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1.0 INTRODUCTION
NASA’s real-time Free Flight Simulation (FFSim) is designed to be a test bed for investigating
Free Flight technical, operational, and policy concepts and their associated procedures and pilot
and controller Decision Support Tools (DSTs).  The Autonomous Operations Planner (AOP)
and an advanced Flight Management System (FMS) are two major components that will be
evaluated with FFSim.  Three (among many) components of AOP are the intent inference,
information confidence assessment, and hazard prioritization modules.  These three modules and
a couple of other supporting data management modules are developed in this Research Task
Order (RTO) 30 effort.  Figure 1.1 illustrates the high-level design of RTO 30 developed
functions, and their interaction with other AOP and FFSim modules.
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Figure 1.1. High-level AOP functions, RTO 30 developed functions, and their interaction with
an Advanced FMS.
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Intent inference is implemented to infer future paths and states of nearby aircraft; this
type of intelligent information processing is a valuable input to conflict detection and resolution
algorithms, situation awareness modules, information ambiguity resolution, and fundamental to
each of these, trajectory estimation.  Information confidence assessment is necessary for each
AOP component to interpret the validity of the data from that component and not to over-react
to data that is uncertain.  Hazard prioritization is needed to rank order the important hazards
(e.g., flying into terrain is worse than flying into weather) and to facilitate the process of
notifying the aircraft crew about potential problems.  

This report is organized as follows:

Task 1) Intent Inference is covered in Chapter 2,
Task 2) Confidence Assessment is covered in Chapter 3, and
Task 3) Hazard Prioritization is covered in Chapter 4.

Chapter 5 presents our conclusions and recommendations.  Chapter 6 presents references.
Chapter 7 presents the following:

Appendix A: Functional Design Requirements for RTO 30,
Appendix B: Algorithms to convert grid weather data to triangulated data, and
Appendix C: Derivations of CPA and Time-To-CPA for Hazard Detection.
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2.0 INTENT INFERENCE
This research effort investigates the theory and implementation of an intent inferencing algorithm
applicable to Free Flight [RTCA95]. As new Free Flight procedures remove jetway routing,
positive control, and other constraints, an added emphasis will be placed on distributed control
techniques.  In the AATT program at NASA, such a system is being researched by the Distributed
Air/Ground Traffic Management (DAG TM) Team [DAG99].  In Free Flight, Automatic
Dependent Surveillance – Broadcast (ADS-B) or some other communications mechanism will be
used to communicate state and intent data between aircraft in a distributed control system.  In such
a system, state and intent information (e.g., the position and speed for state information and for
intent information, the next one or two waypoints or even the current flight plan) will be exchanged
between aircraft.  The Autonomous Operations Planner (AOP) being researched at NASA Langley
demonstrates such a flight deck.  There is a need for intent inference in the AOP system since in a
Free Flight environment there is no guarantee that, even if flight plans or intent are broadcast to
nearby aircraft, these plans will be followed.  Even with acceptable Required Navigation
Performance (RNP) levels, there still is the possibility that the crew of an aircraft might have
changed their plans without inputs into the Flight Management System (FMS) or ADS-B
broadcast, the equipment for ADS-B broadcast might fail, or deviations from a flight plan might be
excessive due to strong winds, weather avoidance, or emergency diversions.  

Figure 2.1 illustrates the intent inference problem.  In this example, an aircraft has lateral
deviations due to flight technical and navigation errors while flying to a way point, severe weather
is just ahead, and there is a good reason why the aircraft might be (1) flying North of the storm
(because the current heading is that way), (2) flying directly to the next way point and ignoring the
weather (because all the past data indicates this), or (3) flying to the South of the storm and
skipping a way point (because the airline has a policy to avoid storms and arrive on schedule).  In
general, the problem of intent inference is to determine:  What is the aircraft intent?

Figure 2.1. What is the aircraft intent?

In RTO 30 research, intent data is broadcast from one aircraft to another and the following
cases information processing of intent information need to be performed:

1. The broadcast intent message is present, but needs to be verified true;
2. The broadcast intent message is present, is verified false (or erroneous), and an
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3. The broadcast intent message is missing (due to data dropout or an unequipped
aircraft), and the intent needs to be inferred from all available information.

In each of these three cases, the intent inference algorithm designed in this research effort will
result in the intent of the aircraft and a level of confidence in the intent inference conclusion.

By matching observed state changes or pilot actions to a decision making model residing in
an intent inference knowledge database, as we show in this Chapter, one can infer intent. For the
aircraft situation in AOP, nearby aircraft motion (e.g., following the next one or two waypoints, a
filed flight plan, Standard Instrument Departure (SID), etc) often follows a set of well defined and
ordered actions.  In the literature, Zhao, et al [ZHH98] specify several classifications of such pilot
intent models, including:  motive intent, objective intent, trajectory intent, and cost intent. These
actions are modeled in the intent inference knowledge database using several engineering formats,
and the knowledge base can be searched for an inferred intent with one of several correlation
functions.  We present an approach to solving this problem which combines a tracking filter
(Kalman filter or a low pass filter) to estimate the state information and to predict short term
trajectories, and intent models to predict long term paths.  

Our approach to solving the intent inference problem has unique benefits and does not
parallel any other approach in the literature. Other intent inference methodology include the
following:

•  Operator Plan Analysis Logic (OPAL) [G94, HG89, RGC88], where plan-goal
graphs, as shown in Figure 2.2, are used to explain the causal relationship
between the observed discrete actions and the goals or intent of the operator.

Figure 2.2. An Plan-Goal Graph (PGG) is an acyclic graph connecting plans
and goals, including “and” and “or” connections (as shown).

•  Operator Function Model expert system (OFMspert) [BM93,CMJ95,RJM88],
where an expert system uses a blackboard architecture and operator function
models, a heterarchic-hierarchic network of nodes that represent operator
control functions, to replicate and infer the explanation of the actions of the
human operator.  

•  Generalized plan recognition [KaA86, SSG78], where a deductive inference
system performs intent inference by recognizing the plan the operator is
implementing, based on observations of the operator, an action taxonomy (an
exhaustive set of sequences of discrete admissible actions), and constraints.

•  Event tracking using Soar [TR94, TR95, TR96], where the Soar knowledge
based system is used to reason about the decisions made in the problem solving
task of the operator, triggering rules that create problem space, goals, and
subgoals that lead to an explanation of the situation.

These methods are primarily used for discrete intent inference problems.  These discrete inference
methods are not applicable to the continuous intent inference problem of RTO 30.  As shown in
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Table 2.1, continuous intent inference fills in the gap between trajectory prediction and discrete
intent inference.   Tracking filter-based prediction, while useful (as shown in Chapter 3) for short
time periods ahead of an aircraft, does not address the intent inference problem when it comes to
explaining factors like weather, special use airspace, turbulence, etc., which are factors not easily
incorporated into the aircraft equations of motion modeled in the tracking filter.  Using a tracking
filter is most applicable when coupled with the intent inference method as we show in this report.
In summary, the benefits of our approach to intent inference are:

•  provides a method of verifying broadcast intent, if a broadcast intent exists,

•  by exploiting a tracking filter, accounts for missing or delayed data collection,

•  by exploiting a tracking filter for trajectory prediction, provides both near-term
trajectory prediction and far-term flight path prediction, and

•  provides a continuous output of the best estimate of the intent of the aircraft
being tracked by the AOP system.

Table 2.1. Prediction theories and the time of horizon where the theory is applicable
to a general problem domain.

PREDICTION
THEORY

Tracking Filter
Prediction

Continuous Intent
Inference

Discrete Intent
Inference

APPLICATION
Trajectory Estimation
and Prediction Path Prediction Discrete Event

Changes
TIME

HORIZON
Seconds –
Tens of Seconds

Tens of Seconds –
Minutes

Asynchronous /
Event Driven

The intent inference problem can affect the actions of the ownship as well as other nearby
aircraft.  For example, as shown in Figure 2.3, Yang and Kuchar [YK98] illustrates the difference
between an aircraft that is informed about the intent of another aircraft compared to the aircraft that
is not informed.  In this example, the difference is between a correct alert and a false alert for
separation assurance conflict detection.  If the intent is not known, then a false alert occurs due to
the fact that a high probability of conflict exists if the nearby aircraft continues to fly its current
course.  In this case one or both aircraft are likely to perform conflict resolution maneuvers when it
is not necessary. If the intent of the nearby aircraft is known, then there is no conflict alert and both
aircraft simply need to monitor each others actions for compliance with the intent.  
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Figure 2 .3 .  Conflict detection without knowledge of intent (left) and with
knowledge of intent (right) based on the work of Yang and Kuchar [YK98] (printed
with permission of Prof. J. Kuchar, M.I.T., Dept. of Aeronautics and Astronautics).

In the next sections of this report, we detail the theory behind our intent inference method,
we provide some scenarios that can be used to verify our intent inference algorithms, and we
present the process required to develop an intent inference module for the AOP system.

2.1 Theory
The intelligent inference algorithm is based on the theoretical foundation Intelligent Path Prediction
for Vehicular Travel [K92, KA91, KA93, KA95].  Our solution will incorporate any broadcast or
data linked intent messages from the nearby aircraft being tracked. Furthermore, when domain
knowledge data are available (e.g., weather data, terrain data, SIDs, STARs, etc.), these data will
be taken into consideration by the intent inference module. The intent inference module will be able
to verify that a tracked aircraft is following the intent that is broadcast, and, if the aircraft is
seemingly following some other intent, then the module will identify the most plausible intent for
the aircraft being tracked. Finally, the intent inference module will also be able to use the most
plausible intent to predict the future motion of the vehicle being tracked.  Next, we provide the
basis behind this theory.

2.1.1 Basis of Theory

The process of human flight control can be analyzed through two classical theories: control
theory and psychology.  From control theory, flying an aircraft incorporates:  stability, control,
guidance, and navigation. From psychology, reasons for making control decisions while flying an
aircraft can be explained by understanding human decision making processes.  

Based on the analysis of Stengel [S93], a model for intelligent flight control can be
postulated.  This model includes sensing, regulation, and decision making, as shown in Figure 2.4.
The key sensory inputs to the human are associated with seeing (ownship and other aircraft,
runways, etc.), feeling (forces felt by the body), and hearing (sounds correlated with speed and
inner ear effects from gravity).  These senses are connected to the brain to influence decision
making.  Decision making governs regulation with neuromuscular responses driven by learned
associations between stimuli and desirable actions.  Furthermore, through the decision making
process the pilot plans and sets goals that affect navigation and guidance command inputs.  Such
planning and decision making is dependent on the pilots knowledge base of both rules of flight
and past experience.

nmi nmi
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Figure 2.4. Process for human decision making while flying an aircraft.

For the aircraft model, navigation, guidance, and control functionality might be supplied by
the pilot or by computer-based control systems (e.g., FMS).  For the modestly equipped aircraft, a
pilot will perform all guidance and navigation logic and will combine these with regulation logic to
affect control inputs (minimally, the stick, throttle, and rudder).  In the most advanced cockpits,
navigation, guidance, and control systems are automated with potentially minimal input by the
pilot.  For instance, autopilots allow the pilot to command a constant heading angle or airspeed.
The maneuvering precision will differ based on whether the tasks of navigation, guidance, and
control logic are performed by a human pilot or by automatic control.

The human decision making model has a hierarchical structure.  In the inner most loops,
stability augmentation and reflexive control is performed with fast update rates, perhaps 1-10 Hz.
In the outer loops, guidance and navigation changes may be made every minute to ten minutes.
The central nervous system supports such a hierarchy for decision making by providing a structure
that includes declarative actions, procedural actions, and reflexive actions – this is the basis of the
intelligent flight control system proposed by Stengel [S93].  In the research of intent inference, we
will next show that this hierarchical structure and separation between declarative actions from
reflexive actions is also useful.

Next, consider the relationship between the human decision making process of flying an
aircraft and the problem of predicting the intent and path of an aircraft being observed by an outside
observer. These concepts are similar but different:

•  Intent Inference is the process of determining what the tracked vehicle is most
likely attempting to do.

•  Path Prediction is the process of determining how the tracked vehicle will most
likely accomplish what it is intending to do.

The path of an aircraft is directly a result of the control inputs determined by regulation and/or
guidance decisions.  The intent of the pilot is to use guidance and control inputs to follow a path
plan or a navigation plan, e.g., a flight plan.  In accordance with the aircraft flight control model
set forth so far, intent inference is related to inferring the declarative and procedural decisions of
the pilot, and path prediction is related to inferring the path that the pilot attains from regulatory and
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reflexive control inputs.  They are related through the hierarchical structure that was presented
earlier.

Intent inference and path prediction are solved simultaneously in our approach.  We will
first discuss these individually, and then we will show how the two are combined.  Intent inference
may be considered to be at a higher level of abstraction than path prediction, since intent inference
specifies what and path prediction specifies how.  Predicting the intent of a vehicle can be
abstracted into the process presented in Table 2.2. Likewise, predicting the motion of a vehicle can
be abstracted into the process presented in Table 2.3.

Table 2.2. Process for intent inference.

Step Process for Intent Inference

1 Build a knowledge database of plausible intent models for the vehicle being tracked and
domain knowledge about the environment the vehicle is traveling through

2 Observe and record state information about the vehicle being tracked and nearby traffic,

3 Best fit the plausible intent models with the observed state information and determine
the “correlation” of fit, and

4 Rank the intent models by “correlation” of fit to determine the most likely intent of
the observed vehicle.

Table 2.3. Process for path prediction.

Step Process for Path Prediction

1 Build a dynamics model for the vehicle being tracked, based on the inferred intent of the
vehicle,

2 Observe and record state information about the vehicle being tracked,

3 Estimate states and/or parameters in the dynamics model whether observed directly or
not, and

4 Project the dynamics model into the future in order to predict future motion.

Since the process for intent inference and the process for path prediction relate in a
hierarchical nature, we combine these processes into a single algorithm that both predicts intent and
predicts the future path of the aircraft being tracked, as shown in Table 2.4.  Note that because of
the hierarchical nature of decision making, the intent is likely to remain constant for a long time as
inner loop commands change more frequently.  If path prediction is pursued with very short look-
ahead times, then the outer loop guidance and navigation commands can be assumed to be
constant.  However, as look-ahead times become longer, one should expect that the guidance and
navigation commands may change, depending on where the pilot is in terms of following the outer
loop decision logic.  Thus, the model used for the path prediction must adapt to the context set
forth by the outer loop decisions.  From this discussion, the hierarchical structure explains why
intent inference is necessary to do accurate path prediction, especially when the prediction time is
long enough to include the declarative or procedural decisions of the outer loops.
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Table 2.4. The combined process for intent inference and path prediction.

Step Process for Intent Inference and Path Prediction
1 Build a knowledge database of plausible intent models for the vehicle being

tracked and domain knowledge about the environment the vehicle is
traveling through

2 Observe and record state information about the vehicle being tracked and
nearby traffic,

3 Build a dynamics model for the vehicle being tracked, based on the
plausible intent of the vehicle,

4 Estimate states and/or parameters in the dynamics model whether observed
directly or not, and

5 Combine the plausible intent models with the observed state information
and determine the “correlation” of fit, and

6 Rank the intent models by “correlation” of fit to determine the most likely
intent of the observed vehicle.                         RETURN INTENT

7 Project the dynamics model into the future in order to predict future
motion.
                                                                         RETURN PREDICTED
PATH

2.1.2 Intent Inference Knowledge Base and Domain Knowledge
The intent inference knowledge base consists of plausible cost criteria for travel and domain
knowledge.  The first step in building an intent inference module is to use knowledge engineering
and operations analysis to build this knowledge base.

The theory of intent inference is based on identifying a particular intent model (Step 4) from
a set of cost criteria that explain intent (Step 1).  For this purpose, the aircraft flight domain has a
rich set of cost criteria that will reside in the intent inference knowledge base, including but not
limited to the cost criteria listed in Table 2.5. A set of cost criteria is established in a database
suitable for use by the intent inference algorithm.  This database holds all the associated constants
and parameters needed to provide the direction that an aircraft should proceed given any arbitrary
set of initial conditions.  While some intent models are quite simple, for instance the model to hold
heading, others are very complex, for instance the model to avoid weather.

Table 2.5. Plausible cost criteria for intent inference in the aircraft Free Flight domain.

Criteria Intent Description Required Data and Domain Knowledge Needed
to Complete Intent Model

C1 Hold Heading Velocity Data

C2 Hold Altitude Altitude Data

C3 Hold Speed Velocity Data or Airspeed Data

C4 Hold Course Position and Velocity Data

C5 Hold Coordinated Turn Velocity Data and
Bank Angle Data or Turn Rate Data
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C6 Go To Waypoint (fly over) Position and Velocity Data and
TCP or Flight Plan Data or
Navigation Database

C7 Skip Waypoint; Fly to Next Waypoint
(fly by)

Position and Velocity Data and
TCP+1 or Flight Plan Data or
Navigation Database

C8 Fly Direct To (waypoint, final approach
fix, metering fix, or airport location)

Position and Velocity Data and
TCP or Flight Plan Data or
Airport, Metering Fix,  or Final Approach Fix Data

C9 Return to Flight Plan from Heading
Deviation

Position and Velocity Data and
Flight Plan Data

C10 Return to Flight Plan from Speed
Deviation

Position and Velocity Data and
Flight Plan Data

C11 Return to Flight Plan from Altitude
Deviation

Altitude and Velocity or Altitude Rate Data and
Flight Plan Data

C12 Return to Flight Plan from Lateral
Offset (hold radial)

Position and Velocity Data and
Flight Plan Data

C13 Fly a list of Waypoints (Flight Plan,
SID, or STAR)

Position and Velocity Data and
SIDs and STARs Database or
Flight Plan Data

C14 Avoid Special Use Airspace (SUA) Position and Velocity Data and
SUA Data (location and time)

C15 Avoid Turbulence Position and Velocity Data and
Turbulence Report Data (location and time)

C16 Avoid Hazardous Weather Position and Velocity Data and
Weather Precipitation Data

C17 Avoid Aircraft Position and Velocity Data for Ownship and
Position and Velocity Data for Intruder(s) (Traffic Data) and
Alert Zone of Intruder Aircraft and
Protected Airspace Zone of Intruder Aircraft

C18 Avoid Terrain Position and Velocity Data and
Terrain Database

C19 Avoid Hazard Region (General) Position and Velocity Data and
Hazard Region Data (location and time)

C20 Fly Holding Pattern Position and Velocity Data and
Holding Pattern Data

C21 Fly Wind Optimized Route (to
Waypoint or Airport)

Position and Velocity Data and
Wind Data or
Waypoint Database or
Airport Database or
FMS Data (describing wind optimized route)

C22 Meet Required Time of Arrival RTA (at
waypoint or Final Approach Fix)

Position and Velocity Data and
FMS Data (describing RTA optimized route)

Next, as indicated in Table 2.5, the intent inference knowledge base requires domain
knowledge.  Domain knowledge is used to build the situation assessment model, or a map of the
situation, which includes the factors that might influence the pilot’s decision making.  The domain
knowledge database may include the information in Table 2.6.  
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Table 2.6. Data categories and domain knowledge databases needed for intent inference.

Data Data Description Database or Module
D1 Position  (Latitude, Longitude, Altitude) State Data Estimates from Data Fusion Module
D2 Velocity (North, East, Vertical) State Data Estimates from Data Fusion Module
D3 Acceleration (North, East, Vertical) State Data Estimates from Data Fusion Module
D4 Bank Angle State Data Estimates Module
D5 Airspeed State Data Estimates Module
D6 TCP (Waypoint) ADS-B Module; Navigation Aid Database
D7 TCP+1 (Waypoint) ADS-B Module; Navigation Aid Database
D8 Navigation Equipment Performance ADS-B Module
D9 Flight Plan Flight Plan Data from ADS-B Module ; CPDLC

Module
D10 SIDS and STARS Navigation Aid Database
D11 Airport Location Airport Database
D12 Alternate Airport Location Airport Database
D13 Final Approach Fix Location Airport Database
D14 Metering Fix Location Airport Database; Navigation Aid Database
D15 Conflict Detection Alert Status CD&R Module
D16 Conflict Resolution Waypoints CD&R Module
D17 Precipitation Hazard FIS Module
D18 Precipitation Hazard Avoidance Route Hazard Avoidance Module
D19 Special Use Airspace (SUA) FIS Module
D20 Special Use Airspace Avoidance Route Hazard Avoidance Module
D21 Turbulence Turbulence Data from FIS PIREP
D22 Turbulence Airspace Avoidance Route Hazard Avoidance Module
D23 Terrain Data Terrain Database
D24 Terrain Avoidance Route Hazard Avoidance Module
D25 Hazard Region (General) Hazard Region Data
D26 Hazard Region Avoidance Route Hazard Avoidance Module
D27 Wind Field Data FIS Module
D28 FMS Generated Route FMS Module

Note: All data is for nearby aircraft unless otherwise specified.

The domain knowledge comes from three sources in the AOP.  These sources are:

1. Inputs via the data fusion module – this module takes inputs from ADS-B, TIS, FIS,
and CPDLC and provides the intent inference module with necessary data and
confidence levels for these data.

2. Other modules within AOP – these modules include the GPS receiver, the CD&R
module, a hazard avoidance module, and FMS Module which provide data to the intent
inference module for reasoning about intent.

