
The Evolution of a Test Process for Spacecraft Software

Deborah A. Clancy
Brenda A. Clyde

M. Annette Mirantes
The Johns Hopkins University Applied Physics Laboratory
11100 Johns Hopkins Road, Laurel, MD USA 20723-6099

Brenda.Clyde@jhuapl.edu
Annette.Mirantes@jhuapl.edu
Deborah.Clancy@jhuapl.edu

Abstract

The Johns Hopkins University Applied Physics
Laboratory formed an embedded software group in
2001. In addition to defining the process for
developing and testing flight software, the group had
to quickly apply those new processes to a series of
four different spacecraft missions from 2001 through
the present. The paper describes the evolution of the
software testing approach for embedded flight
software during this time. After a brief description of
the four spacecraft missions, this paper presents our
initial approach to testing and how that approach
changed with each mission, as our resources were
overextended and our schedules were compressed.
The final section of the paper presents the changes
that we believe had the most significant impact on our
testing efforts and our proposed test approach for the
next mission.

1. Introduction

Like most starts at establishing an engineering
methodology, our effort to establish an effective and
efficient methodology for testing spacecraft software
began as a set of guidelines and is continuing to evolve
into a defined and effective process. After the success
of several missions for NASA and the Department of
Defense, in 2001 we determined that the Johns
Hopkins University Applied Physics Laboratory
(JHU/APL) Space Department software group was
growing large enough that reorganization was
necessary. As a result, the group was divided into three
separate entities, each with its particular focus. The
charter for one of these groups was the development of
embedded software for unmanned spacecraft. The

software development process at that time was a set of
guidelines—recommendations with broad statements
about how to develop and test flight software. Over the
course of five years and four full spacecraft
development efforts (some complete, some still “in the
works”), those guidelines are becoming a defined,
useable, and valuable process.

This paper focuses on our experience with the
process for testing flight software. We currently have a
process for testing flight software, but it is less cost-
effective and efficient than we would like. To improve
the effectiveness and efficiency, we did an evaluation
using process metrics. We identified problems and
areas where process improvements can enhance the
efficiency and cost-effectiveness of flight software
testing at JHU/APL. We studied the software testing
process used on four recent and current missions and
have used the results to recommend process
improvements.

2. Mission overviews

Our test process was used during the flight
software testing for four spacecraft missions. The
missions are discussed briefly in the following
sections.

2.1. CONTOUR

The COmet Nucleus TOUR (CONTOUR) was the
first mission to be tested under our new process.
CONTOUR launched July 3, 2002. The flight software
architecture consisted of three Computer Software
Components (CSCs): Command and Data Handling
(CDH), Guidance and Control (GC) and Boot. These
three CSCs were also the focus of the testing effort.

klittle
Note
#9

The CONTOUR architecture is one common to many
spacecraft: one main and one backup processor for
CDH, one main and one backup processor for GC, and
shared Boot code. For all four missions, a 1553 bus
centralized the interfaces to external subsystems, but
custom interfaces were also used.

2.2. MESSENGER

The MErcury Surface, Space ENvironment,
GEochemistry and Ranging (MESSENGER) mission
began its testing effort mid-way through CONTOUR’s
testing. MESSENGER was launched August 3, 2004.
The flight software architecture for MESSENGER
diverged significantly from that of CONTOUR.
MESSENGER had the CDH, GC, and Boot CSCs, but
added a fourth CSC, Fault Protection (FP). The
hardware architecture included a new processor and a
new operating system. Unlike CONTOUR, the CDH
and GC CSCs were located on one processor, and the
FP software ran on two independent processors, one
serving as backup. MESSENGER also included many
new technology initiatives. Some were specific to
software; others were both hardware and software.
Some of these new features included a DOS-like file
system for the solid-state recorder (SSR), the use of
Consultative Committee for Space Data Standards
(CCSDS) File Delivery Protocol (CFDP), a file-based
communications protocol, an integer wavelet image
compression algorithm, and a phased-array antenna
control algorithm.

