JOINT EFFECT OF ORGANIC AND INORGANIC AEROSOL COMPONENTS ON CLOUD DROPLET ACTIVATION

Gyula Kiss¹, Zsófia Varga², Szilvia Janitsek², András Gelencsér^{1,2}

¹Air Chemistry Group of the Hungarian Academy of Sciences at University of Pannonia, Egyetem 10, H-8200 Veszprém, Hungary, e-mail: kissgy@almos.uni-pannon.hu

² Department of Earth and Environmental Sciences, University of Pannonia, Egyetem 10, H-8200 Veszprém, Hungary

9th International Conference on Carbonaceous Particles in the Atmosphere Lawrence Berkeley National Laboratory, Berkeley, California, 12-14 August 2008

IPCC 2007

Reasons for uncertainty...

Role of organics

Since 1990s: Organic compounds alter the hygroscopic behavior of atmospheric aerosol particles and play a role in cloud formation \rightarrow They may influence the indirect aerosol radiative forcing (*Novakov and Penner, Nature 1993; Saxena et al., JGR 1996; Novakov and Corrigan, GRL 1996*)

Studies on

- the chemistry of water-soluble organic aerosol components
- CCN ability of organics including ST studies, HTDMA, CCNC measurements, etc.

The organic fraction is very complex. → Simplification → Experiments often performed with single organic compounds (e.g. CCNC studies by *Cruz and Pandis Atm.Env. 1997; Corrigan and Novakov, Atm.Env. 1999; Prenni et al., J. Phys. Chem.* 2001; Giebl et al., JAS 2002; Raymond and Pandis, JGR 2002; Kumar et al., ACP 2003; Hartz et al., Atm.Env. 2006)

Objectives

Ambient aerosol: mixture of inorganic salts + many organic compounds

In this study ST and osmometric measurements with

- organic model compounds mixed with inorganic salt
- HULIS isolated from ambient aerosol
- aerosol samples from BB and rural environment

in order to better understand the joint effect of complex mixtures on cloud formation.

Method

- 1. Preparation of solutions corresponding to different growth factors (GF)
- 2. Measurement of surface tension of the solutions

FTÅ 125/1000 tensiometer Method: pendant drop shape Sample: 1 drop Parallel analyses Typical analysis time: 1 minute

Method

- 1. Preparation of solutions corresponding to different growth factors (GF)
- 2. Measurement of surface tension of the solutions
- 3. Measurement of osmolality of the solutions

← Knauer K-7000 vapour pressure osmometer
 Knauer K-7400 semimicro osmometer ↓

Wide working range (5 mOsm-5 Osm) into a_w=0.9-1 Sample size: 1 drop / 150 μl Typical analysis time: 3 minutes

Method

- 1. Preparation of solutions corresponding to different growth factors (GF)
- 2. Measurement of surface tension of the solutions
- 3. Measurement of osmolality of the solutions
- 4. Calculation of water activity from osmolality data
- 5. Calculation of saturation according to Köhler-theory

$$p/p_0 = a_w \exp(2 \sigma M_w/(r \rho R T))$$

p = water vapour pressure over the droplet solution $p_0 =$ water vapour pressure over a flat water surface $a_w =$ water activity in the droplet solution $\sigma =$ surface tension of the droplet solution $M_w =$ molecular weight of water $\rho =$ density of the droplet solution (water) R = universal gas constant T = temperature

Inorganic salts

- 1. No effect on surface tension
- Remarkable effect on water activity (← dissociation)
 van't Hoff factor describes dissociaton and non-ideality

Low, Journal de Recherches Atmospheriques 1969

Surface tension of organic acids

Varga et al., ACP 2007

Moderate ST depression

Two extremes: oxalic acid \leftrightarrow cis-pinonic acid

Water activity of organic acids

Key parameters: density, MW, pK

The effect of low MW stronger acids (oxalic, maleic, malonic) is considerable. The effect of cis-pinonic acid is negligible

S_{crit} of dicarboxylic acids as a function of dry diameter

Oxalic acid ~ ammonium sulfate

Organic + inorganic mixtures

Water activity

Inorganic salts may suppress dissociation of organic acids (i.e. reduce *i*)

- In concentrated solutions (GF=2-3) $i \sim 1$ for organic acids
- In dilute solutions (GF=8-12) i > 1, but the inorganic effect is negligible

Interaction is expected only in the initial phase (GF ~ 2) of droplet formation

Surface tension of organic acid+inorganic salt (1:1) mixtures

No change for oxalic acid

No enhancement of ST depression with cis-pinonic acid (partially replaced!)

Water activity of organic acid+inorganic salt (1:1) mixtures

Considerable decrease in water activity by inorganic salts with both organics.

Köhler curves for cis-PA + ammonium sulfate mixture

Mixture activates at significantly lower S_c than pure cis-pinonic acid but higher S_c than pure ammonium sulfate.

S_{crit} of oxalic acid + sodium chloride

Mixtures with AS activate at similar S_c as pure AS or oxalic acid. 1:1 mixture with NaCl activates at lower S_c than pure oxalic acid.