3. Databases onboard AOP – these databases provide static data, including airport,
navigation, SUA, and terrain elevation data.

The specifications for the input modules and required databases are identified in Table 2.7.
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Table 2.7. Required data inputs and databases for intent inference.

Modul
e

Description Data Required

M1 Data Fusion Module 4. Ownship State Estimate (FMS Data):
    Ownship Position, Velocity, Heading
2. ADS-B Data
    Nearby Aircraft Position, Velocity, Heading
    TCP, TCP+1, Navigation Uncertainty Category – Position, Flight Plan
    Emergency/Priority Status, Alternate Airport, Time-to-Go to TCP,
    Turn Indication

5. TIS Data (as an alternate source of traffic data)
    Nearby Aircraft Relative Position, Heading, Altitude Rate

6. FIS Data
    Weather Map (dBZ Grid), Polygon Hazard Region Data,
    Turbulence PIREP, Wind Field Data

7. CPDLC Data
    Vertical Request (level),
    Vertical Clearance (maintain level, climb to, descend to),
    Crossing Constraints (cross position at level,
                                       cross position at and maintain level at speed)
    Route Modification (proceed to, cleared route, fly heading),
    Speed Changes (maintain, maintain or greater, maintain or less),
    SUA Status, Mayday

M2 CD&R Module 1. Alert Zone Status (Alert or No Alert)
2. Heading Conflict Resolution Solution Waypoints
3. Altitude Conflict Resolution Solution Waypoints
4. Speed Change Conflict Resolution Waypoints

M3 FMS Module 1. FMS Data describing flight path as (latitude, longitude) linked list that
nearby aircraft would take if performing a wind optimized route to a
specified waypoint

2. FMS Data describing flight path (as (latitude, longitude) linked list) that
nearby aircraft would take if performing a RTA optimized route to a
specified waypoint

M4 Hazard Avoidance
Module

Input data may be weather data, SUA, terrain, or any general hazard region;
Outputs are:
1. Waypoints describing avoidance route to TCP location
2. Waypoints describing avoidance route to TCP+1 location
3. Waypoints describing avoidance route to Metering Fix Location

M5 Airport Database Airport Location, Alternate Airport Location, Final Approach Fix Location
M6 Navigation Database Navaids Data (latitude, longitude, altitude)
M7 SUA Database SUA Regions description, if not provided in the CPDLC message
M8 Terrain Database Terrain Elevation Data
M9 Obstacle Database Obstacle Data

2.1.3 Method of Path Correlation
The actions of a decision maker may be observed and analyzed both locally (instantaniously) and
globally (over a time window).  For instance, a local decision is a change in state in an
instantaneous or very short time horizon, such as a single decision to hold course, turn, climb,
descend, etc.  A global decision is a series of local decisions which occur over a longer time
horizon, perhaps a sequence of decisions to solve a navigation task to capture a way point, follow
a STAR, avoid weather, etc.  For instance, while manually flying a flight plan, if a pilot turns to
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capture a way point after drifting away from the nominal flight plan, the local decision might be to
turn left or right towards the way point.  If one looks at the state variables at any one instant, it
might be difficult to infer that the pilot is flying to a way point, as depicted in Figure 2.5.  For this
discussion, we assume that the heading direction and the course are the same directions.

Mathematically, by defining a unit vector ψ
r

 in the direction of the heading ψ  and a unit vector φ
r

in the direction φ  to the way point, then the dot product:

φψ
vv ?=nCorrelatioLocal (2.1)

will indicate (locally) if the aircraft is heading towards the way point (dot product of 1) or away
from the way point (dot product –1). This dot product acts as a good measure of correlation
(providing a number between –1 and 1) between the intent to fly directly to the way point and the
current aircraft state as indicated by the current heading.

                          

Way PointDirection to Way Point

Current Heading 

ψ
φ

Figure 2.5. A pilot is not heading directly to a way point, but is generally heading that way.

Next, this local analysis of the intent of the aircraft can be extended to a global analysis by
considering the correlation between a history of state variables with a series of decisions that would
support a consistent intent.  For the fly-to-next-way-point example, one would continuously
integrate the local correlation measure (the dot product) over the observed flight path:

?=
pathflight

ds
k

nCorrelatioGlobal φψ
vv1

(2.2)

where ds is a differential element along the flight path and k is a non-dimensionalization constant
based on the cost of flight.  In this research, a good value for k is simply the arc distance between
the current location of the aircraft and some characteristic domain location (e.g., a waypoint,
airport, or other applicable location):

=
pathflight

dsk (2.3)

In the previous work of [K92], several global correlation functions were investigated,
including fading window and moving window functions, as shown in Figure 2.6, and functions
that accommodate lost data or data arriving at discontinuous update rates.  Thus, this theory will
address the requirement FDR✠1.11 that the algorithm gracefully handle situations where the nearby
aircraft data arrives intermittently or with occasional unreliable data points.  The global correlation
function applicable to a moving window of size wl  is described by:

                                                
✠ Functional Design Requirements (FDRs) are listed in Appendix A.
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?=
l

l

ds
k

nCorrelatioGlobal
0

1 φψ
vv

(2.4)

where },0max{0 wlll −= , and k is defined appropriately.  In addition to a moving window, a
fading memory moving window correlation function can also be used, as discussed in [K92].

Way PointDirection to Way Point

Current Heading 

ψ
φ

φ

φ

φ φ

φ

-1

-2

-3

-4

-5

Moving Window Time History

Previous Optimal Directions to Way Point

Figure 2.6 . A global analysis investigates the previous headings and previous
optimal directions to the way point in order to collect data to support or reject the
conclusion that the aircraft is flying to the way point.

The global correlation measure can be used to validate the broadcast intent message.  The
global correlation measure has a range:

11 ≤≤− nCorrelatioGlobal . (2.5)

If the broadcast intent is used to model the unit vectors φ
r

, as explained in the next section, and if
the correlation value is high and close to the value 1, then the broadcast intent can be considered
valid.  If the correlation value is zero or negative, then the broadcast intent is either invalid or is
simply a poor model of intent.  Engineering analysis and judgement must be exercised to determine
when to decide if the global correlation value is high enough to consider an intent validated.
Experimentation will be used to investigate the global correlation values (defined with a moving
window) for typical circumstances of aircraft attempting to follow a constant intent but having
normal guidance system and flight technical errors.  After experimentation, a cutoff for identifying
valid vs invalid broadcast intent messages will be determined.  In any event, if the intent inference
algorithm is capable of presenting an intent that better explains the motion of the aircraft in
comparison to the intent that is broadcast by the aircraft, then this additional information should
probably not be dismissed.  More than one explanation of intent might apply at one time, for
instance, flying a particular flight plan and flying to the next waypoint as described in the flight
plan might both have very high global correlation values and are both quite valid intent models.

2.1.4 Decision Making Maps for Plausible Intents
A cost of travel or cost criterion C determines the optimal (or near-optimal, as discussed later in
this section) decisions that would be made to solve vehicle navigation tasks given any initial
condition. For instance, the minimum distance to a way point has a local cost c=1 where the total
distance to the way point solves the mathematical problem:

==
pathflight

dsCTravelofCost 1 . (2.6)

However, distance is only one of many useful metrics for travel, so the cost of travel is generalized
to:
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==
pathflight

dstzyxcCTravelofCost ),,,( (2.7)

where the local cost function c(x,y,z,t) may be a function of many domain variables (e.g., the
presence of weather, turbulence, another aircraft, or Special Use Airspace, etc., as recorded in the
intent inference knowledge base), which determines a positive value for c.  In a specific intent
model, there is only one value for c defined for every point in space (x,y,z) and for any time t.
This is the most general form of the cost of travel C which forms the basis for the work performed
in this RTO 30.  

Mathematically, the motion of the aircraft over time determines the set of heading unit
vectors ψ

r
 which point in the direction of the velocity of the vehicle. The gradient C  determines

the direction for the unit vector φ
r

.  A map of unit vectors φ
r

 can be derived from the gradient C

at multiple points as shown in Figures 2.7 and 2.8.  In mechanization, the entire map is not
needed, only the gradient information at the current and past locations of the aircraft are needed for
the correlation function, eq. (2.4).  In this RTO 30 work, we will specify how the direction for the
unit vector ψ

r
 can be established within the intent inference module or how it can also be obtained

by analyzing the results from a function call to a trajectory optimization module, such as that being
built in RTO 29. Note that the “correlation” of fit (Step 4) is determined by correlating unit vectors
φ
r

, determined by the gradient C , with the observed state data. If future motion is to be
predicted, the cost criterion C that best explains the motion of the aircraft can be used to generate
the predicted future motion by exploiting the technique of dynamic programming.  Note as stated in
FDR1.12 and FDR1.13, there must be care taken for such dynamic programming to work under
the computer size and speed limitations of modern avionics platforms.  Thus, the dynamic
programming search horizon will extend out to a limited range in front of the aircraft with a grid
sizing that is limited by the avionics requirements.
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Figure 2.7 . Example of the optimal decisions (headings) that should be used to
fly a constant heading at any initial condition.

Hazardous airspace constraints may be modeled for Special Use Airspace (SUA may
include restricted airspace, alert areas, and Military Operations Areas (MOAs)), Flow-Constrained
Areas (FCAs), turbulence regions, or hazardous weather avoidance regions, such as SIGMETs. A
constraint region CNO GO is simply defined by a list of vertices that specify a polygon region:

)( 21 nGONO cccPolygonC K= (2.8)

where nccc ,,, 21 K  locate the polygon vertices. Figure 2.9 illustrates the polygon constraint region



17

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20
Minimum Distance to a Waypoint

nmi

n
m
i

Figure 2.8 . Example of the optimal decisions (headings) that should be used to
fly to a way point using minimum distance to travel to the way point.

model for a SUA region north of LAS. SUA may be restricted at only specific times of day.  Thus,
SUA polygon constraint regions modeled have a list of vertices and a time period associated with
them.  If the constraint is inactive then the intent inference algorithm will simply ignore the SUA.
With constraint regions as shown in Figure 2.10, the minimum distance route to a waypoint can be
determined using the SUA as a constraint. In general, though, a hazard avoidance algorithm may
have to be consulted to arrive at the set of waypoints that avoid the hazard.  In such cases, for
instance with weather avoidance routes, a set of weather avoidance routes is more useful than
simply the optimal weather avoidance route, since the pilot may fly any of the weather avoidance
routes.  Figure 2.11 illustrates such a mapping of optimal directions to proceed in a weather
avoidance problem.

In an iterative manner, intent models are coded and tested one at a time.  The easiest intent
models are addressed first, with more complex models later. The process pursues flying to a
waypoint and holding altitude before addressing holding patterns, weather avoidance, and conflict
detection and resolution intent models.  In general, models are build individually and in some cases
by building up the complexity of a previously built intent inference model.
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Figure 2.9.  Modeling of a Special Use Airspace (SUA) region North of Las Vegas.

Figure 2.10. Example of the optimal decisions (headings) that should be used to
arrive at the way point using minimum distance to travel to the way point subject to
avoiding SUA airspace from any initial condition.
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Weather Avoidance Route to a Waypoint

Figure 2.11. Example of the optimal decisions (headings) that should be used to
arrive at the way point (with a South heading) using a weather avoidance route.

A unique feature of our method is that it is capable of considering multi-objective criteria
and near-optimal criteria for travel.  For example, sometimes a pilot may be avoiding weather while
skipping a way point, or, a pilot might be avoiding SUA or bad weather while meeting a Required
Time of Arrival (RTA).  When applicable, multi-objective optimization criteria are captured in the
theory by use of convex combinations of cost criteria (Step 3), modeled by:

2211 CCC αα += (2.9)

where the candidate cost criterion C explains the pilot intent by combining two objectives C1 and
C2 weighted by α1 and α2.  The proposed approach can best fit the parameters α1 and α2 to explain
the past observed state history and then to model future intent. Also, the proposed approach can
also be extended to model near-optimal decisions made by a pilot.  As described in [KA95], a near

optimal cost criteria C
~

 is within a small tolerance ε of being optimal:

CC )1(
~ ε+≤ (2.10)

where C is the optimal.  The parameter ε is determined by analyzing the state data of the nearby
aircraft.  For example, if an optimal decision policy C is to minimize the time to the next way point,

then the near-optimal decision policy C
~

might be to come within 10% (e.g., ε=0.10) of the
optimum arrival time. Using multi-objective cost criteria and near-optimal cost criteria are two
methods of expanding a simple basis set of cost criteria, so that if needed in the AOP application, a
very rich set of cost criteria can always be available for explaining the intent of a pilot.
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2.2. A Tracking Filter to Facilitate Better Near-Term Trajectory
Estimations
The proposed solution to intent inference is coupled with a tracking filter in order to produce state
estimates and to predict motion spanning near-term (e.g., seconds to minutes) to far-term (e.g.,
minutes to hours) prediction times.  This tracking filter is a Kalman filter when the ADS-B data is
available, and a Low Pass Filter (LPF) when only TIS-B data is available, as discussed in Chapter
3.  A tracking filter by itself could not within reasonable accuracy predict intent beyond near-term
time horizons, since the tracking filter in its general form is not capable of modeling a knowledge
base as diverse as the one described for this application. However, the intent inference method
described so far, while applicable to both near-term and far-term predictions, can be enhanced by a
tracking filter for producing nearby aircraft state estimates, better (more accurate) near-term
trajectory predictions, and a measure of uncertainty of these estimates.

The tracking filter provides a convenient sequential fading window filter.  It provides the
best estimate of the state variables needed for the correlation function, equation (2.4), of the
intent inference method.  Thus, it assists on the input side of the intent inference module by
providing stable estimates of the state variables, even if, for instance, the state variables do not
arrive at a continuous uninterrupted rate. For example, the tracking filter would be useful for
estimating the inputs during lost transmissions of ADS-B or other input sources.  Chapter 3 will
go into fine detail as to how the tracking filter is used for estimating state variables and assigning
confidence levels to them. While the tracking filter can assist the intent inference algorithm with
stable inputs, conversely, the intent inference method proposed in this RTO can be used to
adjust tracking filter parameters, such as the process noise.  With these adjustments, a tracking
filter can produce better near-term trajectory predictions for the nearby aircraft.

The same tracking filter that is used for confidence assessment can also be used for path
prediction in the intent inference algorithm.  Thus, there will be only one tracking filter central to
both the confidence assessment module and the intent inference module.  The confidence
assessment module will use the tracking filter for producing the best estimate of the state variables,
and the intent inference module will use the tracking filter to project forward in time for path
predictions.

2.3 Scenarios
The engineering approach for testing the intent inference algorithm includes the use of several
scenarios; these scenarios are reviewed next.  First, we present a theoretical scenario to understand
analytical variations in intent model correlation values with respect to some common variations in
flight conditions.  Then, several simulation based test scenarios are enumerated.  Simulation-based
test scenarios are designed to test the merits of several plausible intent models while other intent
models should show no or little correlation with the data of the scenario.  Real or synthetic data can
be used in the test scenarios, based on the availability of data.

2.3.1. Theoretical Scenario:  Investigation of Flying to a Waypoint
The geometry of this scenario is described in Figure 2.12, where an aircraft is attempting to fly
along the x-axis from the origin to the waypoint located at position x=a. The location of the aircraft
is described by (x,y).  In this analytical study, we consider flight paths that are modeled through
analytical, mathematical expressions.
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Direction to Way Point

ψ
φ

Figure 2.12. A pilot with aircraft located at (x,y) is heading to a waypoint located at (a,0).

We assign the cost to travel to be a uniform unitary weight c(x,y,t) = 1, so that:

=
pathflight

dsC 1 , (2.11)

where we expect the pilot is trying to fly a straight line to the waypoint, thus minimizing the cost to
the waypoint.  

Case I is the ideal decision making path for the perfect autopilot or pilot, where the aircraft
flies perfectly along the x-axis to the waypoint. This example is the ideal Case I, described
parametrically by the function:

0=
=

y

tvx x
(2.12)

where vx =1 is the ground speed and t is time.  To define the constant k for path correlation, we use
the function k=x, which basically describes the path of the ideal path length as a function of time t.
From this, we have a global correlation function:

11
11

0

==?=
x

ds
x

ds
k

nCorrelatioGlobal φψ
vv

(2.13)

where 1=?φψ
vv

 for all time t since the aircraft flies in the direction of the optimal path for all time t.
This Case I provides the baseline for other flight paths to be compared.  

Case II and III consider a pilot who drifts off of the x-axis in a motion that is described by
the analytic function:

)sin(
a

tn
Ay

tvx x

π=

=

(2.14)

where vx =1 is the ground speed, t is time parameter, n is a variable that describes the sinusoidal
drift with amplitude A of a fictitious flight path described by (x,y), and a describes the location of
the waypoint as shown in Figure 2.12. For the flight path of Case II, let n=1, and let A vary, and
for the flight path of Case III let n vary and let A be fixed. Use k=x as defined from the ideal flight
path, so that:

?= dt
x

nCorrelatioGlobal φψ
vv1

(2.15)

x

y

x=a
Waypoint
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where ψ
v

 (not normalized here) is defined by the heading direction (the derivative of the function in
equation (2.14)), that is,

= )cos(1
a

tn

a

An ππψv , (2.16)

and φ
v

 is described by the direction from the point (x,y) to the point (a,0), that is,

( ) ( ) +−

−

+−

−=
2222 yxa

y

yxa

xaφ
v

. (2.17)

Figure 2.13 illustrates the comparison between the baseline Case I and Case II where the
amplitude deviation away from the optimal route increases.  In this case, as the deviation away
from the baseline increases, the correlation function decreases.

Figure 2.13. If a pilot is heading to a waypoint located at (a,0) and the flight path

veers away from the optimal path (the x-axis), then an increase in the local deviation
from the baseline (as shown in the top plot) causes a decrease in the correlation
value (as shown in the bottom plot).

Figure 2.14 illustrates the comparison between the baseline Case I and Case III where the
amplitude deviation is fixed but the amount of swerving or criss-crossing increases.  In this case,
as the amount of swerving or criss-crossing increases from the baseline increases, the correlation
function decreases.

Figure 2.14. If a pilot is heading to a waypoint located at (a,0) and the flight path
swerves or criss-crosses from the optimal path (the x-axis), then an increase in the

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2
Fly to Waypoint

n
m
i

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

nmi

G
l
o
b
a
l
 
C
o
r
r
e
l
a
t
i
o
n

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2
Fly to Waypoint

n
m
i

0

0.2

0.4

0.6

0.8

1

G
l
o
b
a
l
 
C
o
r
r
e
l
a
t
i
o
n

Trend: Increasing number of turns



23

local deviation from the baseline (as shown in the top plot) causes a decrease in the
correlation value (as shown in the bottom plot).

In general, as shown in [K92], local path variations around a baseline path cause a
decrease in the correlation function. As would be expected, all of the resultant correlation values
are relatively close to yet less than the baseline correlation value.  In the next set of test scenarios,
the scenarios are set up to compare competing global intent models.  In a similar way to what has
been shown here for the “fly to waypoint” example, local variations in aircraft motion will act to
reduce correlation values, but in general, all correlation values will be reduced in a similar manner
– an observation based on experience with this theory.

2.3.2. Test Scenarios
The following scenarios are designed to test competing models of intent.  In Scenarios 1-5 the
following information is the same for each case:

•  Tracking of a single nearby aircraft by the ownship,
•  Neighboring aircraft is broadcasting position, velocity, and intent including next two

waypoints with no lost data in the transmission of intent,
•  No separation conflicts or separation alerts with respect to the ownship, and
•  No weather or turbulence present.

Later, in Scenarios 6-12, further conditions are varied.

Scenario 1
Key Feature:
•  Nearby aircraft flies waypoints within RNP limits
Expected Outcome:
•  High ranking by correlation function for: Broadcast intent verified,  Flying to Waypoint, Holding

Altitude
•  Other intent models should have low values

Scenario 2
Features:
•  Aircraft breaks RNP limits early and flies directly to TCP+1
Expected Outcome:
•  High ranking by correlation function for: Broadcast intent not verified, Skipping Waypoint (to

TCP+1), Holding Altitude
•  Other intent models should have low values

Scenario 3
Features:
•  Aircraft breaks RNP limits and flies to a Navaid unspecified in ADS-B but in the future waypoints

contained in the flight plan
Expected Outcome:
•  High ranking by correlation function for: Broadcast intent not verified,  Flying to Waypoint (all

waypoints in flight plan tested and best fit returned), Holding Altitude
•  Other intent models should have low values

Scenario 4
Features:
•  Aircraft breaks RNP limits and flies to a Navaid unspecified in ADS-B message nor flight plan
Expected Outcome:
•  High ranking by correlation function for: Broadcast intent not verified,  Flying to Waypoint (all

Navaids within 50 miles are tested for best fit), Holding Altitude
•  Other intent models should have low values

Scenario 5
Features:
•  Aircraft outside RNP limits yet flying towards flight plan
Expected Outcome:
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•  High ranking by correlation function for: Broadcast intent not verified,  Capturing Flight Plan
(from heading deviation), Holding Altitude

•  Other intent models should have low values

In scenarios 6-10, the following conditions are held constant:
•  Tracking of a single nearby aircraft by the ownship
•  No separation conflicts or separation alerts with respect to the ownship, and
•  No weather or turbulence present.