2.3. STEREO

Shortly after the test effort began on
MESSENGER, the Solar-TErestrial RElations
Observatory (STEREO) began its testing effort.
STEREO is scheduled for launch in 2006. The
STEREO flight software architecture was very similar
to that of CONTOUR. It consisted of the CDH, GC,
and Boot CSCs, but also included an Earth Acquisition
(EA) CSC. The STEREO hardware architecture, like
that of CONTOUR, uses one processor for CDH, one
for GC, and shared Boot code, but, unlike CONTOUR
and MESSENGER, STEREO had no backup

processors. The processors and operating system were
the same as those used on MESSENGER.

2.4. New Horizons

The final mission, New Horizons, started its test
effort midway through the MESSENGER and
STEREO testing efforts. New Horizons launched in
January 2006. The flight software architecture and
most of the hardware architecture for New Horizons
are identical to those used on CONTOUR, although
the use of several new technologies on New Horizons
increased its complexity. The new technologies used
included a Flash memory SSR, a thermal control
algorithm, and over 30 different science data types for
recording, verifying, and downlinking.

3. Mission differences and complexities

As the mission descriptions above indicate, the
four missions we studied were not sequential; there
was quite a bit of overlap during software testing. The
differences among missions and their complexities
varied. Table 1 lists various contributing factors to
software complexity. Increased software complexity is
associated with increased effort and complexity of
testing.

4. Mission test processes

Starting with CONTOUR, we identified the need
for more formal verification and validation and
established a formal process. However, this process
was beyond what was baselined in the CONTOUR
proposal. The CONTOUR proposal did not include
plans and funding for any independent software testing
to verify functional requirements. Each subsequent
mission had similar issues with the requirement for
increased testing; of the four missions, only New
Horizons included a small effort for this formal
verification and validation testing in its original plan
for the mission.

Table 1. Factors contributing to software complexity

Mission
Number of Flight

Software
Requirements

Number of
External

Interfaces

Number of
Science

Instruments

Lines of
Code

% Software
Reuse

CONTOUR 690 12 4 37893 30%
MESSENGER 1035 19 7 143121 30%
STEREO 1422 15 4 126054 15%
New Horizons 1074 12 7 145618 35%

4.1. Initial test process

The initial JHU/APL test process was based on
the NASA Software Engineering Lab guidelines as
specified in the Recommended Approach to Software
Development developed by the NASA Goddard Space
Flight Center [1]. CONTOUR was the first JHU/APL
mission to apply this methodology. We implemented
the process using dedicated test resources during the
code- and unit-test phase of the development lifecycle.
The efforts centered on training staff, establishing the
deliverables, and verifying the functional requirements
of the software. These efforts provided a foundation
for future missions. Shortcomings to this process were
identified. Changes were applied to the MESSENGER
test process, which started the evolution. STEREO and
New Horizons continued the evolution.

4.2. Evolution of the process

Subsequent missions tailored the process to
address weaknesses identified in other projects as well
as to meet mission-specific requirements for testing
(Figure 1).

For CONTOUR, the ad hoc planning didn’t take
into account past experience or metrics since there

wasn’t sufficient data available. The planning allocated
the work to the time available and may not have been
sufficiently resourced to be completed on time.

For MESSENGER the process was tailored to use
the “Test Like You Fly” (TLYF) methods described in
“Test Like You Fly” Confidence Building For
Complex Systems [2]. These methods demonstrated
that the software functioned as required under realistic
operational conditions and when placed under unusual
stresses. To ensure repeatability of tests,
MESSENGER automated all procedures and produced
formal test plans for each CSC and Build pair. These
test plans were formally reviewed in their entirety.
MESSENGER was staffed with dedicated resources
specifically for testing.

For STEREO the process was tailored to use more
of a mix of dedicated and part-time resources. The test
plans were incrementally generated and reviewed. The
goal of incremental generation and review was to
reduce the cost of generating and maintaining test
documentation. Test cases were prioritized to ensure
that the more complex software functions were tested
first. TLYF methods and Fault Protection testing were
also applied upon completion of requirements
verification. Most STEREO test cases are being
automated, and STEREO is performing some

2000 2001 2002 2003 2004 2005

Feb 2000 Sep 2002

Oct 2001 Jul 2004

Jan 2002 Dec 2005

Nov 2002

2006

Ad-hoc planning
Limited Influence Prior to Code/Unit Test
Manual Testing
Formal review for Complete Deliverables
Dedicated Resources
Requirements based testing

MS Project & Excel
Limited Influence Prior to Code/Unit Test
Automated Testing
Formal review for Complete Deliverables
Dedicated Resources
Requirements based testing & Test Like You Fly

