haveA (x) > B(x). The boundary of the class of
HVTs identified by condition (1), as well as the possibility of enlarging the class by modifying
this method is a very important question, but is beyond the scope of this work.

3. Experiment

The experimental setup is presented in Fig. 1. The heralded single-photon source is based on
photon pairs produced by parametric down conversion (PDC). Our PDC source is a 5 mm long
periodically poled MgO-doped lithium niobate (PPLN) crystal, pumped by a continuous wave
(cw) laser at 532 nm, that produces pairs of correlated photons at 810 nm and 1550 nm [37]. A
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Fig. 1. Experimental setup. A PDC heralded single-photon source generates pairs of pho-
tons at 810 nm (heralding) and 1550 nm (heralded) in a PPLN crystal pumped by a 532 nm
laser. The heralded photons are sent to the measurement apparatus designed to evaluate the
observables 〈Â〉, 〈Â2〉, 〈B̂〉, and 〈B̂2〉.

cutoff filter blocks the pump laser light at the crystal’s output and a dichroic mirror separates the
810 nm and 1550 nm photons. Extra interference filters at 810 and 1550 nm with a full width
half-maximums (FWHM) of 10 nm and 30 nm, respectively, further suppress fluorescence from
the PPLN crystal reducing background counts. The collection geometry on the heralding arm
restricts the visible bandwidth to ≈2 nm FWHM.
The heralded single-photon source is independently characterized to ensure that a) there is

a sizable correlation between the signal photons at 810 and 1550 nm that dominates over the
background of accidental coincidences and b) that multiphoton emission is negligible (i.e. when
conditioned on a photon detection at 810 nm, the probability to observe two photons in a 1550
path is negligible, see Appendix.)
For the experiment, photons in the heralding arm are routed by a single-mode fiber (SMF)

to a Si-single-photon Avalanche Diode (SPAD) operating in Geiger mode, while photons in the
heralded arm, coupled into a second SMF, are sent to the apparatus that implements the proba-
bilistic projections according to the parameter values determined above (necessary to measure
〈B̂〉 and 〈B̂2〉). These projections are implemented by means of an all-fiber variable beam split-
ter and polarizers.
The variable beam-splitter is made from an optical switch that can route heralded photons

with an adjustable splitting ratio into two different optical paths [38]. The input polarization
state in each optical path after the beamsplitter is controlled using a three paddle single-mode
fiber polarization rotator followed by a rotating polarizer (POL).
This scheme allows us to set the polarizers to perform projections on P̂α , P̂β , and P̂β+π/2, and

set the splitting probability of the beam splitter to p1 or p2 to make necessary measurements of
the observables [39]. After passing through the polarizers that performed the projections, the
heralded photons were finally sent to InGaAs-SPADs gated by the Si-SPAD heralding counts.
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We determine the true coincidence probability for each gate, rather than using the raw meas-
ured counts to eliminate the contribution of accidental coincidences, detector deadtimes, and
drifts. The probability for each measurement i was evaluated according to

ηi(θ , p) =
Ni(θ , p)
Mg,i

, (10)

where Ni(θ , p) is the number of coincidences sent with probability p towards the detection
system with the polarizer projecting photons onto the state |s(θ )〉, and Mg,i is the number of
heralding gate counts. Thus, in each experimental configuration, 〈 P̂(θ )〉 was estimated as

E [〈P̂(θ )〉] = ∑iηi(θ , p)
∑i[ηi(θ , p)+ ηi(θ + π/2, p)]

, (11)

while the probability of sending a photon towards a detection system (whose nominal value is
p) was estimated as

E [p] = ∑i[ηi(θ , p)+ ηi(θ + π/2, p)]

∑i

[
ηi(θ , p)+ ηi(θ ,1− p)+

ηi(θ + π/2, p)+ ηi(θ + π/2,1− p)

] . (12)

Quantity Measurement QM theory
E [〈B̂〉− 〈Â〉] 0.0581± 0.0049 (± 0.0112) 0.0685
E [〈B̂2〉− 〈Â2〉] -0.0403± 0.0043 (± 0.0066) -0.0449

(> 0 HVTs)

E [p1] 0.80± 0.01 0.800
E [p2] 0.94± 0.01 0.941

Table 1. Measurement results with statistical and total uncertainties and theoretical pre-
dictions.The total uncertainty (in parentheses) accounts for both statistical and systematic
effects.

Using Eqs. (11) and (12) we computed the experimental values of 〈 Â〉, 〈Â2〉, 〈B̂〉, and 〈B̂2〉
as seen in Table 1. From the same experimental results we obtained an indirect evaluation of
the minimum eigenvalue of B̂− Â as (0.0101±0.0065), showing that we have met requirement
(3) (we point out that the high relative uncertainty of this evaluation is due to its indirect deter-
mination). From the value of E [〈B̂2〉−〈Â2〉] we show a violation of the classical limit (Eq. (4))
by more than 6 standard deviations.
Table 1 presents both the statistical and total uncertainties. Statistical uncertainties include

those due to Poisson counting statistics as well as those due to random misalignment of the
polarizers (we estimate an angular uncertainty of 2.5 ◦), while the total uncertainties also include
systematic effects such as the uncertainty in setting the optical switch voltage bias used to obtain
the required splitting ratio. As an additional test, we measured E [p 1] and E [p2] and found them
consistent with the intended settings (see Table 1). Furthermore, we analyzed how the non-
ideal (multi-photon) behavior of our single-photon source might have affected the experimental
results, and we found its effects to be negligible, being more than an order magnitude below
the listed uncertainties.
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4. Conclusions

In conclusion, we have investigated the theoretical proposal for testing nonclassicality of a
single-particle state [29]. While the utility of this test is open to question, as it does not apply
to every conceivable HVT like Bells inequalities, but only the class of HVTs satisfying Eq. (1),
we have nonetheless experimentally implemented it as proposed. Following the test’s protocol,
our measurement results are seen to be incompatible with a certain class of HVTs (as defined
by Eq. (1)) while being well predicted by QM. In particular, our results clearly falsify this HVT
class by 6 standard deviations. The precise identification of this class and whether and if it
maps to any physical system remains to be determined. Also to be determined is whether it is
possible to extend or generalize this test to cover a larger class of HVTs. This effort represents
a first step in this direction of providing a sharp difference between QM and HVTs at the single
qubit level/two dimensional Hilbert space and a physical implementation of that test.

