Nanofluidic Structures for Electrokinetic-Based Hydraulic Pumps on Microchips

> Jean Pierre Alarie, Stephen C. Jacobson, B. Scott Broyles, and J. Michael Ramsey

> > Oak Ridge National Laboratory Oak Ridge, TN 37831-6142 alariejp@ornl.gov

Outline

- Project Objectives
- Microchip Overview
- Electroosmotic Induced Hydraulic Pumping
- Preliminary Results
 - pumping
 - concentrating
 - separation

Objectives

- Develop low and high pressure pumps on microfluidic devices that can be used for:
 - sampling subsurface contaminants
 - concentrating contaminants by solid phase extraction
 - analyzing contaminants by chromatographic separation
- Utilize existing laboratory knowledge to extent possible
- Design devices that can be mass produced

Microfluidic Devices

- Materials
 - quartz/glass plastic
- Dimensions
 - 0.05 -100 µm channels 1-25 cm² substrates
- Volumes
 - 1fL-1nL injections 1-100 μL reservoirs
- Fluid transport
 - electrokinetic
 - pressure or vacuum

Microfluidic Functional Elements

I/O	pipette inkjet electrospray	separations	electrophoretic chromatographic sieving
filters	physical polymeric	cytometry	immunoassay counting sorting
reactions	stopped flow continuous flow thermal cycling	detection	fluorescence absorbance refractive scattering electrochemical mass spectrometry
concentration	extraction membrane	transport	electrokinetic pressure

Miniaturization of Chemical Instrumentation

Advantages

- Compact
- High speed analysis
- Integration
- Reliability
- Operational simplicity
- Parallel architectures
- Low cost

Electroosmotic Hydraulic Pumping on Microchips

Concept

Electroosmotically generate fluid flow in a portion of the channel and use that momentum to generate a pressure in the field free portion of the channel

Implementation

- heterogenous charged surfaces
- in-channel electrical connections
- nanofluidic structures

Advantages

- easy to implement
- control via applied voltage
- flow rate independent of analyte mobility
- pulsation free flow

Electroosmotic Induced Hydraulic Pumping schemes

Electrokinetic Flow in Channels

Microchannel vs Nanochannel Flow

(1 µm deep)

nanochannel (100 nm deep)

ornl

bridge width = channel spacing - 2 (etch time) (etch rate)

Electroosmotically Induced Pumping Measure pumping rates

Flow at Junction

Pumping Rates for 1 and 3 µm Junctions

Pumping efficiency: 1 μ m junction $u_{ff} / u_p = 0.43$ 3 μ m junction $u_{ff} / u_p = 0.63$

sample: rhodamine B buffer: sodium tetraborate

p = pump channel ff = field-free channel

Microchip Functional Element Integration Filtering, Solid Phase Extraction and Separation

Laser-Induced Fluorescence Detection

Solid Phase Extraction

pyrene

Solid Phase Extraction

pyrene

Concentration and Separation

Solvent Programming

time [s]

Future Research

- Design and fabricate improved nanochannel membranes
- Evaluate electroosmotic transport in nanochannels
- Investigate surface chemistries that promote and inhibit electroosmotic flow
- Integrate the optimum pumping segment and junction into a single unit
- Assess pumping efficiency as a function of solvent and sample composition
- Test pumping strategy for sample introduction
 and liquid chromatography

Personnel

<u>Group Leader</u> Mike Ramsey

<u>Staff</u> Stephen Jacobson Bob Foote Jean Pierre Alarie Rose Ramsey

<u>Postdocs</u> Scott Broyles Nickolaj J. Petersen Jeremy Ramsey Luke Tolley <u>Technicians</u> Chris Thomas

Staff-on-Loan Shengting Cui

<u>Collaborators</u> Len Feldman Tony Hmelo