Scenario 6
Features:
•  Tracked aircraft is within ADS-B range limit but no intent information (TCP or TCP+1) is within

the ADS-B message
Expected Outcome:
•  High ranking by correlation function for: Broadcast intent not verified, Fly to Waypoint (all

Navaids within 50 miles are tested for best fit), Holding Altitude
•  Other intent models should have low values

Scenario 7
Features:
•  Tracked aircraft is within ADS-B range limit but entire ADS-B message is missing or intermittent
Expected Outcome:
•  Kalman filter should provide best estimate of nearby aircraft location and velocity and provide

these data to intent inference algorithm
•  Medium ranking (due to uncertainties in estimation) by correlation function for: Broadcast intent

not verified, Fly to Waypoint (all Navaids within 50 miles are tested for best fit), Holding Altitude
•  Other intent models should have low values

Scenario 8
Features:
•  Tracked aircraft is broadcasting in ADS-B message a flight plan or (TCP and TCP+1) that violate

a recently issued SUA activation
Expected Outcome:
•  High ranking by correlation function for: Broadcast intent not verified, Avoid SUA, Fly to

Waypoint (corner location of SUA), Holding Altitude
•  Other intent models should have low values

In scenarios 9-12, the conditions are fully specified on a Scenario by Scenario basis.

Scenario 9
Features:
•  Ownship tracking nearby aircraft
•  Neighboring aircraft is broadcasting position, velocity, and intent including next two waypoints

with no lost data in the transmission of intent
•  Separation conflict between ownship and nearby aircraft determined by ownship CD&R

subsystem using state information about ownship and nearby aircraft
•  Nearby aircraft broadcasts a conflict resolution set of waypoints; Nearby aircraft changes state

vectors to indicate resolution activity
•  No weather or turbulence present
Expected Outcome:
•  High ranking by correlation function for: Broadcast intent verified (based on CD&R solution and

TCP and TCP+1), Avoiding Collision (CD&R algorithm provides alternative frontside, backside,
topside, and bottomside maneuver waypoints – best match found from this set), Holding Altitude
(if CD&R maneuver is horizontal maneuver) or else Holding Heading (if CD&R maneuver is
vertical maneuver)

•  Other intent models may have high values given the broadcast of new TCP and TCP+1, but the
Avoid Collision intent inference has precedence over all other intents since the conflict alert
condition is on; broadcast TCP and TCP+1 that solve CD&R problem confirm valid solution.
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Scenario 10
Features:
•  Ownship tracking two nearby aircraft
•  Both neighboring aircraft are broadcasting position, velocity, and intent including next two

waypoints with no lost data in the transmission of intent
•  Separation conflict between the two nearby aircraft (not with ownship) determined by ownship

CD&R subsystem using state information about the two nearby aircraft
•  Neither nearby aircraft broadcasts a conflict resolution set of waypoints; Neither aircraft changes

state vectors to indicate resolution activity
•  No weather or turbulence present
Expected Outcome:
•  High ranking by correlation function for: Broadcast intent not verified (due to estimated conflict

alert condition in violation of acceptable intent), Avoiding Collision (CD&R algorithm provides
alternative frontside, backside, topside, and bottomside maneuver waypoints)

•  Other intent models may have high values given the perceived OK status of these two aircraft, but
the Avoid Collision intent inference has precedence over all other intents

Scenario 11
Features:
•  Ownship tracking nearby aircraft
•  Neighboring aircraft is broadcasting position, velocity, and intent including next two waypoints

with no lost data in the transmission of intent
•  Nearby aircraft does not follow RNP for TCP and deviates to avoid bad weather
Expected Outcome:
•  High ranking by correlation function for: Broadcast intent not verified, Avoid Hazardous Weather

(Hazard avoidance algorithm provides alternative frontside, backside, topside, and bottomside
maneuver waypoints around hazard),

•  Skip Waypoint may have high correlation value if weather avoidance path provides opportunity
to fly directly to TCP+1

•  Other intent models should have low values

Scenario 12
Features:
•  Ownship tracking nearby aircraft
•  Neighboring aircraft is broadcasting position, velocity, and intent including next two waypoints

and flight plan with no lost data in the transmission of intent
•  Nearby aircraft does not follow RNP for TCP and deviates to avoid bad weather
Expected Outcome:
•  High ranking by correlation function for: Broadcast intent not verified, Avoid Hazardous Weather

(Hazard avoidance algorithm provides alternative frontside, backside, topside, and bottomside
maneuver waypoints around hazard)

•  Skip Waypoint may have high correlation value if weather avoidance path provides opportunity
to fly directly to TCP+1

•  Fly to Waypoint (all waypoints in flight plan tested) may have high correlation value if weather
avoidance puts aircraft in a position to skip TCP and TCP+1 and go to a waypoint further in the
flight plan

•  Other intent models should have low values
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3.0 CONFIDENCE ASSESSMENT
The AOP system needs a confidence assessment module to establish the accuracy of traffic
management information for other AOP modules.  For instance, the intent inference module
exploits the confidence assessment information to prepare a best estimate of the state data and to
address the issue of missing or delayed data.

The relationship of the confidence assessment task to the intent inference and hazard
assessment tasks is illustrated in Figure 3.1. This figure also shows the primary four data sources
to be exploited for this study: ADS-B, TIS, FIS, and CPDLC data. Note: Regional weather covers
the region that both aircraft will occupy during the total time interval of conflict detection and
resolution. Local weather covers the region that both aircraft will occupy from the current time to
the predicted time of conflict.
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Figure 3.1  Other aircraft continuous intent inference data flow diagram.

The other aircraft trajectory will not only include the nominal flight path history but also the
small perturbations about the nominal due to pilot or autopilot steering errors, or Flight Technical
Errors (FTE). In addition, the trajectory information will be further corrupted by the sensors that
are used to measure the trajectory parameters. Under ADS-B, the sensor is the GPS receiver
onboard the other aircraft while under TIS, the primary sensor will be the surveillance radar. The
reason that these sensor and FTE errors have to be considered is that they corrupt the predicted
nearby aircraft trajectory. These errors are expected to be modeled under the RTO-21 FFSIM
effort.

The upper part of Figure 3.1 illustrates the ADS-B processing while the middle part
illustrates the TIS processing. For either path, a trajectory for both aircraft would have to be
provided. In the case of the ADS-B path, both the threat and own trajectory are corrupted by GPS
sensor and FTE errors. The threat trajectory is processed through the Kalman track filter that
accepts as inputs the ADS-B threat trajectory and any near-term intent, such as aircraft turns or
decelerations. The current estimated threat trajectory is combined with the own current trajectory to
establish a current relative trajectory. This current relative trajectory is then propagated forward for

* To be added to FFSIM

*

*

*
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several tens of seconds or up to a few minutes using a relative trajectory predictor. This near-term
predicted relative threat trajectory is then fed to the long-term inference algorithm.

The TIS path is somewhat similar to the ADS-B path except that the TIS data is provided in
the form of relative trajectory data. Since the TIS data is of much lower accuracy and available at a
much lower data frequency (12 seconds vs 1 second for ADS-B), the intent is to use it only when
the ADS-B data is not available (e.g., the other aircraft does not have an ADS-B transponder or the
transponder is not operating).

Due to the lower quality and lower frequency of this TIS data, a different Kalman track
filter is proposed. This track filter is a Low Pass Filter (LPF) that provides a current relative
trajectory using the relative TIS trajectory and any near-term intent data. This current relative
trajectory is also fed to the relative trajectory predictor algorithm where it is propagated forward to
provide a near-term intent assessment. This near-term intent assessment is then fed to the long-term
inference algorithm.

A variety of qualitative data is expected to eventually be available over the FIS data link,
which is still undergoing definition by the relevant RTCA committee. The focus under this effort
will be the broadcast of weather cells to pilots in the area. The lower path in Figure 3.1 illustrates,
in a preliminary form the generation of the actual weather in the region of interest and how this data
is corrupted by imperfect measurements and data frequency. In the latter case, a near-term weather
prediction has to be generated by the Airline Operations Center (AOC) or onboard the aircraft.
Since this prediction will not be perfect, this will lead to uncertainties in the prediction. As shown
in Figure 3.1, both the actual and the estimated weather models will be generated under the RTO
30 study.

The long-term inference algorithm relies on the near-term relative threat trajectories, the
near-term intent, such as may be provided in the ADS-B message, and the flight plans that might
be provided by CDPLC data. In addition, the potential hazards to the current aircraft flight path,
such as provided by the FIS weather data and by the hazard assessment tasks, will be used as
input. From these inputs, the long-term intent of the other aircraft will be inferred.

3.1 Input Data

3.1.1 ADS-B Message Data
The ADS-B state vector, shown in Figure 3.1, is defined in Table 3.1. The principal Kalman filter
inputs are the time of applicability, latitude, longitude, geometric altitude, North velocity, East
velocity, and geometric vertical rate. The position and velocity measurement uncertainty is
provided by elements 5 and 10, respectively, in Table 3.1. The position error categories are further
defined in Table 3.2 while the velocity uncertainty categories are defined in Table 3.3.
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Table 3.1. The ADS-B state vector report definition [RTCA232, RTCA242, SK99a].
Element Contents

1 Participant Address
2 Latitude
3 Longitude
4 Geometric Altitude
5 Navigation Uncertainty Category NUCP – Position
6 Geometric Position Valid (Horizontal/Vertical)
7 *North Velocity
8 *East Velocity
9 *Geometric Vertical Rate

1 0 Navigation Uncertainty Category NUCR – Velocity
11 Barometric Altitude (Pressure Altitude)
12 * Barometric Altitude Rate
13 * Air Speed (True/IAS)
14 * Ground Speed, Ground Track (True/Mag Heading)
15 * Turn Indication
1 6 Time of Applicability
17 Report Mode (Acquisition, Track, Default)

* An indication that no data is available should be provided if appropriate

The navigation position uncertainty categories are defined in Table 3.2 while the velocity
uncertainties are defined in Table 3.3 with accuracy specified at the 95% (2σ) confidence level.

Table 3.2. Navigation Position Uncertainty Category, NUCP (95%
Confidence) [RTCA232, RTCA242, SK99a].

Categor
y

Uncertainty Categor
y

Uncertainty

0 No Integrity 5 < 0.5 nmi
1 < 20 nmi (RNP-10) 6 < 0.2 nmi
2 < 10 nmi (RNP-5) 7 < 0.1 nmi
3 <   2 nmi (RNP-1) 8 TBD
4 <   1 nmi (RNP-0.5) 9 TBD

Table 3.3. Navigation Velocity Uncertainty Category, NUCV (95% Confidence)
[RTCA232, RTCA242, SK99a].

Category Horizontal Velocity Uncertainty Vertical Velocity Uncertainty
0 Unknown Unknown
1 < 20 m/s < 50 fps
2 < 3 m/s < 15 fps
3 <  1 m/s < 5 fps
4 <  0.3 m/s < 1.5 fps

The turn indication information that describes near-term intent is provided by elements 15
and 16 of Table 3.1. For long-term intent, as described by the next waypoint, or Trajectory
Change Point (TCP), latitude, longitude, altitude, time of applicability and time to reach it is
obtained from the ADS-B Mode-Status Report as summarized in Table 3.4. The following TCP
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latitude, longitude, altitude, and the time to reach it are obtained from the ADS-B TCP+1 On-
Condition Report, as summarized in Table 3.5.

Table 3.4. The ADS-B Mode-Status Report definition
[RTCA232, RTCA242, SK99a].

Element Contents
1 *Participant Address
2 *Call Sign
3 *Participant Category
4 *Surveillance Support Code
5 *Emergency/Priority Status
6 *Class Codes
7 TCP Latitude
8 TCP Longitude
9 TCP Altitude (Baro Alt/FL)

1 0 Time-To-Go TTG
11 Operational Mode Specific Data
12 Flight Mode Specific Data
1 3 Time of Applicability

* Elements 1-6 comprise a Partial Mode-Status Report.

Table 3.5. The ADS-B TCP+1 On-Condition Report definition
[RTCA232, RTCA242, SK99a].

Element Contents
1 Participant Address
2 TCP+1 Latitude
3 TCP+1 Longitude
4 TCP+1 Altitude (Baro/FL)
5 TCP+1 Time-To-Go TTG
6 Time of Applicability

3.1.2 TIS-B Data
The Traffic Information Service – Broadcast (TIS-B) provides a much more limited data set of
other aircraft relative to own aircraft. It is based primarily on ground-based radar measurements of
aircraft position that are not as accurate as the GPS-based ADS-B aircraft state data. TIS-B is
intended for those aircraft that are not equipped with ADS-B transponders or for those aircraft that
are equipped with ADS-B but cannot ‘see’ a non-equipped aircraft. The latter represents the mixed
equipage case. The TIS traffic information data block is summarized in Table 3.6.

Table 3.6. The TIS-B traffic information block [RTCA239, SK99b].
Element Content

1 Traffic Bearing (deg)
2 Traffic Range (nmi)
3 Relative Altitude (ft)
4 Relative Altitude Rate
5 Traffic Heading
6 Traffic Status
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Due to the use of minimum bit encoding, TIS-B message elements are quantized as
summarized in Tables 3.7 through 3.12.

Table 3.7. The TIS-B traffic bearing encoding [RTCA239, SK99b].

Encodin
g

Range of Values

0 00≤  B < 60

1 60≤  B < 120

2 120≤  B < 180

: :
59 3540≤  B < 3600

Table 3.8. The TIS-B traffic range encoding [RTCA239, SK99b].
Encoding Range of Values

(nmi)
Encoding Range of Values

(nmi)
0 0 ≤ R ≤ 1/8 8 1 7/8 < R ≤ 2 1/4
1 1/8 < R ≤ 3/8 9 2 1/4 < R ≤ 2 3/4
2 3/8 < R ≤ 5/8 10 2 3/4 < R ≤ 3 1/2
3 5/8 < R ≤ 7/8 11 3 1/2 < R ≤ 4 1/2
4 7/8 < R ≤ 1 1/8 12 4 1/2 < R ≤ 5 1/2
5 1 1/8 < R ≤ 1 3/8 13 5 1/2 < R ≤ 6 1/2
6 1 3/8 < R ≤ 1 5/8 14 6 1/2 < R ≤ 7
7 1 5/8 < R ≤ 1 7/8 15 7 < R

Table 3.9. The TIS-B traffic relative altitude encoding [RTCA239, SK99b].

Encoding Relative Altitude (ft) Encoding Relative Altitude (ft)
0 0 ≤ ∆h ≤ 100 16 No Altitude Reported
1 100 ≤ ∆h < 200 17 -100 < ∆h < 0
2 200 ≤ ∆h < 300 18 -200 < ∆h ≤ -100
: : : :
9 900 ≤ ∆h < 1000 26 -1000 < ∆h ≤ -900
10 1000 ≤ ∆h < 1500 27 -1500 < ∆h ≤ -1000
11 1500 ≤ ∆h < 2000 28 -2000 < ∆h ≤ -1500
: : : :

14 3000 ≤ ∆h < 3500 30 -3000 < ∆h ≤ -2500
15 3500 < ∆h 31 ∆h ≤ -3000

Table 3.10. The TIS-B traffic heading encoding [RTCA239, SK99b].

Encoding Range of Values
0 00≤ B < 450

1 450≤  B < 900

2 900≤  B < 1350

: :
7 3150≤  B < 3600

Table 3.11. The TIS-B traffic altitude rate encoding [RTCA239, SK99b].

Encoding Range of Values (ft/min)
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0 unused
1  500 < vh, Climbing
2  -500 > vh, Descending
3 - 500 ≤ vh ≤ 500, Level

Table 3.12. The TIS-B traffic status encoding [SK99b].
Encodin

g
Range of Values (ft/min)

0 Proximity Alert
1 Traffic Alert

TIS-B data have a few shortcomings.  Absent in Table 3.6 are the time of applicability and
the relative velocity. As seen in Table 3.8, the data provided by TIS-B is very short range when
you consider that the minimum en route separation requirement is 5 nmi. Finally, the TIS-B data
message specifications do not provide any indication of the accuracy of the data.

3.1.3 FIS Data
Flight Information Service (FIS) data provides weather and other flight advisory information to
pilots for the purpose of enhancing situation awareness and strategic decision making.  The exact
FIS data that will be broadcast are still not fully defined by the RTCA. A list of products that have
been proposed by RTCA-169 is summarized in Table 3.13. The cruise products that will probably
most directly affect the long-term intent of another aircraft is the weather data. Precipitation Maps,
provided by the Graphical Weather Service, and the Hazardous Weather Advisories, are the
principal data sources of interest for AOP Long-Term Intent algorithms.

The data contents of the FIS-B messages are transmitted with a lossless compression
mechanism.  For the AOP, there is little benefit in simulating the compression and de-compression
processes.  We assume that the compression mechanism does not have to be simulated.  The raw
data without compression can be transmitted to the AOP, and if needed, corrupt or missing data
can be included without the need to simulate compression.

Based on the latest draft versions of the FIS MASPS, the contents of the FIS messages are
designed to be composed of:

•  METARs and PIREPs, with a maximum of 120 minutes in age,
•  Weather forecasts within a maximum lifespan as indicated in the message,
•  Mosaic Weather Products with a maximum of 75 minutes lifespan,
•  Graphical Maps for METARs and CATMETs with a maximum of 75 minutes

lifespan, and
•  NEXRAD Weather Radar Mosaic Precipitation Maps with a maximum of 10

minutes of lifespan.

As shown in Table 3.14, the FIS products include text, graphic, and gridded types.  The only
gridded format data are GRIB format forecasts for winds, temperature, relative humidity, vertical
velocity, and other weather parameters.  The graphic type format is used more often and is very
much different from the gridded format, in that the graphic type format simply describes the colors
of a display image while the gridded format describes the raw data.  The size and range of colors in
the graphic format depends on the compression mechanism chosen for the TIS product installed in
an aircraft.  Six different compression mechanisms are available, as shown in Table 3.15.  For
instance, one graphic format allows up to 65,536 pixels of colors or data codes ranging from 0 to
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255, and another graphic format only allows colors or data codes ranging from 0 to 15.  The soon-
to-be-published FIS MASPS describes the details.

Table 3.13. Operational usage of initial FIS Request/Response products [RTCA232].

FIS Product
Operational/

Regulatory
(Approach/
Departure)

Hazard
Avoidance

(Approach/
Departure)

Hazard
Avoidance

(Cruise)

Optimi-
zation

(Cruise)

Situational
Awareness
(Cruise)

Precipitation Map
(Graphical Weather
Service)

X X

Terminal Weather
Information for Pilots
(TWIP)

X X

Automated Terminal
Information Service
(ATIS)

X X

Hazardous Weather
Advisory

X X

Surface Observation X
Terminal Forecast X
Winds/Temperature X
Pilot Reports
(PIREPs)

X X

Notice to Airmen
(NOTAMs)

X

Runway Visual Range
(RVR)

(Local) (Remote)

Table 3.14. Expected FIS-B Products (from FIS MASPS [RTCA195]).

 Field  Product  Type
 0  METAR and SPECI  Text
 1  TAF and Amended TAF  Text
 2  SIGMET  Text
 3  Convective SIGMET  Text
 4  AIRMET  Text
 5  PIREP  Text
 6  AWW  Text
 7  Winds and Temperatures Aloft  Text

 8-50  Reserved  
 51  National NEXRAD, Type 0 - Low dynamic range  Graphic
 52  National NEXRAD, Type 1 - 8 level  Graphic
 53  National NEXRAD, Type 2 – 8 level  Graphic
 54  National NEXRAD, Type 3 - 16 level  Graphic
 55  Regional NEXRAD, Type 0 - Low dynamic range  Graphic
 56  Regional NEXRAD, Type 1 - 8 level  Graphic
 57  Regional NEXRAD, Type 2 - 8 level  Graphic
 58  Regional NEXRAD, Type 3 - 16 level  Graphic
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 Field  Product  Type
 59  Individual NEXRAD, Type 0 - low dynamic range  Graphic
 60  Individual NEXRAD, Type 1 - 8 level  Graphic
 61  Individual NEXRAD, Type 2 – 8 level  Graphic
 62  Individual NEXRAD, Type 3 - 16 level  Graphic

 63-80  Reserved  
 81  Radar echo tops graphic, scheme 1: 16-level  Graphic
 82  Radar echo tops graphic, scheme 2: 8-level  Graphic
 83  Storm tops and velocity  Graphic

 84-100  Reserved  
 101  Lightning strike type 1 (pixel level)  Graphic

 102  Lightning strike type 2 (grid element level)  Graphic

 103  Lightning strike type 3 (raster encoding scheme)  Graphic

 104-150  Reserved  
 151  Point phenomena, vector format  Graphic

 152-200  Reserved  
 201  Surface conditions/winter precipitation graphic  Graphic

 202  Surface weather systems  Graphic

 203-250  Reserved  
 251  National METAR Graphic  Graphic

 252  CATMET format  Graphic

 253  Regional METAR Graphic  Graphic

 254  AIRMET, SIGMET: Bitmap encoding  Graphic

 255  AIRMET, SIGMET: Vector representation, closed curves  Graphic

 256  AIRMET, SIGMET: Vector encoding scheme  Graphic

 257-300  Reserved  
 301  Gridded Weather Forecast Products  Gridded

Because of the lack of gridded format precipitation map data in the FIS messages, AOP
modules will have to use graphic weather data interpreted in gridded form.  NEXRAD
precipitation products in the FIS messages are in graphic form, however, they can be converted
from radar levels to intensity values based on the relationships defined in Tables 3.15 through
3.17.  While precise radar reflectivity values (in dBZ) cannot be determined, the levels transmitted
in the graphic image can be replaced with the average value within the range to specify the radar
reflectivity for a given level (Level 0-7 or Level 0-15, depending on NEXRAD Type).