Appendix

A necessary requirement for a convincingly realizing the Alicki-Van Ryn’s proposal [29] is a
demonstration that our source in fact produces single-photon states.
First, we verify that the source optics are aligned to collect correlated photons. The corre-

lation between the two arms of the source is measured with a Time to Amplitude Converter
(TAC) and a Multi-Channel Analyzer (MCA). The MCA output (Fig. 2) shows the correlation
peak along with the background of uniformly distributed accidental counts, as expected for our
photon source. (We used a gate time of ≈ 20 ns for the InGaAs-SPAD.) From this shape, we
can subtract the background (i.e. counts not produced by photons of the same pair) from signal,
or true coincidences (i.e. the simultaneous generation of a heralded photon and its heralding
twin).
Second, we verify that the possibility of having more than one photon in the heralded arm

after detecting the heralding photon is low. With this aim we use the same setup as for the main
experiment (Fig. 1), but with the polarizers removed and the splitting factor of the switch set to
p = (0.50± 0.01). The efficiency of a single-photon source can be described by means of the
two parameters Γ1 = Q(1)/Q(0) and Γ2 = Q(2)/Q(1), where Q(0) is the probability that for
each heralding count neither InGaAs-SPAD in the heralded arm fires, Q(1) is the probability of
detecting just one count for each herald, and Q(2) is the probability of observing a coincidence
for each heralding count from simultaneous firings by the two InGaAs-SPADs.
In general, a heralding detection announces the arrival of a “pulse” containing n photons

at the heralded channel. The probability of a specific InGaAs-SPAD firing due to a heralded
optical pulse containing n photons is

Q(1|n) =
n

∑
m=0

[1− (1− τ)m]B(m|n; p) =

= 1− (1− p τ)n, (13)

where p is the optical switch splitting ratio, B(m|n; p) = n![m! (n−m)!]−1pm(1− p)n−m is the
binomial distribution representing the splitting of n photons towards the two InGaAs-SPADs,
and τ is the detection efficiency of each InGaAs-SPAD (that also accounts for all collection and
optical losses in the channel). Analogously, the probability of observing a coincidence between
the two InGaAs-SPADs due to a heralded optical pulse with n photons is

Q(2|n) =
n

∑
m=0

[1− (1− τ)m][1− (1− τ)n−m]B(m|n; p)

= 1− (1− p τ)n− [1− (1− p)τ]n+(1− τ)n. (14)
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Fig. 2. Typical correlation between the detection of heralding and heralded photons, show-
ing the coincidences peak due to heralded counts (true coincidences) and the uniformly
distributed accidental coincidences. InGaAs-SPAD gate time was approximately 20 ns.

Thus we get Q(1) = ∑nQ(1|n)P(n), and Q(2) = ∑nQ(2|n)P(n) forP(n) being the gen-
eral probability distribution of the number of photons in a heralded optical pulse. Setting
p = 0.5, in the case of an ideal single-photon source (P(n) = δ n,1) we obtain Q(1) = τ/2,
and Q(2) = 0, corresponding to Γ2 = 0 and Γ1 = τ/[2(1−τ/2)]; while for a Poissonian source
(P(n) = µne−µ/n!) we obtain Q(1) = 1− exp(−τµ/2), and Q(2) = [1− exp(−τµ/2)] 2, cor-
responding to Γ2 = 1−exp(−τµ/2) and Γ1 = exp(τµ/2)−1 (meaning Γ2 * Γ1 = τµ/2 when
τµ + 1). See Table 2 for comparison between the ideal sources above and our implementation.

Source Type Γ1 Γ2 Γ2/Γ1
Single-photon τ/[2(1− τ/2)] 0 0
Poisson eτµ/2−1 1− e−τµ/2 ≈ 1 (when τµ + 1)
This (4.14±0.06) ·10−3 (0.66±0.06) ·10−3 0.16±0.01
This (bkg subtr.) (4.02±0.06) ·10−3 (0.37±0.36) ·10−3 0.09±0.09

Table 2. Two-photon characterization of single-photon source, Poisson source and our
source without and with background subtraction.

From our experimental data we obtained, with background subtraction, results for Γ 2 that are
compatible with 0 as for ideal single-photon sources. We also note that E [Γ 1], is in agreement
with the estimated optical losses and a previous detector calibration [38].
An alternative characterization metric for single-photon sources, was proposed by Grang-

ier et al. [40]. They introduced an “anticorrelation criterion” based on the parameter α =
Q(2)/[Q(I)(1) Q(II)(1)] ((I), (II) indicate the two detectors after the variable beam splitter).

#94899 - $15.00 USD Received 11 Apr 2008; revised 26 May 2008; accepted 26 May 2008; published 22 Jul 2008
(C) 2008 OSA 4 August 2008 / Vol. 16,  No. 16 / OPTICS EXPRESS  11757



For an ideal single-photon source α = 0, while α ≥ 1 corresponds to classical sources. From
our experimental data E [α] = (0.18±0.02) and E [α] = (0.11±0.11)with and without back-
ground subtraction, respectively, ensuring that conditional single-photon output dominates for
our source.
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