MS Project & Excel
Limited Influence Prior to Code/Unit Test
Automated Testing
Formal review for Partial Deliverables
Dedicated Resources
Requirements based testing & Test Like You Fly
Prioritized Test Cases

MS Project & Excel
Limited Influence Prior to Code/Unit Test
Automated Testing
Informal review for Partial Deliverables
Dedicated Resources
Requirements based testing & Test Like You Fly Concurrently
Prioritized Requirements

CONTOUR

MESSENGER

STEREO

New Horizons

Dec 2005

Figure 1. Evolution of the software testing process over the four missions

requirements verification through white-box or
developer tests.

For New Horizons the tailoring process used more
of a mix of dedicated and part-time resources. Most
New Horizons test cases are automated. TLYF
methods are being used concurrently with
requirements verification. Requirements were
prioritized to ensure that the highest-priority
requirements were tested first. The test plans were
incrementally generated and reviewed informally. The
formality of the reviews was significantly reduced to
reduce the cost of maintaining test documentation.

4.3. Current test process

The test process has evolved; it currently consists
of 10 steps. Figure 2 shows the current process flow.
The efforts now include steps to support increased
planning and scheduling to better monitor the test
progress, reduced requirements for documentation
formality and maintenance, expanded use of TLYF
methods, and risk-based prioritization for testing
completion. The 10 steps are listed below:

STEP 1 – Plan the Test Effort.
STEP 2 – Evaluate the Requirements.
STEP 3 – Create the Test Plan Outline.
STEP 4 – Define the Test Cases.
STEP 5 – Review Pieces of the Test Plan.
STEP 6 – Implement the Test Scripts.
STEP 7 – Execute the Test Cases.
STEP 8 – Create and Track Defects.
STEP 9 - Maintain and Report Test Status.
STEP 10 – Create Test Report Summary.

5. Problems

After work began on MESSENGER, many staff
both inside and outside of the embedded systems
group believed that the testing process was not cost-

effective or efficient. In July 2003, a working group
was established to discuss test process improvement.
The group was a mixture of managers, developers, and
testers. The goals were to use our experience with
CONTOUR and the ongoing MESSENGER and
STEREO projects, and to help the current programs
finish on schedule and plan strategy for New Horizons
and future programs. The list of problems below was
identified.

Problem 1: Contents of flight software builds often
change unexpectedly, which can affect the test team.
Recommended Mitigation(s):

a) Keep test team informed of changes.
b) Assess impact of change to test team.
c) Focus testing on functional areas rather than
builds.
d) Delay testing of functional areas that are not
complete.

Problem 2: Requirements are often difficult to test
using “black-box” methods and may contain too much
design. Recommended Mitigation(s):

a) Consider alternative test methods (e.g.,
inspections, analysis, inference, and others).
b) Consider having development team verify these
requirements during unit and integration testing.
c) Change requirements to remove design detail.
d) Assure that requirements review panel contains
test representative.

Problem 3: Flight software and testbed documentation
not available when needed. Recommended
Mitigation(s):

a) Prioritize the needs of the test team.
b) Put milestones in schedule for required
documentation.
c) Don’t deliver build without required
documentation.

Problem 4: Late changes to requirements can affect
test team. Recommended Mitigation(s):

a) Keep test team informed of changes (use Change
Request system).
b) Assess impact of change to test team before
approving it.

Problem 5: Lack of communication between
development and test team. Recommended
Mitigation(s):

a) Encourage communication (joint meetings).
b) Co-locate development and test team.
c) Assign single lead for both testing and flight
software.

Planning

Execution

Reporting

Define Test
Case Outline

Current Process

Staff Planning/
Schedules

Requirement
Evaluation

Review Cases

Design Cases

Implement
Cases

Execute Cases

Retest
&Regression

Defect Identification
& Reporting

Produce Test
Summary
Reports

Figure 2. Current software testing process

Problem 6: Little reuse of test plans or procedures
between missions. Recommended Mitigation(s):

a) Assure test team has artifacts from previous
missions.
b) Take steps to maintain mnemonic naming
conventions between missions.
c) Assess impact to testing when making changes to
heritage software.