Table 3.15.  The 8-Level NEXRAD Type 1 encoding for the FIS message [RTCA195].

 Code  Radar Level  Intensity (dBZ)
 0  Level 0  dBZ <5, No data
 1  Level 1  5 ≤ dBZ < 18
 2  Level 2  18 ≤ dBZ < 30
 3  Level 3  30 ≤ dBZ < 41
 4  Level 4  41 ≤ dBZ < 46
 5  Level 5  46 ≤ dBZ < 50
 6  Level 6  50 ≤ dBZ < 57
 7  Level 7  57 ≤ dBZ
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Table 3.16.  The 8-Level NEXRAD Type 2 encoding for the FIS message [RTCA195].
 Code  Radar Level  Intensity (dBZ)
 0  Level 0  dBZ < 20, No data
 1  Level 1  20 ≤ dBZ < 25
 2  Level 2  25 ≤ dBZ < 30
 3  Level 3  30 ≤ dBZ < 35
 4  Level 4  35 ≤ dBZ < 40
 5  Level 5  40 ≤ dBZ < 50
 6  Level 6  50 ≤ dBZ < 60
 7  Level 7  60 ≤ dBZ

Table 3.17.  The 16-Level NEXRAD Type 3 encoding for the FIS message [RTCA195].

 Code  Radar Level  Intensity (dBZ)
 0  Level 0  dBZ <   5, No data
 1  Level 1  5 ≤ dBZ < 10
 2  Level 2  10 ≤ dBZ < 15
 3  Level 3  15 ≤ dBZ < 20
 4  Level 4  20 ≤ dBZ < 25
 5  Level 5  25 ≤ dBZ < 30
 6  Level 6  30 ≤ dBZ < 35
 7  Level 7  35 ≤ dBZ < 40
 8  Level 8  40 ≤ dBZ < 45
 9  Level 9  45 ≤ dBZ < 50

 10  Level 10  50 ≤ dBZ < 55
 11  Level 11  55 ≤ dBZ < 60
 12  Level 12  60 ≤ dBZ < 65
 13  Level 13  65 ≤ dBZ < 70
 14  Level 14  70 ≤ dBZ < 75
 15  Level 15  75 ≤ dBZ

The FIS message also allows for a vector format.  The vector format allows for a series of
connected line segments or a polygon region to be identified using connected line segments
described with a series of vertices.  This data field allows the transmission of weather fronts (as a
series of connected line segments), icing regions (lines segments connected to form a polygon),
turbulence regions (lines segments connected to form a polygon), etc.  For the AOP, it is assumed
that polygon data transmitted in graphical format can also be transmitted through this vector
format.  Thus, instead of having to deduce polygon regions from graphical format, the FIS vector
format will be used to define polygon regions in FIS data.

The AIRMET/SIGMET vector encoding scheme is an example of a message that exploits
the vector format.  Table 3.18 illustrates the data in an AIRMET/SIGMET field.  Note that the type
of 3D region that is encoded is a special type of polyhedron; that is, a single list of vertices
describes the same polygon for the top as well as the bottom of the polyhedron.  All sides of the
polyhedron are vertical, connecting the top vertices to the bottom vertices.

All FIS data are time stamped.  Time stamps include day of month (optional), time in
hours, time in minutes, and time in seconds (optional).

Table 3.18.  The AIRMET/SIGMET vector encoding definition for FIS [RTCA195].

 Data Item  Resolution Definition
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 Hazard Type   For AIRMET
•  S  (Sierra) IFR & Mt. Obscuration
•  T (Tango) Turb & Strong Sfc Wind
•  Z (Zulu) Icing & Freezing Lvl

 For SIGMET
•  Icing
•  Turbulence
•  Thunderstorms

Likelihood (optional) Low; Moderate; High
Severity Trace; Light ; Moderate; Severe
Altitude 1 9 bits Top of hazard layer in hundreds of feet
Altitude 2 9 bits Bottom of hazard layer in hundreds of feet
Movement Direction 6 bits Direction in tens of degrees
Movement Speed 8 bits Speed in kts
Number of vertices 5 bits Number of vertices
1st Latitude 14 bits Latitude coordinate for 1st vertex of watch box polygon in

hundredths of a degree; MSB = 1 for South Latitude;0 – 9,000
1st Longitude 15 bits Longitude coordinate for 1st vertex of watch box polygon in

hundredths of a degree; MSB = 1 for East Longitude;0 – 18,000
Next Latitude 14 bits Latitude coordinate for next vertex of watch box polygon
Next Longitude 15 bits Longitude coordinate for next vertex of watch box polygon
e t c “ “

Last Latitude 14 bits Latitude coordinate for last vertex of watch box polygon; user’s
software to connect last vertex to 1st vertex (no need to transmit
the last with this assumption)

Last Longitude 15 bits Longitude coordinate for last vertex of watch box polygon; user’s
software to connect last vertex to 1st vertex (no need to transmit
the last with this assumption)

3.2 Theory
The confidence assessment approach that has been selected is centered on using a Kalman Filtering
with  ADS-B data. With the TIS-B data, a Low Pass Filter (LPF) is used. The  ADS-B message
provides both current measurement of the other aircraft state and the nominal uncertainty.

The motivation for using a Kalman filter is to get an estimate of the current state of nearby
aircraft with higher accuracy. Better predictions of the future position of nearby aircraft are
produced by integrating the current velocity and acceleration, if available. While this is also the
motivation for using the LPF with the TIS-B data, the TIS-B data does not provide any higher
derivatives of the current relative position of the two aircraft nor does it provide any accuracy for
the TIS-B position data. Without the higher derivatives, the predicted relative position of the two
aircraft will have very low accuracy. Hence, the LPF provides an estimate of the relative velocity
of the other aircraft as well as the uncertainty in both the position and velocity.

The following sections present the equations for the LPF. This filter estimates the relative
ground speed and heading two aircraft using sequential relative North and East position
measurements obtained from the TIS-B message. The principal source of the TIS-B data is the
ground-based Secondary Surveillance Radar (SSR). The goal is to obtain a best estimate of the
relative ground speed and heading such that when these estimates are integrated, the estimated
relative position history is obtained with minimum error.
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Also presented is a Kalman filter based on ADS-B data. This filter takes aircraft position
and velocity data for nearby aircraft and estimates the position, velocity, and acceleration of these
nearby aircraft. Since this filter also provides dynamic estimates of the uncertainty in these,
estimates, more accurate estimates of the accuracy of the filter data are obtained. Since the LPF is a
suboptimal version of the Kalman filter, the Kalman filter is presented first.

3.2.1 General Kalman Filter Theory
The Kalman filter is based on combining the predicted (modeled) and measured values of a state
vector of interest in an optimal (minimum variance) way. Hence, the first step is to define the state
equation that describes how the actual state vector changes with time. Next, a measurement
equation must be defined that establishes the relationship between the measurement vector and the
state vector. Since the Kalman filter is based on linear state and measurement equations, non-linear
state and measurement equations must first be linearized.

If the actual state and measurement equations are given by:

( )  nxfx +=&                                                                     (3.1)
( ) mxhz +=                                                                    (3.2)

where, x, z  are the state and measurement vectors, f, h are the nonlinear state and measurement
function, and n, m are state and measurement Gaussian white noise vectors.  Since the actual state
and measurement vectors are unknown, the state estimate and measurement equations are given by:

( )xfx ˆˆ =&
                                                                   (3.3)

( )xhz ˆˆ =                                                                    (3.4)

where z,x ˆ ˆ  are the state and measurement vector estimates.

Assume that the relationship between the estimate and the actual state can be expressed as
follows:

 xxx δ+=ˆ                                                                   (3.5)

Differentiating (3.5) results in:
xxx &&& δ+=ˆ                                                                  (3.6)

Substituting equations (3.5) and (3.6) into equation (3.3) gives:

( )xxfxx δδ +=+ &&                                                        (3.7)

and taking a first order Taylor series expansion of the term on the right-hand side of (3.7):

( ) ( ) ( ) ...+√√
↵


ƒ
ƒ+=+ xxf
x

xfxxf δδ                                          (3.8)

Substituting (3.1) and (3.8) into (3.7): ( )[ ] nxxFx −≅ δδ&                                                          (3.9)

where,                                                ( )[ ] ( )  √√
↵


ƒ
ƒ… xf
x

xF .                                                      (3.10)

While equation (3.9) provides a linear state equation for the estimation error, it requires that
the unknown actual state and process noise vectors. A further approximation that is made to
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equation (3.9) is to use the estimated state to evaluate the state matrix and to ignore the process
noise vector:

( )[ ] xxFx ˆˆˆ δδ …& .                                                             (3.11)

With the estimated state obtained as a solution to equation (3.3) and the estimation error which is a
solution to equation (3.11), the actual state is obtained using equation (3.5):

 xxx ˆˆ δ−≅ .                                                                (3.12)

Now the non-linear measurement equation (3.4) can be linearized in a similar fashion. Substitute
equation (3.5) into (3.4):

( )xxhz δ+=ˆ                                                               (3.13)

and expanding the right-hand side in a first-order Taylor series expansion results in:

( ) ( ) ( ) ...+√√
↵


ƒ
ƒ+=+ xxh
x

xhxxh δδ                                        (3.14)

Substituting equation (3.2) and (3.14) into equation (3.13) gives:

( ) ( )[ ] mxxHzzz −=−… δδ ˆ                                                  (3.15)

where,                                             ( )[ ] ( )  √√
↵


ƒ
ƒ… xh
x

xH .                                                        (3.16)

Since the actual state and the measurement noise is unknown, the following approximations
can be made to equation (3.15):

( )[ ] xxHz ˆˆˆ δδ … .                                                               (3.17)

A discrete form of equation (3.11) is obtained as follows:
( ) [ ] ( )+

−
−

−
Φ=

1
ˆˆ 1, kk
xx kk δδ                                                            (3.18)

where,                                        [ ]
( )[ ]nk

n

kk
kk F

n

tt
1

0

1
1,

!
−

×

=

−
−

−=Φ .

(3.19)

Also, from equation (3.3), the discrete estimated state prediction equation is:
( ) ( ) ( ) ( ) 1-kxfttxx kkkk

ˆˆˆ 11
?−+≅ −

+−
−                                                  (3.20)

and,
( ) ( ) ( )+−+ +=

kkk
xxx ˆˆˆ δ .                                                             (3.21)

Then the Kalman filter update is obtained as follows [Ge74]:
( ) ( ) [ ] [ ] ( ){ } −−+ −+=

kkk
xHzKxx kk ˆˆˆ δδδδ                                              (3.22)

where,                                [ ] [ ]( )[ ] [ ][ ] ( )[ ] [ ]{ } 1−−− +… RHPHHPK T
k

T
kk                                         (3.23)

[ ]( ) [ ] [ ]( ) [ ] [ ] 111, 1, −
+
−−

− +ΦΦ=
− k

T
kkkk QPP

kk                                            (3.24)
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[ ]( ) [ ] [ ] [ ]{ }[ ]( ) [ ] [ ] [ ]{ } [ ] [ ][ ] T
k    KRKHKIPHKIP k

T
kkkk +−−= −+

                       (3.25)

or,                                               [ ]( ) [ ] [ ] [ ]{ }[ ]( )−+ −= kkk PHKIP   
(3.26)

and,                                               [ ] ( ) [ ]n
1=n

= J
n

tt
Q

n

kk
k

×
−−

!
1                                                    (3.27)

[ ] [ ] [ ] [ ] [ ]( ) [ ] [ ]NJJFJFJ =1       with,+= T
1-n1-k1-n1-kn                            (3.28)

where, [K] is the Kalman gain matrix, [P] is the estimation error covariance matrix, [N] and [Q]
are continuous and discrete process noise matrices, and [R] is the measurement noise matrix.
Equation (3.25) is the general version of (3.26). While the latter can be used for any filter gain
matrix, whether Kalman or not, the former is only valid for the Kalman filter gain matrix.

The key to confidence assessment is the estimation error covariance matrix. This matrix
provides the Kalman filter a confidence estimate of how good the current state has been estimated.
Hence, the key confidence assessment equations (3.23), (3.24) and (3.26) require the Kalman
filter to be used.

The measurement matrix for the ADS-B takes on a simple diagonal form while a more
complicated form is required for the TIS radar data:
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where, r is the range and è  the azimuth of the aircraft from the radar, r&  and è& are the range and
azimuth rates, and GV  is the speed of the aircraft.

Since the TIS-B measurement noise matrix requires knowledge of the radar location as well
as higher derivatives of the range and azimuth measurements, a default solution is to use diagonal
matrix such as used for the ADS-B measurements with the statistics that are typical for a radar.

3.2.2 ADS-B Kalman Filter
The number of possible state and measurement combinations that can be used for a Kalman filter
based on ADS-B message data is summarized in Table 3.14. The one selected as the baseline
design for the ADS-B message data is Option 4.

Table 3.14. ADS-B Kalman filter state and measurement options.
OptionMeasurement

1 4 5 1 0
North position, xm √ √ √ √
East position, ym √ √ √ √
Ground speed, vG,m √ √ √
Ground track, ψG,m √ √ √
Ground acceleration aG,m

(derived from vG,m)
√

Ground track rate, mG,ψ&

(derived from ψG,m)

√

States
North position, x √ √ √ √
East position, y √ √ √ √
Ground speed, vG √ √ √ √
Ground track, ψG √ √ √ √
Ground acceleration aG √ √
Ground track rate, Gψ& √ √

Instead of North and East position, the ADS-B message provides the latitude and longitude
of the other aircraft. Since working in a local level coordinate system is advantageous, the
following calculations are performed:

( ) ( )G,RPRM ëRööx cos−=                                            (3.33)
and, ( ) MG,RGM Rëë  y −=                                                      (3.34)
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( )( )2
,

2 sin1 RG

P

a
R

λε−
=                                                (3.36)

where, xM, yM  are the measured North and East local level position, a, ε  are Earth equatorial

radius and eccentricity, RM, RP  are the meridian and prime radius of earth curvature, λG, λG,R are

the geodetic latitude of other and own (reference) aircraft, and φ, φR are the longitude of other and
own (reference) aircraft.

With ADS-B data, the aircraft velocity is provided in orthogonal coordinates rather than
polar coordinates. The conversion (pre-processing) required to obtain the polar coordinate velocity
components are:
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where vGM is the measured ground speed and ψGM  is the measured ground track.

In the design of Kalman filters, there is a preference to select coordinate frames that
uncouple the dynamics between different axes. Hence, the ground speed of an aircraft is less likely
to be coupled to the track angle of the aircraft, compared to the coupling between the North and
East velocity components.

Since the ADS-B ground speed and heading are based on relatively precise GPS data, the
ground speed-derived ground acceleration and the track-derived track rate, that are considered for
Option 4, are computed as follows:
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where aGM  is the measured ground acceleration and GMψ& is the measured ground track rate.

The specific form of the Kalman filter for Option 4 consists of the following equations. The
predicted state error is: ( )
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The discrete predicted estimated state is:
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The Kalman filter update of the estimated state is:

( ) ( )

[ ] [ ]

( )

?

?

√
√
√
√
√
√
√
√

↵



−

√
√
√
√
√
√
√
√

↵



+

√
√
√
√
√
√
√
√

↵



=

√
√
√
√
√
√
√
√

↵


−−+

kkk
G

G

G

G

kMG

MG

MG

MG

M

M

k

G

G

G

G

G

G

G

G

a

v

y

x

H

a

v

y

x

K

a

v

y

x

a

v

y

x

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

&&&& ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

,

,

,

,

.                            (3.43)

The measurement matrix is:                      [ ] [ ]  IH = .                                                              (3.44)
The derived measurements are:
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The Kalman filter updated estimate of state is then:
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The Kalman filter gain matrix is obtained as follows:

[ ] [ ] ( )[ ] [ ][ ] ( )[ ] [ ][ ][ ]{ } 1−−− +… TT
k

T
kk MRMHPHHPK .                                        (3.50)

The predicted (propagated) estimation error covariance matrix is:

[ ]( ) [ ] [ ]( ) [ ] [ ] 111, 1, −
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kk
.                                           (3.51)

The Kalman filter updated estimation error covariance matrix is:

[ ]( ) [ ] [ ] [ ]{ }[ ]( )−+ −= kkk PHKIP   .                                                 (3.52)

The discrete process noise matrix is:
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The continuous process noise covariance matrix is:
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A convenient way to select the σ variables in equation (3.55) is to compute them using the initial σ
and the corresponding reciprocal time constants [G74]. This assures that each first-order Gauss
Markov process is bounded.  Here are the appropriate equations:

xxNx βσσ 21, ?=                                                        (3.56)

yyNy βσσ 21, ?=                                                        (3.57)

vvNv βσσ 21, ?=                                                        (3.58)

ψψψ βσσ 21, ?=N                                                        (3.59)

aaNa βσσ 21, ?=                                                        (3.60)

and, ψψψ βσσ &&& 21, ?=N .                                                     (3.61)

The transition matrix is:
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The state matrix is:
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The measurement noise covariance matrix is expressed in North-East coordinate position, velocity,
and acceleration coordinates is:
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The acceleration σ variables in equation (3.64) are derived from the velocity σ variables as follows:
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Since the velocity and acceleration measurements that are used are expressed in terms of ground
speed, ground track, ground acceleration, and ground track rate, a conversion matrix is required:
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The initial conditions are:
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where [K] is the Kalman gain matrix, [P] is the estimation error covariance matrix, [N] and [Q] are
the continuous and discrete process noise matrices, and [R] is the measurement noise matrix.

3.2.3 FIS-B Filter
The number of possible state and measurement combinations that can be selected for a Kalman
filter TIS-B message data is summarized in Table 3.15. In addition, a Low-Pass Filter (LPF)
approach is considered for TIS data. The baseline TIS-B filter selected is the LPF based in part on
the poor accuracy of the TIS-B data and on the variable, but unknown, measurement noise
statistics. The measurement noise statistics cannot be modeled accurately, since the location of the
radar that produced these measurements is unknown. Hence, a Kalman filter cannot be optimized
to work well under all TIS-B measurement conditions. Therefore, a simpler more stable LPF is the
preferred choice.

Table 3.15. TIS-B Kalman filter and Low Pass Filter (LPF) state and measurement options.
Kalman Filter Options LP

F
Measurement

1 2 3 4 5 6a 6b 7 8
Relative north position, xM √ √ √ √ √
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Relative east position, yM √ √ √ √ √
Relative raw ground speed, vGM √ √ √ √ √ √ √
Relative raw ground track angle ψGM √ √ √ √ √ √ √
Relative raw ground acceleration, aGM √
Relative raw ground track angle, GMψ& √

States
Relative north position, x √ √ √ √ √
Relative east position, y √ √ √ √ √
Relative ground speed, vG √ √ √ √ √ √ √ √
Relative ground track angle ψG √ √ √ √ √ √ √ √
Relative ground acceleration, aG √ √ √ √
Relative ground track angle, Gψ& √ √ √ √

The TIS-B message provides relative range and bearing to the other aircraft, as presented in
Table 3.6. For convenience, these two variables can be converted into local level orthogonal
coordinates as follows:

kMkMkM rx ,,, cosθ=                                                            (3.71)

kMkMkM ry ,,, sinθ=                                                            (3.72)

where xM,k and y M,k are the relative North and East position of other aircraft from own aircraft at
time tk and r M,k and θ M,k are the relative range and bearing of other aircraft from own aircraft at time
tk.

In Table 3.15, raw ground speed and heading (or track angle) measurements are considered
for Options 2 through 8, and raw ground accelerations and heading rate for Option 7. Raw
measurements are based on numerical derivatives of the position measurements:
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Instead of a Kalman filter, another filter that is commonly used is the LPF. The LPF is
popular due to its simplicity and stability. One of the drawbacks to using a Kalman filter is that the
process noise, measurement noise, and any time constants must be selected correctly; if not, the
Kalman filter will be sub-optimal and it may exhibit undesirable (unstable or biased) behavior.

The basic LPF for an estimate of a variable u based on measurements z is:
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( ) kkk zuu αα +−= −1ˆ1ˆ                                                   (3.77)

where kû  is the estimate of u, kz   is the measurement, and α  is the filter gain ( 10 <<α ).  If this
equation is rewritten as follows:

( )11 ˆˆˆ −− −+= kkkk uzuu α                                                 (3.78)

then equation (3.78) is very similar to the Kalman filter state update equation (3.22) with a
transition and measurement matrix of unity. The updated LPF state error estimate is obtained as
follows:

( ) ( )

[ ] [ ]

( )

?

?

