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In this work we have developed a 2D unstruc-
tured Arbitrary-Lagrangian-Eulerian code. This
code is devoted to solve CFD problems for gen-
eral polygonal meshes with fixed connectivity.
Main components of the method are: I- aLa-
grangian scheme. Each polygon is split into sub-
cells. The compatible Lagrangian hydrodynamics
equations are solved during one time step and the
mesh is moved according to the fluid velocity -
see [6], [7], [5].
II- a Reference Rezone Jacobian Strategywhich
improves the quality of the untangled mesh and,
at the same time, requires the new mesh to be
close to the original untangled grid (from step II)
and preserves interfaces between materials - see
[2]. (An Untangling processensures the validity
of the mesh, if the mesh was tangled as a result
of the Lagrangian step. The method finds an un-
tangled mesh which is as close as possible to the
previous Lagrangian grid - see [4], [3]).
III- a Remapping methodwhich gives the linear
and bound preserving remapped hydrodynamics
variables on the new mesh - see [1], [8].
These three steps have been adapted to the sub-
cell description of the scheme and the polygonal
meshes. The untangling and the reference rezone
Jacobian processes deal now with general polyg-
onal meshes and preserve the interfaces between
materials. The remapping step is performed from
a subcell point of view and the accuracy of the
remapping stage has been improved with new
techniques from [9].
ALE INC. can be used as a purely Lagrangian
code (only step I is used), an ALE one (x La-
grangian steps are performed then steps II,III are
activated) or as an Eulerian one (steps I and III
are used and the remapping is done on the same
initial grid). Moreover the code can be used in
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Guderley problem non symmetric polygonal
mesh —Top: t = 0.0 — Middle: t = 0.6 — Bot-
tom: t = 1.0.
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Cartesian or cylindrical coordinates.
The figures are the simulation of the Guderley
problem: a unit disk (ρ = 1, p = 0) at rest is com-
pressed by a cylindrical shock wave. The intial
mesh is polygonal (either symmetric or with a
false center of convergence, located at(−0.5,0)
as in [6]). Time t = 0, t = 0.6, t = 1.0 are
printed showing the cylindrical symmetry preser-
vation with or without an initial symmetric polyg-
onal mesh.
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Guderley problem symmetric polygonal mesh —
Top: t = 0.0 — Middle: t = 0.6 — Bottom: t =
1.0.
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