Problem 7: Developing automated procedures is time
consuming and requires documentation that might not
be available.
Recommended Mitigation(s):

a) Reconsider the use of automated procedures.
b) Automate only when it makes the effort more
efficient (e.g., regression tests that will be run many
times or long-duration tests that can be run during
off-hours).
c) Doing interactive testing may encourage more
effort to “break the software.”

Problem 8: Feedback from test plan reviewers and
Independent Verification and Validation (IV&V) may
lead to greater testing than we can afford.
Recommended Mitigation(s):

a) Must assess impact to cost/schedule of this
feedback.

Problem 9: New test team members must climb steep
learning curve before they become productive.
Recommended Mitigation(s):

a) Make greater user of experienced flight software
developers to test.
b) Consider possible use of joint development/test
team to foster greater communication and training of
new team members.
c) Rely less on contract employees in the future.

Problem 10: Testbed user interface is too complicated
and sensitive to change. Recommended Mitigation(s):
None identified.

Problem 11: Lack of testbeds is an issue for the test
team. Recommended Mitigation(s): None identified.

Problem 12: Testbeds do not contain the functionality
that is needed. Recommended Mitigation(s):

a) Need to identify missing functionality and work
with testbed team to assign priorities.

Problem 13: Testing common code across processors
has not been straightforward. Common code may not
have common requirements. Common code may be
slightly different from processor to processor.
Recommended Mitigations(s):

a) Flight software team needs to develop command
and telemetry interfaces to common code.

b) Common code should be integrated by the same
person to assure common approaches.

These recommendations were given to the test
leads for integration into the test process for all of the
ongoing missions. Some of these recommendations
were implemented, but the expected improvement in
cost and schedule didn’t materialize. Another series of
working group meetings was held in early 2004. This
working group identified new problems, areas that
were still problems, and made recommendations for
mitigations. These are listed below.

Problem 1: It is very time-consuming to test all
requirements equally by automated script.
Recommended Mitigation(s):

a) Use automated test scripts for
• System setup scripts
• Common scripts that will be used by

many testers
• Instances when an artifact is required
• To create regression and long-term tests
• To make use of testbed “off-hours” (test

can run unattended)
b) Do not use automated test scripts for

• Tests that won’t be part of regression or
long-term tests

• Early builds when database and software
is immature

• Negative testing that will not be repeated
c) Future mission should also use some type of
prioritization by risk.

Problem 2 (old see Problem #2 above): Requirements
contain too much design information, too much detail;
requirements that are un-testable; entire areas of
functionality with missing requirements.
Recommended Mitigation(s):

a) Revisit requirements during the design phase.
b) Review requirements during code reviews and
during test planning.
c) Provide training for writing better requirements.
d) Consider having development team verify these
requirements during unit and integration testing.

Problem 3 (new): Requirements management tool
being used is complex and costly for requirements
maintenance. Recommended Mitigations(s):

a) Alternative methods of tracking discussed, but no
change recommendation made.

Once again, however, the efforts didn’t yield the
expected improvements in cost effectiveness and
efficiency. We found it very difficult to change an
existing process for an ongoing program. The primary

focus was on changes that could be implemented
within the test process, since changing the
development process requires buy-in from a larger
team. Only very small adjustments to the test process
could be made.

6. Evaluating the process

Thus, we learned that to succeed in improving the
cost-effectiveness and efficiency of the test process for
future missions, a more objective approach was
needed. We therefore evaluated the test process by
looking at software process metrics. We first looked at
metrics for Defect Removal efficiency, but found that
this metric could not be computed reliably because of
weaknesses in gathering data on when defects were
discovered and by whom. We next examined the
percent of effort of the life cycle. The results of this
metric for the four missions are shown in Table 2.

The baseline expects 25% of the flight software
lifecycle to be devoted to system testing. This data
shows that three of the four missions were within their
allotted percentage of the lifecycle. However, that does
not imply that they were within budget and schedule.
In fact, the cost data in Table 3 tells a different story.
Although actuals from previous missions are used to
estimate future efforts, we continue to exceed planned
costs.

6.1. Test team composition

Team composition is critical to performance. The
cost data in Table 3 caused us to focus on staffing
metrics. Test team composition is one area where
improvements can be made to achieve cost-
effectiveness. The staff experience chart in Figure 3

shows that the use of part-time and contract staff is not
cost-effective for three main reasons: (1) Part-time and
contract staff must tackle the steep learning curve
associated with testing embedded software in a
complex testbed environment. Once gained, this
knowledge is not being retained for use on future
missions. (2) Part-time staff requires more
coordination, management, and testbed resources to
ensure that they are spending adequate and effective
time on the program. (3) Finally, part-time and
contract staff are not always available when needed.