√
√
√
√
√

↵



−

√
√
√
√
√

↵



+

√
√
√
√
√

↵



=

√
√
√
√
√

↵


−−+

kkk
G

G

kMG

MG

M

M

G

G

G

G v

y

x

H
v

y

x

G
v

y

x

v

y

x

ψψψδ
δ
δ
δ

ψδ
δ
δ
δ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

,

,
                          (3.79)

The LPF updated estimate of state is then:
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The predicted state estimate is:
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The predicted state error estimate is:
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The state transition matrix is:
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The state matrix is:
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The updated estimation error covariance matrix is:
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The predicted estimation error covariance matrix is:
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The discrete process noise matrix is obtained as follows:

[ ] ( ) [ ]n
1=n

= J
n

tt
Q

n

kk
k

×
−−

!
1

                                                   (3.87)

[ ] [ ] [ ] [ ] [ ]( ) [ ] [ ]NJJFJFJ =1       with,+= T
1-n1-k1-n1-kn .                           (3.88)

The continuous process noise covariance matrix is:
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A convenient way to select the σ variables in equation (3.89) is to compute them using the initial σ
variables and the corresponding reciprocal time constants [G74].

xxNx βσσ 21, ?=                                                        (3.90)

yyNy βσσ 21, ?=                                                        (3.91)

vvNv βσσ 21, ?=                                                        (3.92)

and ψψψ βσσ 21, ?=N .

(3.93)
The LPF gain matrix is:
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The measurement matrix is:                              [ ] [ ]IH = .                                                        (3.95)
The measurement noise matrix is:
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The initial conditions are:
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( ) ( )
( )12

2

1,2,

2

1,2,
1,

tt

yyxx
v MMMM

GM −
−+−

≅                                 (3.100)
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Hence, equations (3.85) and (3.86) provide the confidence estimates for the states estimated with
the LPF.

3.3 Connection with Intent Inference and Confidence Level
In Figure 3.1 was shown that the Kalman filter would provide a near-term estimate of the flight
path of the other aircraft trajectory. It would also provide an estimate of the confidence of that
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estimate using its continuously updated estimation error covariance matrix. In this figure was also
shown an input from the near-term intent logic into this filter. This real-time adjustment of the
Kalman filter will be explored in this section.

In that same figure, the output from the Kalman filter is fed into the long-term inference
logic. This logic then predicts the long-term threat trajectory. While the terms near-term and long-
term are subjective, they can be quantified by determining how far the TIS data can be used to
predict the threat trajectory with an acceptable level of confidence. This can similarly be quantified
for the ADS-B data predicted threat trajectories. Where the limit of the near-term prediction is
reached for each type of threat trajectory, the long-term prediction has to take over. The confidence
level to which the long-term threat trajectories can be predicted will also be explored in this section.

3.3.1 Near-Term Intent Confidence
Under Near-Term Intent (NTI), the Kalman filter determines the predicted trajectory of the other
aircraft by propagating the current other aircraft state vector forward in time. The basic assumption
used is that the current state vector, based on measurements performed over the recent past, is a
good indicator of the future state vector of the other aircraft. If NTI information is available, such
as that the aircraft has started a turn or is accelerating or decelerating, then this NTI information can
be used to modify the performance of the Kalman filter.

Returning back to the general Kalman filter equations of Section 3.2.1, if the state and
measurement equations for the threat trajectory are given by:

( )xfx ˆˆ =&
                                                               (3.104)

( )xhz ˆˆ =                                                                (3.105)

then, the current estimated state of the threat trajectory is given by:
( ) ( ) ( )+−+ += kkk xxx ˆˆˆ δ                                                          (3.106)
( ) ( ) [ ] [ ] ( ){ }−−+ −+=

kkk
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T
kk MRMHPHHPK                      (3.108)

and [ ]( ) [ ] [ ] [ ]{ }[ ]( )−+ −= kkk PHKIP   .
(3.109)

The corresponding LPF current estimated state of the other trajectory is given by:
( ) ( ) ( )+−+ += kkk xxx ˆˆˆ δ                                                          (3.110)

and,
( ) ( ) [ ] [ ] ( ){ }−−+ −+=

kkk
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with,
[ ]( ) [ ] [ ][ ]{ }[ ]( ) [ ] [ ][ ]{ } [ ][ ][ ] T    GRGHGIPHGIP T

kk +−−= −+
.                 (3.112)

Between measurements, the current estimated state is propagated forward to the next
measurement time for use by either filter. If the current measurement time and the current time are
not the same as illustrated in Figure 3.2, the last estimated state is propagated forward to the
current time. Finally, if the trajectory is needed at a future time, the last estimated state is
propagated forward to that future time.

For all three scenarios, the same equations are used, differing only in the propagation time
interval:
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Figure 3.2.  Kalman filter with latent measurement.

The measurement noise covariance matrix, [R], represents the uncertainty in the
measurements. The process noise covariance matrix, [Q], in turn, describes the uncertainty in the
future state and covariance matrix. Hence, if there is NTI information available that the other
aircraft is decelerating or has started a turn, the process noise covariance matrix can be scaled to
reflect this information. This will modify the estimation error covariance matrix and the Kalman
filter gain matrix as follows:
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with 1,,, >avyx kkkk  if the nearby aircraft trajectory is decelerating (accelerating),

1,,, >ψψ &kkkk yx  if it is turning, and 1,,,,,   =ψψ &kkkkkk avyx  if it is maintaining its course.
Equation (3.117) assumes that a 6-state Kalman filter is implemented, however, if a 4-state LPF is
implemented, then the intent scaling matrix is a 4x4 matrix with the last two scale factors
eliminated.

Since the estimation error covariance matrix is assumed to have a Gaussian probability
density function, the diagonal elements that are the error variances can be used to derive the
confidence limits of the estimated or predicted threat trajectory:

( ) ( )ónxxónx +<≤− ˆˆ                                              (3.118)

with, iiP ,=iσ                                                          (3.119)

where i σ  is the estimation error standard deviation, and n=1 is the 68.3% confidence level, n=2 is
the 95.4% confidence level, and n=3 is the 99.7% confidence level.   Hence, equation (3.119)
states that when n = 2, for example, the actual (but unknown) state of the other aircraft is located
within the limits shown with a 95% confidence level (probability).

3.3.2 Long-Term Intent Confidence
Under the Long-Term Intent (LTI), the focus is more on whether the current estimated other
aircraft state vector is close to an LTI trajectory for this aircraft or whether it will be close to this
trajectory in the future. To quantify this approach, let us focus on the LTI of the other aircraft, as
indicated by its last and current waypoint. Alternately, if the current course bearing of the other
aircraft and the next waypoint is known, these can used instead. Note that the use of these two
waypoints can be generalized to handle cases where a weather front with storm cells or a hazardous
(no fly) region is identified in front of the other aircraft. In that case, the current position of the
aircraft or its last waypoint can be taken as one of the waypoints and a second waypoint can be
selected such that the other aircraft will avoid the undesirable flight region as specified by the AOP
intent inference module and/or the hazard detection and resolution module.

Two indicators locate an aircraft on a nominal LTI trajectory, as illustrated in Figure 3.3.
First, the current position of the aircraft is expected to be close to the nominal LTI trajectory.
Second, the ground track angle of the other aircraft is expected to be pointed toward the current
waypoint of the nominal LTI trajectory. Figure 3.3 illustrates a situation where the last, current,
and next waypoint are known. Hence there are at least two possible nominal LTI trajectories. The
first LTI trajectory is defined by the last waypoint (n-1) and current waypoint (n). The second LTI
trajectory is defined by the last (n-1) and next waypoint (n+1). The latter LTI trajectory reflects a
situation where the other aircraft may have chosen or been directed to bypass the next waypoint.
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Figure 3.3. Alternate LTI trajectories.

Shown in Figure 3.3 is a band about the nominal LTI trajectory called the Primary
Clearance Region (PCA). Current jetways and air routes have primary and secondary clearance
regions where it is safe to fly without encountering any terrain or other hazard. For Free Flight,
other criteria may be used to define these regions, such as the Required Navigation Performance
(RNP) which describes the minimum lateral wander that an aircraft can make from its route.

Figure 3.4 illustrates the key parameters used to determine the probability that the other
aircraft is following the nominal LTI trajectory. Figure 3.4 shows the position of the nearby
aircraft in an intrack-crosstrack coordinate system, as defined by the last and current waypoint and
the current position of the aircraft. The current ground speed vector has a track angle, ΨG, that can

vary between Ψmin and Ψmax and still allow the nearby aircraft to pass within ±rPCA of the current
waypoint.
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Figure 3.4.  Nearby aircraft ground speed geometry relative to LTI trajectory.

To derive the probability that the nearby aircraft is on its nominal LTI trajectory, we start
with the observed LTI trajectory. This trajectory is defined by the current position of the other
aircraft and its current waypoint. The observed LTI trajectory in intrack-crosstrack coordinate
position is
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The relationship between the North-East and intrack-crosstrack coordinate system is
illustrated in Figure 3.5.  This figure illustrates the course bearing angle BC, the true bearing angle
BT, the true track angle ΨG, and the ground speed VG. This figure also illustrates the nominal LTI

trajectory, represented by LTIR , and the observed LTI trajectory, represented by LTIR̂ .

To determine the confidence level that the other aircraft is moving toward the current
waypoint, it is convenient to focus on the track angle of the other aircraft. The first step is to rotate
the 4x4 estimation error covariance matrix into lateral coordinates:

[ ] [ ][ ][ ] T
LATLATITCT TPTP =                                                 (3.122)
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where [P] is the Kalman filter or LPF estimation error covariance matrix and [PITCT] is the Kalman
filter estimation error covariance matrix for the intrack-crosstrack position and for the ground speed
and track angle.

The cross-track position standard deviation, track angle standard deviation, and cross-track
position-track angle correlation coefficient can be obtained from equations (3.123), as follows:

CTCTCT rrr p ,=σ                                                       (3.126)
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Then with equations (3.126) – (3.128), the total probability that the other aircraft is following the
nominal LTI trajectory is obtained as follows:
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The integration limit, rPCA, is the crosstrack radius of the primary clearance area around the LTI
trajectory, as illustrated in Figure 3.4. The crosstrack position integral of equation (3.129) is
illustrated in Figure 3.5.

The ground track integration limits, are computed as follows:
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Figure 3.6.  Probability that nearby aircraft is on LTI trajectory based on crosstrack position.

Equation (3.129) is difficult equation to solve since it is a coupled double integral but also
because the track angle integration limits involve the crosstrack position, which is one of the
integration variables.  A reasonable simplification is to set the track angle integration limits equal to
the estimated crosstrack position. This assumes that the standard deviation of the crosstrack
position is small relative to the primary clearance area radius, rPCA:
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Then equation (3.129) is evaluated using the limits defined by equations (3.132) and (3.133).  A
further simplification in the equation (3.129) is achieved since the correlation coefficient in
equation (3.129) is negligible (close to zero). With equations (3.132) – (3.133), the double integral
in equation (3.129) takes the form:
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With equation (3.134), only the product of two separate integrals need to be evaluated. Expressed
in terms of the error function erf(), equation (3.134) can be rewritten as follows:
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3.3.3 Confidence Assessment for other Data
The confidence assessment module assesses the confidence level of weather and other data. These
data may be of the type of point data, region data (e.g, polygon regions), or grid data.  Confidence
assessment of these data assigns a number in the interval [0,1] to the data to indicate low (0) to
high (1) level of confidence.  Confidence assessment is performed independent of the data type and
data format.  Two methods of confidence assessment are designed for this purpose, discrete and
fading memory.  A discussion of these two confidence assessment methods follows.

3.3.3.1 Discrete Confidence Assessment
With discrete confidence assessment, the data confidence is assessed to be one of a limited number
of discrete values.  The simplest form of discrete confidence assessment is binary, where the
confidence is either 0% (0) or 100% (1). A particular data type X  is assigned a confidence
assessment C within the set:

C(X)  {0,1} (3.138)

where the assignment may depend on any heuristic or domain knowledge.  Yet another discrete
confidence assessment may assign 100% (1) , 90% (0.9), 50% (0.5), 10% (0.1), or 0% (0)
confidence.  Thus, in general, discrete confidence assessment assigns a discrete set of certainty
values:

C(X) },...,,,{ 210 nCCCC (3.139)

based on a set of heuristic factors associated with the data.  Discrete confidence assessment
methods are used in AOP as the simplest form of confidence assessment or as a default condition
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when more detailed or more accurate methods of confidence assessment are not available.  

Consider an example of assigning confidence assessment for a turbulence SIGMET from
the FIS message.  Based on the FIS data item for likelihood (Low, Moderate, High), a direct
correspondence can be established to form the confidence assessment:

C(X) 0{C =0    (no SIGMET),

1C =0.5 (Low Likelihood),

2C =0.7 (Moderate Likelihood),

3C =0.9 (High Likelihood)}. (3.140)

The confidence assessment level for discrete confidence assessment can remain fixed over
the duration of valid time of the data (until a new data replaces old data, or the data expires as
indicated by the data lifespan) or it may change with time, as with the fading memory confidence
assessment method described next.

3.3.3.2 Fading Memory Confidence Assessment

With fading memory confidence assessment, each data type has a time constant τ  associated with
data collection, and as the time t passes, the confidence of the information decays accordingly with
the associated time constant.  The initial confidence assessment level can start at 1 or some other
value dependent on a heuristic (as described above in Section 3.3.3.1).  In general, if a particular
data type X(x,y) is collected at time T0, then we denote the data and time stamp by X(x,y,T0) and
assign the confidence assessment C for the data X  at the time t by a exponentially decaying
function, as shown in Figure 3.7.

The time-decay confidence assessment model can apply to any data type or any data format.
Thus, this time-decay confidence assessment model is useful as a default, provided a time decay
constant τ is available.

3.3.3.3 Combining Confidence Assessment Levels in Data Fusion
There are several methods available to combine confidence assessment levels in data fusion.
Among the methods are:  Bayesian Theory, membership for Fuzzy Set Theory, possibility
distributions, certainty factors in MYCIN-like systems, and mass, belief, and plausibility functions
from Dempster-Shafer Evidence Theory.  A review and comparison of these methods is performed
by Bloch [Bl96].
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Figure 3.7.  Equation and example time history of a time dependent confidence level.

The MYCIN-like method for assigning certainty factors is implemented in RTO 30 to
combine confidence assessment levels in the data fusion process. Fusion based on certainty factors
[Bl96] is motivated by the early expert systems research.  Here, certainty factors are defined on the
interval [-1,1] where positive indicates that the fused information supports the Assertion A and
negative indicates that the fused information denies the Assertion A,. [Note: a simple
transformation converts the interval [0,1] to [-1,1] between the confidence assessment levels and
the MYCIN certainty factor levels.]  When information x and y are combined:

a) x y xy+ −  if x? 0 and y? 0 (x and y confirm A) (3.141)
b) x y xy+ +  if x≤ 0 and y≤ 0 (x and y deny A) (3.142)
c) x y+  if x≤ 0 and y? 0, or x? 0 and y≤ 0 (3.143)

(x and y show mixed support for A)

This classical method of combining certainty factors for data may be necessary for confidence
assessment of combined data sources such as weather, multiple hazards, or airspace conflicts.
With weather data in particular, the FIS message allows for individual pixels within a precipitation
map graphic to indicate no data or lost data, for which the confidence level is assigned to be 0.
Another weather map, for instance, the onboard weather map from the onboard weather radar, may
have a reading for that pixel location, and the certainty factor method of equation (3.180) is
applicable.

The MYCIN like operator for confidence assessment is a context independent variable
behavior type operator [Bl96].  The operator does not depend on the data type: point, region, or
grid.  The operator is variable behavior because the outcome depends on the input conditions for x
and y (confirm, deny, or mixed support).  This confidence assessment has the properties:

•  when x and y are positive, the operator confirms the event more than either of
the individual confidence levels (as in Figure 3.8),

•  when x and y are negative, the operator rejects the event more than either of the
individual confidence levels, and

•  in a mixed compromise when x and y are mixed signs, the sign of the result
depends on the stronger confidence level.
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Figure 3.8.  The MYCIN confidence assessment operator confirms an event more
than either individual confidence levels that combine in data fusion.

3 .4 Scenarios
The two filters presented in Section 3.2 are investigated further in this section using two
simulations with several aircraft trajectories. For the ADS-B trajectory, a Monte Carlo simulation is
used which includes aircraft lateral FTE and GPS navigation errors. Initially, the nearby aircraft
trajectory is only being investigated, not the relative trajectory. Since the aircraft trajectory is based
on a simulation, the true (GPS error-free) trajectory is also available.  Actual radar track data for
two aircraft are used to represent the TIS-B data. The radar error-free trajectory is obtained by
using a moving window least squares filter on the radar position data to determine the true ground
speed, heading, ground acceleration, and heading rate.

3.2.1 ADS-B Scenario with Kalman Filter
A Monte Carlo simulated GPS/INS aircraft trajectory is used as the basis for the ADS-B analysis,
as illustrated in Figure 3.9. The statistics and constants that were used in the simulation equations
are summarized in Table 3.16. Note that all the units in Table 3.16 were standardized within the
simulation to distance in feet, speed in feet/sec, acceleration in feet/sec2, angles in radians, angular
rates in radians/sec, and time in seconds.
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Figure 3.9. Plan view of aircraft path, ADS-B intent TCP and TCP+1, and alternate intent.

The trajectory variables are illustrated in Figure 3.9. The Kalman filter state estimates are
presented in Figures 3.10 through 3.16. The NTI predicted position estimates are presented in
Figure 3.17. The LTI estimated position and track angle statistics are presented in Figure 3.18.
Finally, Figure 3.19 presents the probability that the other aircraft is on the nominal LTI trajectory.

In Figures 3.10 - 3.16, the relative error between the Kalman filter estimate and truth is
presented. This error is the actual estimation error of the Kalman filter. The uncertainty bound
around this estimation error is the 95% confidence limit that the unknown actual history is found
within ±2σ  of the estimate. Hence, if this confidence estimate is computed correctly, one would
expect most (19 out 20) of the actual estimation error values to lie within this confidence interval.

Figure 3.17 illustrates the NTI aircraft position prediction capability of the Kalman filter.
These predicted positions were obtained by propagating the current Kalman filter estimate and
estimation error covariance matrix, without further measurements, 60 seconds in the future. The
predicted positions were then compared to the actual positions to obtain the prediction error. The
error bound surrounding the prediction error is the 95% confidence interval about the prediction
estimate. This confidence interval is based on the standard deviation of the prediction as obtained
from the predicted estimation error covariance matrix. As can be seen, the 95% confidence levels
are reasonable, particularly for the East position prediction.

The discrete increases in the confidence limits shown in these Figures reflects the use of
NTI data by the Kalman filter that the aircraft is turning or accelerating. Since no NTI data was
available from the ADS-B message or the NTI inference algorithm, the use of NTI data was
simulated. Specifically whenever the other aircraft absolute track rate or acceleration exceeded a
specified value, the scaling on the process noise matrix of the Kalman filter was changed.  In
Figure 3.18, the bands shown around the mean cross-track position and mean track angle represent
the respective integration limits. A primary clearance area radius of 1 nmi was used instead of the
current jetway radius of 4 nmi.
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Table 3.16.  The parameters used in the ADS-B Kalman filter simulation.
Parameter Units Symbol Value

Initial North Position Sigma nmi σX 0.2
Initial East Position Sigma nmi σY 0.2
Initial Ground Speed Sigma kts σVg 0.1
Initial Track Sigma deg σψg 5
Initial Ground Acceleration Sigma kts/sec σAg 0.1
Initial Track Rate Sigma deg/sec gψσ & 0.2

GPS North Position Measurement Noise Sigma m σMX 0.05
GPS East Position Measurement Noise Sigma m σMY 0.05
GPS North Velocity Measurement Noise Sigma m/s σMVx 0.5
GPS East Position Measurement Noise Sigma m/s σMVy 0.5
North Position Reciprocal Time Constant 1/sec βX 0.33
East Position Reciprocal Time Constant 1/sec βY 0.33
Ground Speed Reciprocal Time Constant 1/sec βVg 0.56
Ground Track Reciprocal Time Constant 1/sec βψg 1
Ground Acceleration Reciprocal Time Constant 1/sec βVg 0.56
Ground Track Rate Reciprocal Time Constant 1/sec gψβ & 0.56

Primary Clearance Area Radius nmi rPCA 1
Computation and Measurement Time Interval sec ∆t 1
NTI North Position Process Noise Scale Factor kx 1 or 2.5
NTI East Position Process Noise Scale Factor ky 1 or 2.5
NTI Ground Speed Process Noise Scale Factor kv 1 or 2.5
NTI Ground Track Process Noise Scale Factor kψ 1 or 5
NTI Ground Acceleration Process Noise Scale Factor ka 1 or 2.5
NTI Ground Track Rate Process Noise Scale Factor kψ 1 or 2.5
NTI Prediction Time Interval sec ∆tPRED 60
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Figure 3.10. The ADS-B aircraft trajectory truth data.
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Figure 3.11.  The Kalman filter ground acceleration estimate.
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Figure 3.12. The Kalman filter ground speed estimate.
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Figure 3.13. The Kalman filter track rate estimate.
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Figure 3.14. The Kalman filter track angle estimate.
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Figure 3.15. The Kalman filter North position estimate.
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Figure 3.16. The Kalman filter East position estimate.
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Figure 3.17. The Kalman filter 60 second NTI position prediction errors.
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Figure 3.18. The Kalman filter crosstrack position and track angle LTI statistics.
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Figure 3.19. The Kalman filter LTI probabilities.
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3.2.2 TIS-B Scenario with LPF
The radar track data for the two aircraft that were used to evaluate the LPF with TIS-B data is
illustrated in Figure 3.20. The own aircraft is moving from the upper left to the South while the
other aircraft is moving from the left to the East. Figure 3.21 shows the relative trajectory for the
same two trajectories of Figure 3.20. The raw and truth variables for the relative trajectory are
presented in Figures 3.22 and 3.23. As can be seen in Figure 3.22, the two aircraft will nominally
pass within about 10 nmi of each other.