Summary of experiments with model compounds

Kelvin effect:

- Inorganic salts do not enhance ST depression of organic compounds at relevant concentrations
- ST depression of mixed particles at a given GF is less than that for the pure surfactant

Raoult effect:

- Inorganic salts do not suppress the dissociation of organic acids
- Inorganic salts dissociate better than organic acids, so water activity of a solution at a given GF is less than that for the pure surfactant (dominant effect)

Mixtures activate at lower S_{crit} than pure organics studied

Experiments with HULIS

HULIS isolated from ambient (K-puszta) aerosol samples on an HLB SPE column.HULIS represent ca. 60% of WSOCMuch more complex than single organic model compounds shown beforeThe isolated HULIS fraction is practically free from inorganic ions.

Freeze dried aqueous extract of a summer aerosol sample collected at K-puszta, Hungary

Surface tension depression of HULIS

More efficient ST depression than for any model compounds (*Shulman et al.*, *GRL 1996*) $\sigma = 41-47$ mN/m at 1 g l⁻¹ vs. $\sigma = 66-71$ mN/m for model compounds above. Similar result with fog samples: 15-20% decrease at 0.1 gC l⁻¹ ~ 0.2 g HULIS l⁻¹ (*Facchini et al.*, *Atm. Env. 2000*) ST depression significantly enhanced in 2M ammonium sulfate (45-52%)!

Reason for ST depression?

Humic substances are known to be surfactants

Concentration of fulvic acid,g L⁻¹

Another reason for ST depression?

HULIS operationally defined (isolated on HLB SPE column) RP-LC-MS revealed the presence of other compounds: (*Kiss et al., Atm. Env. 2003*)

Another reason for ST depression?

Organosulfates = HULIS?

HULIS: characteristic UV, fluorescence, FTIR, MS spectra, chromatographic behaviour These have not been observed/examined for individual organosulfates (e.g. m/z=294) Organosulfates individually identified so far \neq HULIS

BUT!

There can be sulfur-containing organics in the unresolved HULIS fraction.

Samples from BB and K-puszta

Main difference: the whole WS fraction is involved (organics and inorganics)

Sample	Inorganic mass/Total mass (%)
BB flaming	2.4
BB smoldering	0.1
K-puszta spring	57
K-puszta summer	42
K-puszta fall	45
K-puszta winter	56

Surface tension of BB and K-puszta samples

Significant decrease in ST!

Water activity of BB and K-puszta samples

Lower a_w for K-puszta samples (esp. winter and spring) as a consequence of higher inorganic content.

Activation of aerosol particles

BB aerosol activate at higher S_c (lack of inorganics!) than rural aerosol from K-puszta No difference in S_c between seasons at K-puszta (ST counterbalanced by water activity) Mixed aerosol (org.+inorg.) from K-puszta activate at similar S_c as ammonium sulfate.

Model compounds (organic acids)

Surface tension (Kelvin effect) and dissociation (Raoult effect) of organic components are not influenced by inorganic salts in droplets relevant for cloud droplet activation.

Mixtures activate at lower S_c than pure organics studied.

HULIS

The HULIS fraction isolated from *ambient aerosol* samples have stronger surface active effect than *model compounds* examined so far. Organosulphates may play a role in it.

Aerosol samples from BB and K-puszta

Mixed (organic+inorganic) aerosol from K-puszta activates at similar S_c as AS. Water-soluble organics do not decrease S_c necessary for cloud droplet activation but increase CCN mass/size/number considerably thus playing a role in radiative forcing.

Acknowledgements

Thanks to:
A. Hoffer (BB samples from MPIC)
H-C. Hansson (VPO and FTA 125)
János Bolyai Research Fellowship of Hungarian Academy of Sciences
BACCI

Special thanks to the organizers of the 9th ICCPA!

Overview of samples

Model compounds

```
oxalic acid, NaCl (1:1, 4:1), AS (1:1, 4:1)
malonic acid
succinic acid, AS (1:1)
glutaric acid
adipic acid, AS (1:1)
malic acid
maleic acid
citric acid, AS (1:1)
cis-pinonic acid, AS (1:1)
NRFA, AS (1:1), SRFA, alHA, arHA
```

Aerosol samples

K-puszta (rural site, 4 seasons) Biomass burnining (oak)

Humic-like substances (HULIS) isolated from ambient aerosol + AS

S_{crit} of organic acids as a function of dry diameter

IPCC 2001

The carbonaceous fraction in the samples

Sample name	4F	16S	
Burning conditions	flaming	smoldering	
Colour of the filter	homogenous	homogenous	
TC (mg/m3)	14.0 (11.8 on average)	7.1 (10.2 on average)	
WSOC (% of TC)	70 (77 on average)	99 (96 on average)	
EC*	20	0	
WINSOC*	10	1	

The inorganic fraction in the samples

Sample name	4F	16S
Burning conditions	flaming	smoldering
Sulphate (µg/m3)	330	7.7
Nirate (µg/m3)	91	6.4
Chloride (µg/m3)	18	< 3
Potassium (µg/m3)	87	< 0.3
Ammonium (µg/m3)	2.9	2.0
Zn, Fe, Mg, Ca, Al, Na (µg/m3)	< 0.3	< 0.3

a.) oxalic b.) malonic c.) succinic d.) glutaric