7. Test Improvement Model assessment

To provide an independent assessment of our test
practice, we used the Test Improvement Model (TIM)
as outlined in TIM – A Test Improvement Model [3].
This model has two major components: a framework
and an assessment procedure. The framework has five
levels (0 being the initial non-compliant level) and five
key areas. Detail information on this model can be
found in reference 3. In general, this framework looks
at five key areas – organization, planning and tracking,
test cases, testware, and reviews. The assessment is
done by assigning a value based on how well we
implement the items identified for each level of each
key area in the framework. The assessment allows the
analyst to assign a current level in each area. The four
levels for each area, valued from lowest to highest, are
baselining (1), cost-effectiveness (2), risk-lowering
(3), and optimizing (4). Each mission’s state of
practice was determined using the TIM assessment
procedure. Figures 4-7 show the TIM assessment for
each of the four missions. People involved with each
mission’s test function contributed to the results given
in Figures 4-7.

7.1. Organization

All programs fulfilled the TIM criteria for
baselining, although STEREO and New Horizons did
lose a number of their core, experienced testers as

Table 2. Software process lifecycle partitions

Planning
Reqs

Prelim
Design

Detailed
Design

Code &
Unit
Test

System
Test

Baseline 11.0% 14.0% 20.0% 31.0% 24.0%
CONTOUR 9.5% 6.6% 18.8% 43.0% 22.0%
MESSENGER 11.8% 17.0% 10.0% 41.2% 19.9%
STEREO 17.3% 6.4% 8.4% 43.2% 24.7%
New Horizons 7.7% 7.6% 13.1% 38.9% 32.7%

Table 3. Percentage relative to estimate of costs
for software testing

Mission
Percentage Relative to Estimate:
(Actual – Planned)/Planned × 100

CONTOUR 62%
MESSENGER 93%
STEREO 69%*
New Horizons 47%
* Based on effort to date.

0

5

10

15

20

25

30

>1 month >3 months >6 months

Time on Program

Nu
m

be
r

of
 T

es
te

rs

CONTOUR
MESSENGER
STEREO
NewHorizons

Figure 3 - Test staff experience.

program priorities were realigned by management. To
move the next program into the cost-effectiveness
level and above, we need to focus on training and
building a core group of full-time testers. Improved
communication between the test and development
teams needs to be developed.

7.2. Planning and tracking

The first two programs, CONTOUR and
MESSENGER, lacked some documented standards,
but the subsequent programs were able to fulfill the
criteria for baselining in this area. To achieve cost-
effectiveness, the future test programs need to have
flexible planning and a standard method for tracking.
The TIM authors propose that planning should be
evolutionary. This would help some of the problem
areas: changing requirements, changing functionality,
and availability of hardware resources.

7.3. Test cases

All programs fulfilled the TIM criteria for
baselining. To achieve cost-effectiveness, future
programs need to develop the ability to allow
testability to influence requirements and design. These
programs will need to evaluate the testability of
requirements and design and factor them into the
overall software architecture and requirements
definition. The test cases area did progress some into
the risk-lowering level. Each program took steps to
rank the criticality of either requirements or test cases
or both. Significant progress has already been made
toward achieving this level.

7.4. Testware

All programs fulfilled the requirements for
baselining. However, to progress to the next levels,
resources will need to be applied to evaluate and
develop or purchase test tools to gain cost-
effectiveness and to lower risk.