The simulation was based on the LPF with TIS-B data and the parameters shown in
Table 3.17.  All units were standardized to distance in feet, speed in feet/sec, acceleration in
feet/sec2, angles in radians, angular rates in radians/sec, and time in seconds.
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Figure 3.20. Flight paths for two aircraft in close proximity.

Figures 3.23 through 3.27 illustrate how accurately the LPF estimates the relative current
ground speed, track angle, North position, and East position of the two aircraft. In Figures 3.24
through 3.27, are presented the actual LPF estimation errors, shown in the panels labeled relative.
These errors are bounded by 95% confidence limits that are obtained by using the +/- 2 sigma
limits. Figure 3.28 then shows the prediction error when the current Kalman filter and LPF
position state estimate is propagated forward into the future by 1 minute, without any additional
measurements, and this estimate is compared to the true position. Finally, Figure 3.29 presents the
fixed LPF gain values and compares these to the dynamically set Kalman filter gain values.

The discrete increases in the sigma values reflect the use of NTI information, indicating that
the aircraft is turning or accelerating. Since no NTI inference data was available, the simulation
triggered the use of NTI data in the LPF whenever the absolute value of the heading rate or the
acceleration exceeded a specified value. The excessive triggering of the NTI data reflects the
noisiness of the data used to implement this simple NTI logic.
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Table 3.17. The parameters used for the TIS-B Low Pass Filter (LPF) simulation.
Parameter Units Symbol Value

Initial North Position Sigma nmi σX 0.16
Initial East Position Sigma nmi σY 0.16
Initial Ground Speed Sigma kts σVg 20
Initial Track Sigma deg σψg 7.5
Radar North Position Measurement Noise Sigma nmi σMX 0.2
Radar East Position Measurement Noise Sigma nmi σMY 0.2
North Position Reciprocal Time Constant 1/sec βX 0.083
East Position Reciprocal Time Constant 1/sec βY 0.083
Ground Speed Reciprocal Time Constant 1/sec βVg 0.083
Ground Track Reciprocal Time Constant 1/sec βψg 0.083
North Position LPF Gain αX 0.25
East Position LPF Gain αY 0.25
Ground Speed LPF Gain αVg 0.10
Ground Track LPF Gain αψg 0.10
Computation and Measurement Time Interval sec ∆t 12
NTI North Position Process Noise Scale Factor kx 1 or 4
NTI East Position Process Noise Scale Factor ky 1 or 4
NTI Ground Speed Process Noise Scale Factor kv 1 or 4
NTI Ground Track Process Noise Scale Factor kψ 1 or 4
NTI Prediction Time Interval sec ∆tPRED 60
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Figure 3.21. The relative path for the two aircraft.
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Figure 3.22. The relative raw trajectory variables.
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Figure 3.23. The relative trajectory variables.
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Figure 3.24. The LPF ground speed statistics.
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Figure 3.26. The LPF North position statistics.
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Figure 3.27. The LPF East position statistics.

rms = 0.25 nmi

rms = 0.19 nmi



73

0 2 4 6 8 10 12
-5

0

5

Figure 3.28. The LPF and Kalman filter 60 second position prediction statistics.
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Figure 3.29. The LPF and Kalman filter gain values.
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3.4.4 Lessons Learned from Scenario Investigations

In these scenarios, a number of lessons were learned.  A number of different Kalman filters were
explored to estimate the state of the other aircraft based on ADS-B data, and the 6-state Kalman
filter with 6-measurement states provided the best performance. The focus was initially on the
horizontal dynamics of the other aircraft. The 6 states and measurements consisted of North and
East position, ground speed and track angle, and ground acceleration and track angle rate. Since
the ADS-B data does not include measurements of the ground acceleration and track angle rate,
these were obtained by numerically differentiating the ground speed and track angle measurements.

For the TIS-B data, a number of Kalman filters and a LPF were investigated for
determining the estimated relative state of both aircraft.  A 4-state LPF with 4-measurement states
provided the best performance for estimating the horizontal relative states of both aircraft. The
performance of the LPF was found to be better overall than the Kalman filter since the LPF is less
sensitive to inaccuracies in the knowledge of the measurement and process noise statistics than the
Kalman filter. The four states and measurements are the North and East relative position and the
relative ground speed and track angle. Since the TIS-B does not provide measurements of the
relative ground speed and track angle, these were computed by numerically differentiating the
position measurement data.

NTI confidence was based on propagating the current best state estimate, and the
corresponding estimation error covariance matrix, forward into the near future (e.g.: 30-60 sec).
This assumes that the current state estimate, based primarily on measurements of the recent past
trajectory, is a good indicator of the near-term future.

The current state estimate has a confidence level that is defined by the standard deviation of
the estimation error. This estimation error is obtained from the dynamically computed estimation
error covariance matrix. When the current state is propagated forward under NTI without any
additional measurements, the estimation error covariance matrix increases through the addition of
the process noise matrix. In other words, the process noise matrix provides an estimate of the
future uncertainty of the state estimate.

When NTI information is available such as that the other aircraft is turning or accelerating,
this information can be used to scale the process noise matrix to reflect the increased uncertainty of
the future state of the aircraft. Such NTI information would come directly from the ADS-B
message, while NTI acceleration information is not broadcast.

The LTI confidence estimate of the other aircraft can be derived by focusing on the nominal
and current LTI trajectory of the other aircraft. By comparing the nominal to the current observed
LTI of the other aircraft, the probability (confidence level) that the other aircraft is following its
nominal LTI trajectory can be derived. This process is computed in the Information Ambiguity
Resolution module, which verifies the LTI.  If the LTI cannot be verified or does not exist, then
the Intent Inference module will estimate the LTI, as discussed in Chapter 2.  The nominal LTI
trajectory is defined by the last and current waypoint of the other aircraft as provided by the AOP
Intent Inference module, ADS-B, or CPDLC message.

To derive the LTI confidence estimate and verify intent, the focus was on whether the other
aircraft position currently is within the airway or jet way of the nominal LTI trajectory. This route
is generally defined by a primary and secondary clearance regions centered about piecewise linear
segments between waypoints. Under Free Flight, the RNP is used to define the boundaries of the
route.  In addition to requiring the other aircraft to have its position within the nominal LTI
trajectory route, another requirement incorporates the current ground speed velocity vector. Hence,
for the aircraft to be following its nominal LTI trajectory, its track angle must also be directed near
the current waypoint.

To evaluate the performance of the Kalman filter and LPF, as well as the NTI and LTI
confidence assessment algorithm, ADS-B and TIS-B scenarios were selected. The ADS-B scenario
consisted of an aircraft using GPS navigation and with FTE flying between two waypoints. The
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TIS-B scenario was obtained from two aircraft radar track histories as measured by a TRACON
radar. The two aircraft trajectories were artificially arranged to introduce a near-conflict.
Performance of the Kalman filter with the ADS-B scenario resulted in a current North and East
position root-mean-square (rms) error of 0.002 and 0.012 nmi, respectively. Hence, the North and
East position estimate has a 95% confidence level of +/- 0.004 and 0.024 nmi, respectively.  When
these estimates are propagated 60 seconds into the future under NTI conditions, the rms position
errors increased to 0.11 and 0.30 nmi, respectively. LTI confidence estimates were also computed
for each point along the trajectory.  The performance of the LPF with the TIS-B scenario resulted
in a North and East position rms error of 0.25 and 0.19 nmi, respectively. When this state estimate
was propagated 60 seconds into the future, the North and East position rms errors increased to
0.91 and 0.56 nmi, respectively.
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4.0 HAZARD PRIORITIZATION
In its flight through the NAS, an aircraft may encounter many possible hazards to its safe passage
from the flight’s origin to its destination. A hazard prioritization function in AOP is needed to
determine the order hazards should be dealt with by the aircraft’s flight crew (see Figure 4.1). This
function is used to enhance flight crew situational awareness and maximize the safety and
efficiency of hazard avoidance maneuvers.

Figure 4.1.  In what order should the flight crew deal with the known hazards?

In the AOP design, the architecture of the Hazard Prioritization model is directly supported
by the Hazard Detection model and directly supports the Hazard Notification model, as shown in
Figure 4.2.
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Figure 4.2.  Hazard Prioritization model connectivity within the AOP.

The nominal data flow supporting the hazard prioritization function is shown in
Figure 4.3. Data from ADS-B, TIS, FIS, and CPDLC messages, along with onboard database
information are converted by the Hazard Detection model into a hazard list that is fed into the
Hazard Prioritization model. The Hazard Prioritization model incorporates a series of user
preferences into a series of filter and sorting algorithms that produce the eventual prioritized threat
list as output that is passed onto the Hazard Notification model.
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Figure 4.3.  Hazard prioritization data flow diagram.

4.1 Theory
The hazard prioritization method is based on an approach centered around a series of filter and
sorting algorithms based on key hazard priority factors shown in Table 4.1. In the next sections,
the hazard prioritization inputs and outputs and method are described.

Table 4.1. The key hazard priority factors used in the Hazard Prioritization model.

Factor Description

Hazard Type Types include aircraft, convective weather, turbulence, Special
Use Airspace, congested airspace, terrain

Time-to-Closest Point of
Approach (CPA)

The predicted time before the aircraft will be at its closest point
of approach for the given hazard

Range-at-CPA The predicted minimum horizontal and vertical ranges between
the aircraft and a given hazard

Current Range The current horizontal and vertical range between the aircraft and
a given hazard

Hazard Certainty The probability that the given conflict (or a more severe one)
will occur between the aircraft and the given hazard

User Preferences A set of hazard prioritization preferences that includes the
relative priority of hazard types, alert level thresholds, and hazard
certainty filter criteria.
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4.1.1 Hazard Prioritization Inputs and Outputs
The necessary inputs for the Hazard Prioritization model consists of a hazard list provided by the
Hazard Detection model, or otherwise obtained from other AOP models, and a set of hazard
prioritization user preferences. The output from the hazard prioritization process is a prioritized
hazard list that is sent to the Hazard Notification model. These inputs and outputs are now
described in more detail.

4.1.1.1 Hazard List Inputs

The hazard list is comprised of key information about all flight hazards known to the AOP. For
each flight hazard, the hazard list includes:

•  a unique hazard identification name,
•  the hazard type,
•  the time-to-CPA,
•  the horizontal and vertical ranges at CPA,
•  the current horizontal and vertical ranges from the hazard, and
•  a probabilistic hazard certainty.

Possible hazard types to be handled by the Hazard Prioritization model include those shown in
Table 4.2.

Table 4.2. Possible hazard types considered for the Hazard Prioritization model.

Hazard Type Data Source Description

Air Traffic ADS-B, TIS Aircraft (fixed-wing, rotary-wing), balloons, etc.

SIGMETs (incl.
Convective SIGMETs)

FIS Predicted areas of hazardous weather phenomena including
severe/extreme turbulence, severe icing, duststorms, sandstorms,
volcanic ash, tornadoes, severe thunderstorms

Turbulence FIS/PIREP Pilot Report of air turbulence; such turbulence ranges in severity
from impacting ride quality to safety.

Special Use Airspace FIS Volumes of airspace that are off-limits to commercial air traffic for
given periods of time; typically used by military aircraft

Heavy Precipitation FIS Areas of current or forecasted heavy precipitation that have
associated dangerous convective activity

Congested Airspace FIS Volumes of airspace and associated time periods for which the
forecasted or current air traffic demand is greater than capacity

Icing FIS/PIREP Pilot Report of icing

Wind Shear FIS/PIREP Pilot Report of wind shear

Terrain Onboard Terrain
Database

Static natural contour of the Earth’s surface

Obstacles Onboard Obstacle
Database

Static man-made structures close to the ground

For RTO 30, hazard prioritization algorithms are designed to handle the prioritization of all
such hazard types, assuming the hazard list is available to the Hazard Prioritization model. If this
assumption does not hold true, the Hazard Prioritization model will have to generate the hazard list
itself. In this case, algorithms to generate the required hazard information for the hazard types in
Table 4.2 will be generated in the order shown, while adhering to contract budget and time
constraints.
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4.1.1.2 User Preference Inputs

In addition to the hazard list, the Hazard Prioritization model uses a set of user-defined inputs in
order to tailor the hazard prioritization method to support specific AOP research objectives. The
user preferences include:

•  different certainty thresholds per hazard type,
•  the number of desired threat levels,
•  the threat level per hazard type,
•  the number of desired alert levels, and
•  alert level criteria based on combinations of time-to-CPA, range-at-CPA, and current range.

More detailed specification of these user preference inputs for each hazard prioritization algorithm
are found in Section 4.1.2.

4.1.1.3 Prioritized Hazard List Outputs

Output by the Hazard Prioritization model, the prioritized hazard list is comprised of an ordered list
of flight hazards that are relevant for flight crew consideration. This ordered list is in decreasing
order of consideration priority and includes:

•  a unique hazard identification name,
•  the hazard type, and
•  the hazard alert level.

For RTO 30, it is assumed that this prioritized hazard list is what is needed by the Hazard
Notification model. If this assumption does not hold true, the Hazard Prioritization model will be
modified to provide the additional necessary information, while adhering to contract budget and
time constraints.

4.1.2 Hazard Prioritization Method
The hazard prioritization methodology implemented in the Hazard Prioritization model is based on
modules that filter the hazards based on hazard certainty, sort the hazards based on user-assigned
hazard threat levels, and then sort the hazards based on assigned alert levels based on user-
specified separation time and distance criteria. Each of these hazard prioritization algorithms is now
discussed.

4.1.2.1 Hazard Certainty Filter

The first component of the hazard prioritization process is the filtering of hazards based on threat
certainty. For any potential hazard, there will be some level of uncertainty that a conflict between
the hazard and ownship will occur. This uncertainty arises due to a large number of factors:

•  age of the data (e.g., old versus new PIREP),
•  information source (e.g., TIS vs ADS-B),
•  uncertainties in the current positions, velocities (as expressed for aircraft in ADS-B

Navigational Uncertainty Categories (see [RTCA242, SK99a]), and future intent of both the
hazard (e.g., SUA schedule) and ownship (e.g., flight plan),

•  dynamics of the atmosphere (e.g., wind speed uncertainty), and
•  dynamic nature of the type of hazard (e.g., convective activity may grow or shrink).

In the hazard prioritization method, a scheme is incorporated that takes conflict uncertainties
into account. Previous researchers have developed various methods for aircraft-to-aircraft conflict
analysis [KMH96, PE97, YK97]. For all hazards identified by the AOP, we assume that the
Hazard Prioritization model will receive a probabilistic value in the range [0,1] of conflict certainty
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for each hazard from the Hazard Detection model. Note that this certainty level is not equivalent to
that being generated by the Information Confidence Assessment model. The certainty level being
generated by the Information Confidence Assessment model is the certainty that a given aircraft is
at a particular position at the current time. This is not equal to what the Hazard Prioritization model
needs, which is the certainty that a given hazard will conflict with ownship at a future time. If the
assumption of the availability of probabilistic conflict certainties for each hazard from the Hazard
Detection model is not valid, then the implementation of the hazard certainty filter will need to be
revised.

The hazard certainty filter works as follows. If the incoming hazard certainty for a given
hazard is below the user-defined threshold for a corresponding hazard type, the hazard is removed
from the hazard list. Otherwise, the hazard information is retained.  A set of incoming hazards, H ,
exists with unique hazards, Hti , which are the i th instance of unique hazard type t , that have the
respective hazard certainties of Cti . Also, the set H  has n  unique hazards and m unique hazard
types. The hazard certainties are within the range:

10 ≤≤ Cti , (4.1)

whereCti represents the probabilistic certainty of a future conflict with Hti .  The extreme cases
exist when 0=Cti , signifying that a future conflict with Hti  has no support, and 1=Cti , signifying
that conflict with Hti  currently exists or is certain.  For example, if three hazards exist such that
three aircraft with call signs AAL100, AAL200, and AAL300 with corresponding hazard
certainties of 0.5, 0.6, and 0.7, then:

•  H is the set {H11 , H12 , H13 }= {AAL100, AAL200, AAL300}

•  3=n  unique hazards, 1=m  unique hazard type, and t =1 for aircraft hazard type, and
•  C11 =0.5; C12 =0.6; and C13 =0.7.

For every hazard type t , the user defines a user-preferred hazard certainty threshold, Τt ,
which represents a lower limit on the acceptable hazard certainty. Therefore, all Τt  represent a
probabilistic certainty of a future conflict with the hazard Hti  such that:

10 ≤≤T t , (4.2)

where Τt  represents a lower certainty threshold for conflicts with hazards Hti .  Special cases
occur when 0=Tt , signifying that the user wants to be aware of all hazards with finite conflict
probabilities, and 1=Tt , signifying that the user does not want to know any hazard information.
In absence of user input, the default value of Τt  is 0.5, or whatever RTCA or other
recommendation is standard in the industry.

The filtering algorithm works by comparing the input hazard certainty, Cti , with the
corresponding hazard certainty threshold, Τt . Then, all hazards Hti  for which TC tti ≤  are
removed from H (see Figure 4.4) and the resulting H′  is passed on to the hazard threat level
sorting algorithm. For example, in the three aircraft example above, if the user defines 6.01 =Τ ,
then AAL100 (with C11 =0.5) and AAL200 (with C12 =0.6) are removed from the set of hazards.



82

Cti=0

if Cti <=Τt,
hazard, Hti, thrown out 

User-Preferred
Hazard Certainty
Threshold, Τt

Cti=1

Hazard
Certainty,
Cti 

Figure 4.4.  Hazards with low certainty are filtered from the set of hazards.

4.1.2.2 Hazard Sorting by Threat Level

The second component of the hazard prioritization process is the sorting of hazards based on user-
assigned threat levels. Previous investigations into airborne hazard prioritizations such as [H98]
and [FHK98] suggest that safety is the pre-eminate factor in prioritizing hazards. Such a safety
criteria leads one to prioritize certain hazard types for which a conflict could be catastrophic (e.g.,
terrain or other aircraft) above those for which safety would not be impacted (e.g., minor
turbulence or SUA). However, [H98] and [FHK98] have also shown that other factors and the
relative importance to individual users come into play in the hazard prioritization process. For
example, the factors of maintaining ride quality or following individual company policies have
user-dependent levels of importance. Therefore, in order to provide NASA researchers the
capability to investigate different hazard prioritization schemes, a scheme to sort hazards based on
user-defined threat levels per hazard type is implemented.

This scheme involves the specification of a user-defined threat level for each hazard type
and a total number of distinct threat levels. Associated with the set of incoming hazards H′  is a
user-defined threat level Lt  defined for each hazard type t . The user also defines the total number
of distinct threat levels p  which are ordered in decreasing levels of threat from 1 to p .

The hazard sorting procedure is accomplished using an insertion sort algorithm [Kn98].
As a simple, stable, and in-place sorting algorithm, this algorithm achieves an ordered sort in

)(O 2p  operations and works quickly when p  is relatively small (i.e., 12≤p )
[http://members.xoom.com/thomasn/s_man.htm]. If p  becomes very large, other sorting
algorithms such as a quicksort should be considered.
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The insertion sort algorithm works as follows:

1. Designate H′  as the set of n  hazards; H′ ={H′ j } with j = 1, 2, …, n .
2. Choose j  = 2 and let H ′′ =H′ , the eventual output set of hazards.
3. If j = n+1, then go to step 8. Otherwise, take H′ j  out of H ′′ .

4. Starting at the k th hazard in H ′′ , identified as H k′′ , where the threat level is
greater than the threat level of the chosen hazard, move all hazards inclusively
between H k′′  and H 1-j′′  one position down (i.e., HH l1l ′=′′ +  for l  = k, k+1, …

to j -1 and { }0H =′′ k ).
5. Set l  = k +1.
6. If the threat level for H′ j  is less than the threat level for H l′′ , then set

HH 1-l ′=′′ j , set j  = j  + 1 and go to step 3.

7. Set l  = l  + 1 and go to step 6.
8. Stop. H ′′  is the output, sorted hazard list.

A simple example of a hazard insertion sort with n  = 3 hazards is shown in Figure 4.5.

AAL100 1 HazardID Threat
Level 

SIGMET87 2 

AAL100 1 

SUA525 4 

AAL100 1 

SUA525 4 

AAL100 1 

SUA525 4 

AAL100 1 

SUA525 4 

SIGMET87 2 

SIGMET87 2 

AAL100 1 

SUA525 4 

AAL100 1 

SUA525 4 

SIGMET87 2 

SIGMET87 2 

SUA525 4 SIGMET87 2 

SUA525 4 

Chosen
Hazard

j = 2 

Input
Hazard List 

Output, Sorted
Hazard List 

Chosen
Hazard

j = 3 

Figure 4.5.  Hazards are sorted based on threat level with an insertion sort.

Default values for the user-specified threat levels are as shown in Table 4.3. Note that the
default threat levels are designated as four levels in decreasing level of severity from 1 to 4.
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Table 4.3. Default Hazard Threat Levels.