Figure 4. TIM ratings of the CONTOUR mission

Figure 5. TIM ratings of the MESSENGER mission

New Horizons

0% 20% 40% 60% 80% 100%

Organization

 Planning
and Tracking

 Test Cases

 Testware

 Reviews

K
ey

 A
re

a Optimizing
Risk-lowering
Cost-effectiveness
Baselining

Figure 6. TIM ratings of the New Horizons mission

Figure 7. TIM ratings of the STEREO mission

Stereo

0% 20% 40% 60% 80% 100%

Organization

 Planning
and Tracking

 Test Cases

 Testware

 Reviews

K
ey

 A
re

a Optimizing
Risk-lowering
Cost-effectiveness
Baselining

MESSENGER

0% 20% 40% 60% 80% 100%

Organization

 Planning
and Tracking

 Test Cases

 Testware

 Reviews

K
ey

 A
re

a Optimizing
Risk-lowering
Cost-effectiveness
Baselining

Contour

0% 20% 40% 60% 80% 100%

Organization

 Planning
and Tracking

 Test Cases

 Testware

 Reviews

K
ey

 A
re

a Optimizing
Risk-lowering
Cost-effectiveness
Baselining

7.5. Reviews

This is an area where we are close to the
optimizing level. Each program was successful in
building on the previous work for each level. To
complete the optimizing level for the future,
investment needs to be made in training, and we
should examine the possibility of adding different
review techniques to our skill sets.

8. Ten lessons learned
The following are ten lessons learned from the

working group results, actual experience, the review of
the metrics, and the TIM assessment. They are in no
particular order.
1. Invest in testing – Train a core group of testers,

invest in tools, and integrate testing earlier into the
development process (better communication).

2. Increase focus on cost-effectiveness – In the
TIM assessment, all programs made some attempt
to fulfill requirements in the risk-lowering areas,
but not as much focus was placed on cost-
effectiveness. Our business makes us risk adverse,
and risk management is built into our processes.
However, a better balance is needed between cost
and risk in our testing effort.

3. Use metrics for process improvement –Metrics
need to be used to improve the process for future
missions. For example,

a. Show cause and effect of late delivery of
a functionality.

b. Show overlap between deliveries and
planned regression tests.

c. Analyze the impact of late or incomplete
software deliveries more effectively.

4. Manage resources purposefully – Commit
resources to testing and stand behind the
commitments.

5. Scope the effort – Have a plan that does not treat
all requirements equally.

6. Involve the development team – Make
verification a joint effort between the development
and test teams.

7. Leverage all test efforts – Leverage the testing
efforts of other teams to reduce duplication and
increase effectiveness.

8. Track changes to test documentation and test
tools – Enter Change Requests (CRs) for changes
to test plans that result from reviews and from
actual implementation of the tests. The
documentation is changed to reflect the as-built
software, but the changes aren’t tracked.

9. Plan for test case re-use – Re-use case designs
and scripts mission to mission and across CSCs.

10. Plan for “waiting” time – More effectively use
time spent waiting for software deliveries and
testbed resources.

9. Proposed test process improvements
for future missions

1. Involve experienced testers heavily in
requirements review.

2. Review requirements to assure testability and to
filter out extraneous design information.

3. Perform risk analysis to determine whether
functional areas to be tested via scenario testing or
traditional requirements-based testing.

4. Build up scenario-based tests iteratively and
incrementally.

5. Maintain all test plans in Requirements Tracking
Tool, link them to requirements, and capture test
methods.

6. Use scenarios as the basis of regression tests; use
automation for cases to be included in regression;
and do the remaining testing manually.

7. Build and review test cases and documentation
incrementally. Track changes using a COTS
version control system.

8. Gather and use metrics throughout the test cycles
to allow dynamic process adjustments when
needed.

9. Plan for re-use when developing test cases, and
look for ways to simplify them.

10. Use verification matrix and test methods to
identify where other test efforts can be leveraged.

10. Conclusion

Our flight software testing process was originally
just a set of guidelines – recommendations with broad
statements about how to develop and test flight
software. Over the course of five years and four full
spacecraft development efforts (some now complete,
some in process), those guidelines have become a
defined, useable, and valuable process. This process
can be improved by continuing to identify weaknesses
and implement changes to address the weaknesses.
This paper highlighted some weaknesses and provided
guidance on changes that can be made to improve the
process. The process should be periodically reviewed
and improved.

11. References

[1] Software Engineering Laboratory, Recommended
Approach to Software Development, NASA Goddard Space
Flight Center, June 1992

[2] M. N. Lovellette and Julia White, “‘Test Like You Fly’
Confidence Building For Complex Systems,” IEEE
Aerospace Conference Proceedings, 2005

[3] Thomas Ericson, Anders Subotic, and Stig Ursing,
TIM – A Test Improvement Model, URL:
http://www.lucas.lth.se/events/doc2003/0113A.pdf