Hazard Type Threat Level* Reasoning

Air Traffic 1 Encountering other air traffic would be catastrophic.
SIGMETs

(incl. Convective SIGMETs)
2 Encountering SIGMETs would be very hazardous to the

safety of flight.
Turbulence 3 Encountering turbulence would affect ride quality which

is assumed to be important.
Special Use Airspace 4 Encountering SUA would not be hazardous to the safety

of flight, but would impact the legality of the flight.
Heavy Precipitation 2 Encountering areas of heavy precipitation that have

associated dangerous convective activity would be very
hazardous to the safety of flight

Congested Airspace 4 Encountering congested airspace would not be hazardous
to the safety of flight, but could impact the flight’s
schedule adherence.

Wind Shear 2 Encountering wind shear would be very hazardous to the
safety of flight.

Icing 2 Encountering icing conditions would be very hazardous
to the safety of flight

Terrain 1 Encountering terrain would be catastrophic.
Obstacles 1 Encountering obstacles would be catastrophic

*Note: 1= most threatening, 4= least threatening.

4.1.2.3 Hazard Sorting by Alert Level

The third and final component of the hazard prioritization process is the sorting of the hazards
based on an assigned alert level. Alert levels being considered by ATM researchers typically
consist of some combination of geometric and temporal criteria such as the time-to-CPA, horizontal
and vertical ranges-at-CPA, and current horizontal and vertical separation distances [KP97,
KY97], and, in some instances, number of conflict-free aircraft maneuvering options [YK97]. The
work of Kuchar [KH95, Ku96] presents a unified methodology to airborne alerting logic. Figure
4.6 illustrates the logic for a single-stage and two-stage alerting logic. For conflict detection
between aircraft, the conflict can occur at the Alert Zone in a single-stage alert, or a caution can be
established before the Alert Zone conflict. Multi-stage alerts, as designed by the RTCA SC186
Working Group 1 ADS-B based conflict detection and resolution operational concept
[RTCASC186 Ops Concept], allows warnings to alert as the severity of the situation gets worse,
as shown in Figure 4.7. In Figure 4.7, low, medium, high, and critical alerts trigger at closer
ranges:

1.    Critical Alert   – triggered by a prediction of a near-mid air collision (i.e., CPA
distance within 500 feet horizontally and 100 feet vertically) in one minute,

2.     High Level Alert   – triggered by the violation of the Protected Airspace Zone
(PAZ) (i.e., for the terminal area, current separation distance is within 3 nmi
horizontally and 1000 feet vertically),

3.     Medium Level Alert   – triggered by a prediction of a PAZ conflict within 2
minutes, and

4.    Low Level Alert   – triggered by a prediction of a PAZ conflict within 5 minutes.

No Hazard

Threshold

Hazard
Range

Single-Stage
Alerting
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Figure 4.6.  Single-stage alerting logic and two-stage alerting logic.
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Figure 4.7.  Multi-stage Protected Airspace Zone alerting logic allowing for low,
medium, high, and critical alerts.

Key factors for determining alert levels include the time-to-CPA and hazard ranges. These
two key factors are now discussed.

Time-to-CPA influences hazard prioritization by how long the flight crew has to respond to
a hazard. The alerting logic based in the Traffic Alert and Collision Avoidance System (TCAS) was
developed on a time-to-CPA criteria known as “τ”. The classical τ is defined by the aircraft-to-
aircraft range divided by range rate, assuming that both aircraft are modeled as point hazards. A
more precise determination of time-to-CPA which requires the broadcast of aircraft velocity
information is:

cc
cr
vv ?

?−=τ , (4.1)

where r  is the vector locating a target aircraft with respect to the ownship, and c  is the relative
motion vector. This time-to-CPA equation was developed in [KP97] and is compatible with hazard
prioritization of ADS-B equipped aircraft threats such as those that can be currently configured in
the NASA FFSim architecture. Other time-to-CPAs can be generated for line, region, or volumetric
hazards based on the ownship velocity vector, hazard motion data, and hazard point, line, region,
or volume data as shown in Appendix C. For longer-term time-to-CPA calculations, aircraft intent

No HazardHazard
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ThresholdTwo-Stage
Alerting

Threshold
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information may need to be incorporated into velocity-based schemes. This intent information may
take the form of flight plan waypoints or Trajectory Change Points (TCPs) as defined in the ADS-
B message [RTCA242], and different time-to-CPA algorithms will need to be developed in either
case.

Hazard ranges are important in the prioritization of hazards due to their impact on the
hazard threat level. In the case of traffic hazards, hazard ranges are often classified as being within
either a “critical” Near Mid-Air Collision (NMAC) zone, a Protected Airspace Zone (PAZ), or an
Alert Zone (AZ) (see Figure 4.7). Prepared for the RTCA SC-186 committee Working Group 1,
[K99] provides the basis for establishing different hazard threat levels that affect hazard
prioritization for conflict detection and resolution. An example calculation of aircraft-to-aircraft
miss distance, the norm of 

frv , based on velocity vector information would be:

)ˆ(ˆ crcrf ↔↔= vv . (4.2)

Developed in our previous AATT research [KP97], this miss distance equation, uses the same
vector assumptions as equation (4.1), but also assumes that ĉ  is the unit vector in the direction of
the relative motion vector c

v
.

Calculation of miss distance for area (e.g., SIGMET) or volumetric hazards (e.g., SUA) is
based on the miss distance from the area or volume vertices. Figure 4.8 illustrates the CPA for a
aircraft flying near SUA. Miss distance from a point hazard such as a PIREP may need to factor in
the uncertainty in the hazard region based on typical size and characteristics of the weather
phenomena and the age of the reported data.

Hazard alert levels are typically based in part upon either the current or forecasted minimum
range (or “miss distance”) between ownship and a given hazard. Also, the alert level can be a
function of ownship location (e.g., the PAZ horizontal limit may be defined as being 5 nmi in en
route airspace and 3 nmi in terminal airspace) as well as phase of flight (e.g., the PAZ vertical limit
may be defined as being greater during climbs and descents).

Figure 4.8.  Modeling of aircraft miss distance to a SUA region North of Las Vegas.

CPA
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In the current hazard prioritization implementation, the necessary time-to-CPA and hazard
range information are assumed to be supplied by the Hazard Detection model. If this is not the
case, then additional appropriate algorithms will have to be designed and coded. Because of the
high risk of this assumption that is being made, a preliminary investigation into useful time-to-CPA
and range determination algorithms was performed and is included at the end of this report as
Appendix C.

Given the budget and time constraints inherent in the development of the hazard
prioritization method and the desire for maximum NASA researcher flexibility, a hazard
prioritization alert sorting algorithm was chosen based on maximum user flexibility and spatial-
temporal alert level criteria. This final sorting algorithm is based on a combination of an alert level
assignment algorithm and a final alert level sort algorithm.

The alert level assignment algorithm is based on a series of user-specified alert level criteria
(see Table 4.4). First, the user must specify the number of desired alert levels. Then, for each alert
level, the user must specify a desired combination of alert thresholds based on desired alert level
criteria.

These alert thresholds can be of two types: forecast or nowcast. The forecast alerts are
based on the expected future relative states of ownship and the hazard at the CPA. Forecast alerts
involve some user-specified combination of time-to-CPA, horizontal range-at-CPA, and vertical
range-at-CPA threshold values. Nowcast alerts are based on the current relative state of ownship
and the hazard. Since a temporal threshold has no meaning in this context, the nowcast alert is
based only on current horizontal and vertical ranges.

Table 4.4. User-specifiable alert level criteria in the Hazard Prioritization model

Criteria Symbol Units Comments

Number of Alert Levels na - The number of alert levels

Alert Level
iA The i th alert level; between 1 and na ;

most critical = 1, least critical = na .

Alert Type ia - ia = 0 = nowcast alert; ia = 1 = forecast alert; Nowcast alerts

are based on current horizontal and vertical ranges; Forecast
alerts are based on a combination of time-to-CPA, and
horizontal and vertical range-at-CPA.

Current Horizontal Range
Threshold

xi
T nmi Horizontal range-based threshold for the i th alert level based

on current state; Typically used in high-level, nowcast alerts
and in combination with a current vertical range threshold

Current Vertical Range
Threshold

zi
T ft Vertical range-based threshold for the i th alert level based on

current state; Typically used in high-level, nowcast alerts and
in combination with a current horizontal range threshold

Horizontal Range-at-CPA
Threshold

ξ i
T nmi Horizontal range-based threshold for the i th alert level at

predicted CPA; Typically used in lower-level, forecast alerts
and in combination with a time-to-CPA threshold

Vertical Range-at-CPA
Threshold

ζ i
T ft Vertical range-based threshold for the i th alert level at

predicted CPA; Typically used in lower-level, forecast alerts
and in combination with a time-to-CPA threshold

Time-to-CPA Threshold τ i
T min Time-based threshold for the i th alert level; Typically used in

lower-level, forecast alerts and in combination with range-at-
CPA thresholds
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In all alert threshold cases, an alert of the appropriate level is triggered when the value of
the hazard list data is below the appropriate threshold, and a hazard is assigned the most critical,
alert level of all valid alerts. For each hazard H ′′ j , such that H ′′  is the set of n  hazards;

H ′′ ={H ′′ j }, j = 1, 2,…, n , with existing values of current horizontal range, x j , current vertical

range, z j , horizontal range-at-CPA, ξ j
, vertical range-at-CPA, ζ j

, time-to-CPA, τ j , and na

number of user-defined alert levels, its corresponding alert level, jA  is determined by:

jA  = min {all valid 
iA }, (4.3)

for i =1, 2, …, na .  In the case of nowcast alerts, ia = 0, a valid 
iA  is defined if and only if:

xx i
T

j ≤  or zz i
T

j ≤ . (4.4)

In the case of forecast alerts, ia = 1, a valid 
iA  is defined if and only if:

ξξ i
T

j ≤  or ζζ i
T

j ≤  and ττ i
T

j ≤ . (4.5)

Default values for the user-specified alert level threshold information are shown in Table 4.5. Note
that the default number of alert levels na  is designated as 3 (analogous to the traffic alerting levels
from [RTCA SC-186 CD&R Ops Concept]) in decreasing levels of severity from 1 to 3.

Table 4.5. Default Alert Level Thresholds.

Alert
Level

iA

Alert
Type

ia

xi
T *

(nmi)
zi

T *
(ft)

ξ i
T *

(nmi)

ζ i
T *
(ft)

τ i
T

(min) Comments

1 0 5 1000 - - - High Level Alert– will exist when the
separation distance between the hazard and
flight is less than the designated miss
distance

2 1 - - 5 1000 2 min Medium Level Alert– will exist when the
flight is predicted to miss the hazard by less
than the designated miss distance in less
than 2 minutes

3 1 - - 5 1000 5 min Low Level Alert – will exist when the
flight is predicted to miss the hazard by less
than the designated miss distance in less
than 5 minutes.

*Note: Range-based thresholds may in the future be dependent on airspace and/or hazard type.

Once the alert levels are designated, the hazard list, previously sorted on threat types, is
sorted based on alert level. This final algorithm in the alert level sorting module is a sorting of all of
the hazards based on the assigned alert levels. Note that this scheme is different than the hazard
prioritization performed by TCAS. With TCAS, threat prioritization occurs for the highest RA alert
levels, but in the case of the lower TA alert levels, all TA threats are of equal priority [RTCA/DO-
185].

The final sorting algorithm is based on a double insertion sort that works in the same
manner as the one in the threat sort module (Figure 4.5), but sorting on alert level as opposed to
threat level. The first insertion sorts based on the discrete alert level assigned to the hazard.
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After the first insertion sort, sorting is performed for each set of hazards at a specified alert level.
This second insertion sort is based on slant distance to the hazard, in the case of ai=0 alerts, or
time-to-CPA, in the case of ai=1 alerts.  This sorting algorithm works on the H ′′  output list from
the threat sort module and generates a new, prioritized hazard output list H ′′′ . The list H ′′′  consists
of a prioritized list of hazard IDs, hazard types, and alert levels for use by the Hazard Notification
model and any other AOP model that needs the information.

4.1.3 Hazard Prioritization Updates
In order to perform its function, the hazard prioritization methodology needs to communicate
inputs and outputs with the AOP Hazard Detection and Hazard Prioritization models. Once every
second, the hazard prioritization methodology implemented in the Hazard Prioritization model will
look for an updated input hazard list from the AOP Hazard Detection model. The identification of a
new input hazard list then drives the hazard prioritization process to generate a new, prioritized
hazard list, which, upon completion, is then output to the Hazard Notification model.

4.2 Scenarios
The engineering approach for testing the hazard prioritization algorithm includes the use of several
simulation-based test scenarios; these scenarios are reviewed next. These scenarios are designed to
test the validity of the coded hazard prioritization algorithms. Synthetic data are planned for use in
the test scenarios, but real data can be integrated in the test scenarios, based on the availability of
data.

4.2.1 Test Scenarios
The following scenarios are designed to test the hazard prioritization algorithm.  In Scenarios 1-3,
the hazards all have a certainty level of 1; in Scenario 4-5, hazard certainty levels range between 0
and 1.

Scenario 1
Key Feature:
•  A series of aircraft in head-on conflicts at different look-ahead times.
Expected Outcome:
•  Aircraft with less time-to-CPA will have higher alert levels.

Scenario 2
Key Feature:
•  A series of aircraft with the same heading and distance from ownship, but at different radial

positions from ownship.
Expected Outcome:
•  Aircraft with lower distance-at-CPA and time-to-CPA will have lower alert levels.

Scenario 3
Key Feature:
•  A static set of co-located aircraft, SIGMET, turbulence, SUA, heavy precipitation, congested

airspace, wind shear, and icing at a fixed distance from ownship
Expected Outcome:
•  All hazards should have the same alert level, but be in order of the user preferred threat level.

Scenario 4
Key Feature:
•  A static set of co-located aircraft, SIGMET, turbulence, SUA, heavy precipitation, congested

airspace, wind shear, and icing at a fixed distance from ownship with varying certainty levels
between 0 and 1.

Expected Outcome:
•  All hazards with certainty levels below the user-preferred certainty threshold should not show up

in the prioritized hazard list.
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Scenario 5
Key Features:
•  A dynamic set of aircraft, SIGMET, turbulence, SUA, heavy precipitation, congested airspace,

wind shear, and icing hazards at varying distances from ownship with varying certainty levels
between 0 and 1.

•  Different user preference criteria (incl. one where turbulence is considered a high threat level
hazard and one where it has a low threat level)

Expected Outcome:
•  The prioritized hazard list will vary based on the different user preference criteria (esp.,

turbulence will vary in hazard priority).
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5.0 CONCLUSIONS AND RECOMMENDATIONS
In this document, we specify the status of the engineering work towards the intent inference,
confidence assessment, and hazard prioritization modules for AOP.  

5.1 Conclusions
The intent inference approach is to derive several (twenty or more) intent models that describe
intelligent behaviors of a pilot.  With these models, the motion of an aircraft being tracked by the
ownship can be analyzed to infer intent.  In the case that the aircraft is broadcasting intent, the
Information Ambiguity Resolution module will verify that the aircraft is actually following the
broadcast intent.  In the event that the intent is missing from the broadcast or if there is no
broadcast of intent, then the Intent Inference module infers the intent and predicts the future flight
path.  When prediction is requested within tens of seconds, the prediction is based on a tracking
filter (a Kalman filter if ADS-B data are used, or a low pass filter for TIS-B data), and when the
prediction spans larger time horizons, then the prediction is performed based on the tracking filter
that is biased by the path predicted by intent inference models (Long Term Intent).

The confidence assessment approach is based on using a tracking filter to prepare the best
estimate of state data and to address the issue of missing or delayed data.  The key to confidence
assessment is in the estimation error covariance matrix, which provides a confidence estimate of
how good the current state has been estimated. From our analysis using TIS-B data, we found that
the TIS-B data has such low accuracy that it should only be used when the ADS-B data is not
available. Also, due the low accuracy of TIS-B data as well as no time tags for these data, the TIS-
B data should not be fused with the ADS-B data when both are available.

The hazard prioritization approach is based on a set of flexible algorithmic filters and
sorting that maximizes the ability for NASA researchers to test different alerting schemes.  Hazard
types, times to point of closest approach, miss distances from hazards, hazard certainties, and user
preferences for threat levels and alert levels are considered in the prioritization.  Our approach
handles various hazards types: points, line segments, polygons, and polyhedron volumes.

5.2 Recommendations: Process to Complete Development of RTO 3 0
Modules
The process to complete the development of the RTO 30 modules includes the following high
level objectives.  Here we assume that the AOP receives further development and refinement
while the RTO 30 algorithms and module designs await a restart.

•      Update      Proposed      Engineering      Approach   .  The intent inference algorithm will need to have the
Proposed Engineering Approach re-evaluated to account for changes that take place to the AOP
architecture in the time period when the RTO 30 task is dormant.  Input systems, database
content, new modules, scenarios, or modifications to existing AOP modules may occur and
these changes are likely to change our Proposed Engineering Approach.

•      Update      S      oftware      Design   .  Requirements will be revisited with respect to any changes in the
AOP architecture. Then the analysis step and development of use cases will be performed again
if there were any changes in requirements. The object models will be updated to reflect any
changes in the design and or engineering approach. A new Software Design Document will be
created to describe the design of the RTO 30 modules that are compatible with the current state
of the AOP-FFSim system.

•     Year      2000      Problem      Changes  .  The Year 2000 Compliance for the software will not be an issue
since the restart will occur after January, 2000 (or after all Year 2000 effects are over).  The
Functional Design Requirement for Year 2000 Compliant code will be dropped.
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•      Update      RTCA      SC-195      Committee      Specifications    for     FIS  .  The FIS specifications are soon to
be released and all FIS data requirements have been based on the latest available draft copies of
RTCA MASPS.  The Proposed Engineering Approach and Software Design Document will
have to be modified to correspond with the final release from the RTCA.

•     Procure      Standardized      Airport    and      Navigation     DAFIF      Database .  The RTO 30 intent inference
and hazard prioritization systems needs a standardized set of data that is kept onboard in a
database management system.  More specifically, airport, runway, navigation aids, SIDs,
STARs, SUA, and other data are needed as specified in our intent inference onboard database
requirements.  These data are provided in an industry standard database provided by the
government (NIMA) in their  Digital Aeronautical Flight Information File (DAFIF) database
product.  This data can be acquired (free of charge to NASA or at a rate of roughly $130 per
month for commercial industry customers) with the proper paper work provided by NASA.  It
will accelerate our progress if NASA were to procure these data (free of charge) and have them
available when RTO 30 restarts.

•    Intent     Inference       Module     Iterative      Design   .  The intent inference module development is planned
to proceed with its iterative software design cycle.  At first, the software will be designed to
Verify Intent; this algorithm will either verify the intent or it will indicate that the intent cannot
be verified.  Next, the software for Fly to Waypoint will be designed and tested with the TCP
waypoint.  This algorithm will then be modified to perform Fly to Waypoint using TCP+1 or
any waypoint in the flight plan.  Last, the Fly to Waypoint intent model will be modified to
search for any valid waypoint within 50 nmi of the ownship. Iterations are used to
incrementally add intent models to the intent inference algorithm.  After Fly to Waypoint
capabilities are added, other software will be developed, for instance, the altitude hold intent
model, heading hold, and maintain speed models.  The final intent models and most complex
intent models are those that include calls (communications or message passing) with other AOP
modules, for instance, hazard avoidance, CD&R, or FMS.  At first, the hazard avoidance
intent models will be developed for turbulence, SUA, and weather avoidance intent
considerations.  Then, the CD&R module in AOP will be called to formulate the options for
intent models that verify that a conflict resolution is being performed by a nearby aircraft in
conflict with the ownship or by two nearby aircraft in conflict with each other.  Finally, the
FMS module will be called to identify intent models that include wind optimized routes or
RTAs.  The approach is iterative;  the intent inference algorithm capabilities are incrementally
built up through iterations in engineering specifications, software design, software coding, and
verification and validation using test scenarios.

•    Intent     Inference       Module      Ability    to      Access    Information    from     AOP     CD&R      Module  .  The intent
inference module uses other AOP modules, for instance the CD&R Module, to compute
solutions to problems that are posed in terms of data from nearby aircraft.  For instance, the
solutions to frontside, backside, topside, and bottomside maneuvers for CD&R are computed
in the CD&R Module.  However, these CD&R solutions are usually computed for determining
only the best conflict resolution path for the ownship and perhaps for the nearby aircraft as well
for coordination purposes.  Not only the optimal solution, but all feasible solutions are useful
to the intent inference algorithm when considering plausible CD&R solution waypoints to
predict the intent of the other nearby aircraft.  In CD&R cases, the intent inference algorithm
considers several intents for the nearby aircraft:  

(1) the nearby aircraft either receives the CD&R waypoints or computes its own CD&R
waypoints that match the ownship solution and proceeds to use the CD&R solution and
broadcasts the TCP and TCP+1 that correctly implement the CD&R solution, (this is the
nominal and expected case).
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(2) the nearby aircraft flies its current TCP and TCP+1 and does not update these with
the CD&R solution because it did not receive the new CD&R solution waypoints from
the ownship, (this is the unequipped or non-cooperative case for CD&R).

(3) the nearby aircraft computes its own CD&R waypoints that differ from the ownship
solution and the nearby aircraft proceeds to use the CD&R solution (e.g., a vertical
solution) that does not match the ownship solution (e.g., a horizontal solution), that is,
they fail to coordinate actions, (this is the case of mixed or mis-communicated CD&R).

These cases indicate that there is a need for the intent inference module to use the CD&R
module, perhaps with function calls, to ask questions like:  what are the frontside, backside,
topside, and bottomside solutions to the cooperative and non-cooperative CD&R problem
between ownship and this nearby aircraft?  Not only the optimal solution is needed, but
multiple solutions are needed so that all plausible actions of the nearby aircraft can be explained
from the CD&R options available.   Furthermore, the intent inference algorithm may be
tracking two aircraft that are in conflict with each other but are not in conflict with the ownship.
In such cases, one could not expect the CD&R algorithms onboard ownship to necessarily
produce the CD&R results that these two aircraft might implement.  At best, the ownship can
determine through its own CD&R module that there is indeed a conflict between these two
nearby aircraft and infer that conflict resolution is taking place or soon to take place;  the ADS-
B broadcast may or may not confirm this intent, however, this will only effect the level of
confidence and not the intent inferred.

•    Intent     Inference       Modu     le      Ability    to      Access    Information    from     AOP      Hazard      Resolution      Module .
The intent inference module uses other AOP modules, for instance the Hazard Resolution
Module, to compute solutions to problems that are posed in terms of data from nearby aircraft.
For instance, the solutions to hazard resolution maneuvers for avoiding turbulence, SUA,
terrain, and weather are typically computed in the Hazard Resolution Module for the ownship.
Yet, the intent inference algorithm uses the hazard avoidance solution waypoints to predict the
intent of the other nearby aircraft.  This type of query to an ownship hazard resolution
algorithm is very non-conventional.  The ownship hazard avoidance algorithms typically only
compute hazard avoidance solutions for the ownship, but the intent inference algorithm needs
the ability to perform “what if” queries to the ownship hazard avoidance module so that the
intent inference algorithm can get the waypoints that are valid hazard avoidance solutions for
the nearby aircraft (not the ownship) and test them as plausible intents of nearby aircraft.

•    Intent     Inference       Module      Ability     to     Access    Information     from     AOP     FMS       Module  .  The intent
inference module uses other AOP modules, for instance the FMS Module, to compute
solutions to problems that are posed in terms of data from nearby aircraft.  In particular, wind
optimized routes and RTA trajectories that are normally computed by the FMS Module for the
ownship need to be computed with respect to the parameters and initial conditions of nearby
aircraft.  This is so the intent inference algorithm can compare the wind optimized routes or
RTA routes with the state data of the nearby aircraft in order to infer the intent of the nearby
aircraft as “following wind optimized route” or “following RTA trajectory”. This type of query
to an ownship FMS is very non-conventional and perhaps infeasible.  The ownship FMS
algorithms typically only compute trajectory solutions for the ownship, but what the intent
inference algorithm needs is the ability to perform “what if” type queries to the FMS module so
that the intent inference algorithm can get the waypoints that are valid FMS optimized solutions
and test them as plausible intents of these nearby aircraft.  If this type of call statement to the
FMS is infeasible, then the intent inference module will have to omit the intent model for
“following wind optimized route” or “following RTA trajectory”.

•     Confidence       Assessment        Module       Development  .  At this time, the software design for
confidence assessment is finished, however, the design needs to be re-assessed when the RTO
30 project restarts to address changes in the AOP architecture and input modules.
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•     Confidence      Assessment       Module      Verification     and   Validation  .  There is a need for a large set of
track data for multiple types of aircraft performing many different types of scenarios.  For best
verification results, both GPS and ground radar track data should be obtained, however, either
types of data are useful to our testing of the algorithms.  Data sets procured from NASA flight
tests or sets available from NASA data archives will serve this purpose well.  In the interim
period before RTO 30 work is restarted, the gathering of track data for testing and validation
should be performed.

•      Hazard      Prioritization       Module     Integrati     on      with      other     AOP      Modules .  The hazard prioritization
module is expected to receive hazard data from the Hazard Detection model and output
prioritized hazard data to the Hazard Notification module, and, perhaps, other AOP modules. A
key next step for technical risk mitigation is to define the interfaces between the hazard
prioritization software and the rest of the AOP to ensure that the correct data is being passed to
and from the module. Critical information to be specified for the interfaces include the data
input/output from the hazard prioritization module including the time-to-CPA and range-at-CPA
data for each identified hazard, and the dynamics of how the modules communicate with one
another. If the correct data is not available from the other AOP modules, the hazard
prioritization software will have to include the design and implementation of new algorithms.
To mitigate this potential problem, a preliminary investigation into useful CPA and time-to-
CPA algorithms is included in Appendix C.

•      Hazard      Pr    ioritization       Module     Iterative      Design  .  After the hazard prioritization software design
is approved by NASA, the hazard prioritization module will be implemented in software with
an iterative design, implementation, and verification cycle.  This software implementation will
be driven by the specified set of multiple scenarios.  Scenarios with increasing levels of
sophistication in numbers of hazards, hazard types, hazard geometries, conflict geometries,
and hazard dynamics will be fleshed out and used to verify and validate software of increasing
complexity.
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7.0 APPENDICES

Appendix A: Functional Design Requirements
The following is a list of the Functional Design Requirements (FDRs) for the intent inference, confidence
assessment, and hazard prioritization modules.

•  FDR1.1: Software will be written in C or C++ programming languages.

All software shall be written in the C++ programming language. Existing software written in the
C programming language may be adapted and incorporated. Conformance to the C++ and C
language standards should be closely maintained to ensure portability across platforms. Seagull's
C++ coding standard [ST99a] will be used as guideline for the creation of C++ source code.

Note that software that is used to develop or investigate engineering concepts independent of the
software deliverables of RTO 30 may be written in languages other than C or C++.  In particular,
Matlab code that is used to investigate engineering tradeoffs, as with the tradeoff investigations
associated with the Kalman filter being investigated in Task 2, will not be delivered and will not
be written in C or C++.

•  FDR1.2: Software will be compliant with the Orbix 3.0 network communication protocol.

The software shall be able to use Iona Technologies Orbix 3.0 C++ implementation of the
Common Object Request Broker Architecture (CORBA) specification [OMG99] for distributed
object communication.

•  FDR1.3: Software will be executable from the FFSim environment.

The software shall be able to operate within the FFSim environment. This requires that the
software shall be able to communicate with the FFSim infrastructure software using the FFSim
specified software protocols and procedures [ST99b].

•  FDR1.4: Software will be capable of running native under Windows NT 4.0, IRIX 6.5, and
Solaris 2.6 and 7.0 after compilation.

All source code shall be capable of being compiled and executed on the operating systems and
associated compilers listed in Table A.1.  Native operating system calls shall be encapsulated to
simplify switching platforms.

Table A.1. Required Operating Systems and C/C++ Compilers.
Operating System Compiler

Windows NT 4.0 (Service
Pack 5)

Visual C++ 6.0 (Service
Pack 3)

Solaris 2.6 and 7.0 EGCS 1.1.2 [EGCS99],
SPARC C++ Compiler 4.2
(if using Orbix)

IRIX 6.5 EGCS 1.1.2
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•  FDR1.5: Software will be Year 2000 compliant.

All software shall be Year 2000 date compliant. Software shall be able to correctly handle times
and dates before, on, or after January 1, 2000. All software shall be tested for Year 2000
compliance.  The following company Year 2000 compliance statement will apply to this RTO
30:

Seagull Technology, Inc. hereby warrants that Seagull's aviation and transportation related
software products that have been developed and released since June 1997 have been tested to
ensure Year 2000 compliance in order to determine that the product(s) will record, store, process,
manage and present calendar dates (and data or functions involving or based on calendar dates)
falling on or after January 01, 2000 in the same manner and with the same functionality,
accuracy, data integrity and performance as the Seagull software records, stores, processes,
manages and presents calendar dates (and data involving or based on calendar dates) falling on or
before December 31, 1999.

•  FDR1.6: The solution will be compatible with the ADS-B message content defined by RTCA
SC-186 (MASPS [RTCA98]), including broadcast intent.

ADS-B is a function on an aircraft or a surface vehicle operating within the surface movement
area that periodically broadcasts its state vector and other information.  An ADS-B message is a
packet of formatted data that convey information used in the development of ADS-B reports.
Message contents and formats are specific to the ADS-B data link; the MASPS does not address
message data fidelity and data structures;  thus, RTO 21 and RTO 30 will specify definitions as
needed.  An ADS-B report is information provided by ADS-B messages received from a
transmitting participant.  These information elements are available for use by applications
external to the ADS-B system.

In this RTO 21 and RTO 30, ADS-B messages and reports will be modeled following the RTCA
SC-186 (MASPS [RTCA98]) standards.

•  FDR1.7: The solution will be compatible with FFSim Flight Information Service (FIS)
specifications.

The FIS message content defined for RTO 21 will be used in RTO 30.

•  FDR1.8: The solution will be compatible with FFSim Traffic Information Service (TIS)
specifications,.

The TIS message content defined for RTO 21 will be used in RTO 30.

•  FDR1.9: The solution will incorporate intent models that represent reasonable cases of
potential flight crew deviations from the planned or nominal flight path or data linked intent
(next two way points),
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Intent models will be coordinated with NASA as well as with RTO 22:  Scenario Generation for
FFSim.  The process will be to enumerate the flight crew deviations and insure that it includes
the same flight crew deviations that are being investigated by Matt Jardin at NASA Ames,
researching intent inference for CTAS, and the RTO 22 team.  All intent models will be fully
explained and documented in the Final Report.

•  FDR1.10: Models of intent will be capable of independent verification of correctness and
completeness,

The plan is to have a pilot, a NASA research engineer, and an aerospace engineer (not currently
working on the RTO 30 project) review the models of intent to have a human verification of the
intent models.  At NASA Ames, we plan to have Matt Jardin review the models.  Additionally, a
mathematical or experimental verification method will be implemented based on theoretical
analysis or data analysis (from synthetic or real data).

•  FDR1.11: The solution will gracefully degrade in situations where nearby aircraft flight
trajectory information cannot be reliably inferred.

For Task 1, the most recent information about nearby aircraft is used for intent inference
whenever this information becomes available.  The data does not have to be synchronous nor on
time, rather, it simply has to have the appropriate time stamp on the data.  For Task 1 and Task 2,
the solution will gracefully degrade because the tracking filter (both the Kalman filter and the
low pass filter) have the property that they can handle asynchronous or missing data by providing
near-term estimates of missing data.

•  FDR1.12: The intent inferencing function shall update trajectory intent inferences within the
time interval to be defined by the AOP architecture,

At this time the algorithms are being designed to update with a one second time interval, subject
to change, based on the update rate and availability of information from ADS-B, FIS, TIS,
CPDLC, and other potential data sources.

•  FDR1.13: The information confidence assessment shall be applicable to the size and memory
constraints of a modern avionics system and in line with the trends in the applicable
technologies.

While we really don’t want to limit our system to current avionics cpu’s, since Free Flight won’t
go mainstream for at least 5 years, we do want to keep the size and memory constraints in mind
while designing this system. Essentially, this FDR will be considered a soft constraint, stating
that the cpu requirements will be identified and checked for reasonableness given the current
trends in technology.

A summary of the FDRs will also be included in a Final Report.
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Appendix B: Algorithms to Convert Grid Weather Data to Triangulated Data

This Appendix describes algorithms suitable for triangulating weather data.  While RTO 30
modules have been designed to operate on grid-based weather data, other AOP modules may
require either grid-based or triangulated weather data, for example, to define polygon hazard
regions for hazardous weather. This Appendix provides the process for this future work, if it is
required at some future date.

Figure B.1 illustrates weather data in grid form. In a uniform 2D grid form, each grid cell
represents a square region of airspace in a 2D plane. Weather data are typically stored within
computers in a grid form, so the benefit of using a grid form is that there are no additional data
structures to be created; the typical computer data structure to maintain weather data is an array.
As weather moves and weather data are updated, the data structure need not change in size or
shape. Finally, the data fusion process for weather data is greatly simplified, since data fusion for
two grids with the same grid spacing is much easier than fusing two triangulations.

Figure B.1.  Grid-based weather data with colors indicating NWS Level.

The triangulation method of Fowler and Little [FL79] is one of the first methods of
automatic generation of triangulation networks.  Their application was to convert digital terrain
elevation map data into a triangular irregular network.  The method selects feature points such as
ridges or peaks to use in the triangulation.  Given these points, they then use a Delaunay
Triangulation [BK97, OBS92] of these points to establish a triangulation.  The triangulation is
established by introducing new feature points into the triangulation until the error between the
triangulation surface and the digital elevation surface is below a specified minimum.

The triangulation method of Franklin [F94] uses a top-down construction to approximate
a digital terrain map with a triangulation surface.  Initially, the triangulation is approximated
with two triangles.  Then, within each triangle, the elevation point that is furthest above or below
the triangle surface is used to create a set of  three triangles that better approximates the surface.
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When new triangles are created, a check is made between adjacent triangles forming a
quadrilateral is made to see if a diagonal swap would better fit the terrain surface.  The process
repeats until the error between the triangulation surface and the digital terrain surface is below a
specified bound.

Recently, a triangulation method by Silva et al [SMK95] has been developed based on
greedy cuts.  The algorithm works by surrounding the terrain region with a polygon and proceeds
to take greedy cuts (or “bites”) out of the polygon.  The cuts establish triangular facets which
closely approximate the terrain surface.  The cuts progress inward towards the part of the
polygon which has yet to be processed.  Three cuts are considered: ear cutting, greedy biting, and
edge splitting.  The algorithm may often be faster and require fewer triangles to approximate a
given terrain surface.

For weather processing, a three step process similar to the method of Fowler and Little
[FL79] is useful for creating a triangulation.  First, contour lines for the weather data are created
at level curves that correspond to the NWS levels.  This is performed using a Laplacian of
Gaussian filter for edge detection, as shown in Figure B.2.  From these contour lines, a
subsampling of points are chosen as feature points to be used in a triangulation, as shown in
Figure B.3. These points are then triangulated using a Delaunay Triangulation (which is
available as COTS software), and a unique color (weight or NWS level) is assigned to each
triangle, as shown in Figure B.4.

Edge Detector

Figure B.2.  The first step in the triangulation process is to identify the contour lines
that separate each NWS Level.
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Edge Sub-Sampling

Figure B.3.  The second step in the triangulation process is to sample the
contour lines to arrive at a set of feature points for a triangulation.

Figure B.4.  The third step in the triangulation process is to create the Delaunay
Triangulation of the set of feature points (left) and to assign the appropriate unique color
(weight or NWS Level) to the triangle (right).
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Appendix C: Derivations of CPA and Time-To-CPA for Hazard Detection
In Appendix C, we investigate hazard detection derivations that provide CPA and Time-to-CPA.

C.2 CPA and Time-to-CPA for Line Segment Hazards
In this Appendix we investigate the point-to-point hazard detection problem.  We consider the
relative motion of a point hazard as it passes by a point model of the ownship.  Both stationary
and moving point hazards are considered. We start by defining the mathematical terms for
relative motion information.  The ownship is modeled as point A and the hazard is modeled as
point B.  The position of the hazard relative to the ownship is located by the vector r

! , the
velocity of the ownship is Av

! , and the velocity of the hazard is Bv
! .  The motion of the hazard

relative to the ownship is described by the relative velocity c
! :

   AB vvc
!!! −= , (C.1)

and it is useful to our analysis to use the unit vector ĉ  in the direction of c
! , defined as:

      
c

c
c !

!
=ˆ . (C.2)

Given these relative motion variables, the time-to-CPA τ and the vector fr
!  pointing to the CPA

derived in [KP97] as:

Time of CPA:  
cc

cr
!!

!!

⋅
⋅−=τ , (C.3)

Location of CPA:  )ˆ(ˆ crcrf ××= !! (C.4)

Figure C.1 illustrates the relationships of these vectors.  Note that the CPA occurs on the zero
range rate line, and the relative motion of the hazard is perpendicular to the zero range rate line.
As shown, the normal convention for a coordinate system is to have the point model of the
aircraft at the origin of a system with y-axis in the direction of Av

!  and the x-axis in the direction
of the aircraft right wing.  This assumes that the aircraft has no sideslip angle and flies in the
horizontal plane.

Figure C.1.  Geometry of the point hazard relative to the point model of the ownship.
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Note that the Time-to-CPA and CPA equations (C.3) and (C.4) apply to both the case
where the point hazard is stationary ( Bv

! =0) and moving with constant velocity.  While these
equations constitute the solution to the point-to-point hazard detection problem, they also form
the basis for the solutions to the point-to-segment, point-to-polygon, and point-to-polyhedron
hazard detection problems discussed next.

C.2 CPA and Time-to-CPA for Line Segment Hazards
In this section we investigate the point-to-segment hazard detection problem.  We consider the
relative motion of a line segment hazard as it passes by a point model of the ownship.  The line
segment hazard is assumed not to rotate and to have all points moving with the same constant
horizontal velocity Bv

! ; thus, all points have the relative velocity c
!  with respect to the point

model of the ownship.  The geometry of the problem is described by Figure C.2.  Most of the
variables are the same as the point-to-point hazard detection problem, but now the hazard is
described by two endpoints located at 1r

!  and 2r
!  relative to the ownship position.  Because of the

constant velocity assumption with no rotation, there is only one zero range rate line for the entire
hazard segment, as shown in Figure C.2.

Figure C.2.  Geometry of the line segm

Equations (C.3) and (C.4) apply
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 end point 1:  )ˆ(ˆ 11
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 point 2:  
cc

cr
!!

!!

⋅
⋅

−= 2
2τ , (C.7)

Av
! CPA

1fr
!

x-axis

y-axis

2fr
!



107

Location on zero range rate line for hazard end point 2:  )ˆ(ˆ 22
crcrf ××= !! . (C.8)

There are two possible cases that determine the CPA for the line segment.  First, the line segment
may pass ahead of or behind the ownship point model.  Second the line segment may collide with
the ownship point model.  These two cases are mathematically determined by:

Case 1. Segment Passes In Front or Behind Ownship  ( 1
21

=⋅ ff rr
!! )

CPA: fr
!  direction is the same as 

1fr
!  (or 

2fr
! ) and magnitude fr

!  = min {
1fr

! ,
2fr

! }

Time-to-CPA: If fr
!  = 

1fr
! , then 1ττ = , otherwise 2ττ = .

Case 2. Segment Collides with Ownship  ( 1
21

−=⋅ ff rr
!! )

CPA:  fr
!  = 0

Time-to-CPA:   )( 12

2

1

1

1 ττττ −
+

+=
ff

f

rr

r

The point-to-segment hazard detection problem is valid for both moving hazard segments and
stationary hazard segments.

4.1.2.3 CPA and Time-to-CPA for Polygon Hazards
In this section we investigate the point-to-polygon hazard detection problem.  We consider the
relative motion of a polygon hazard as it passes by a point model of the ownship.  The polygon
hazard is assumed not to rotate and to have all points moving with the same constant horizontal
velocity Bv

! ; thus, all points have the relative velocity c
!  with respect to the point model of the

ownship.  The geometry of the problem is described by Figure C.3.  The hazard is described by a
list of n vertices vn located at 1r

! , 2r
! , …, 

nr
!  relative to the ownship position.  Because of the

constant velocity assumption with no rotation, there is only one zero range rate line for the entire
polygon, as shown in Figure C.3.

Equations (C.3) and (C.4) apply to each of the endpoints of the line segments that
compose the polygon hazard, and the CPA and Time-to-CPA equations for the line segment
hazards apply as well.  Each of the vertices can be investigated to determine a time and location
when they cross the zero range rate line:

Time to zero range rate line for hazard vertex point i:  
cc

cri
i !!

!!

⋅
⋅

−=τ , (C.9)

Location on zero range rate line for hazard vertex point i:  )ˆ(ˆ crcr iif ××= !! (C.10)

The polygon hazard detection algorithm for determining the CPA for the polygon computes the
CPA for n polygon edges (line segments) in order to identify the closest CPA:

CPA = min{CPA1, CPA2, CPA3,… , CPAn} (C.11)

and additionally, the corresponding Time-to-CPA is determined.  The point-to-polygon hazard
detection equations are valid for both moving polygon hazards as well as stationary polygon
hazards.
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Figure C.4.  Example polyhedrons modeled for the point-to-
polyhedron hazard detection problem.

The algorithm for the point-to-polyhedron problem implements the point-to-polygon
hazard detection solution and the point-to-segment hazard detection solution.  The point-to-
polygon hazard detection solution is applied to the top (or bottom) set of n vertices that describe
the top (or bottom) polygon of the polyhedron:

Closest Top Point: CPAT = min{CPA1, CPA2, CPA3,… , CPAn} (C.12)

Next, the n line segments that connect the top polygon face to the bottom polygon face are run
through the point-to-segment hazard detection algorithm:

Closest Side Point: CPAS = min{CPA1, CPA2, CPA3,… , CPAn} (C.13)

From these two results, the CPA is identified:

CPA = min{CPAT, CPAS} (C.14)

This solution is valid because of the type of polyhedron hazard defined for this problem, and the
constant velocity, no rotation, and horizontal motion assumptions.
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