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Introduction

What is quench?

I rapidly, uncontrollably state change

I most likely cause of death for a
superconducting magnet (M.N. Wilson)

I Quench is always possible

I Stability: stable against interruption

I Protection: quickly spread the
energy

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

V
ol

ta
ge

 (
V

)

Pu
ls

e/
sh

un
t/V

18
 v

ol
ta

ge
 (

V
)

Time (s)
pulse

shunt x 20
V18
V15

V16
V17

V10
V14

V30

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  5  10  15  20  25  30  35  40  45

T
em

pe
ra

tu
re

 (
K

)

Time (s)
CL A T14 T10 T15 T16 T17 CL B

 0

 100

 200

 300

 400

 500

 0  1  2  3  4  5

pulse

X. Wang (ASC-NHMFL-FSU) YBCO quench behavior Fermilab, July 10, 2007 5 / 62



Introduction

Specific aims

I High-Tc magnets are more stable

I But protection becomes more stringent

I Vulnerable to overheating

For the emerging and promising 2G YBCO coated conductors, we propose
to

I Experimentally identify their quench behavior

I Experimentally identify the critical parameters for them to be
degraded

I Simulate their behavior during a quench
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Introduction

YBCO coated conductors
Two general structures†

IBAD – ion-beam-assisted deposition
of the textured template, SuperPower

RABiTS – Rolling assisted bi-axially
textured substrates, AMSC

I Brittle YBCO layer sandwiched in a complicated composite.

I Production: 100–500 m length.
†Image courtesy of D. C. Larbalestier
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Experimental approach
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Experimental approach Instrumentation

Quench probe design

A probe that can help us run both Ic and quench tests

1. in nearly adiabatic environment

2. with variable operation temperature (Top)

3. and the capability to monitor V (x , t) and T (x , t) during a quench

First probe made in 2003†, but...

I must bend the samples to mount them (but they are brittle!)

I temperature monitoring capability not fully realized

†Trillaud et al., Cryogenics, 43, 271, 2003
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Experimental approach Instrumentation

Probe overview

I A 2-stage GM cryocooler and a mushroom cryostat, Top: 30 K – 75 K

I Typical pressure by a turbo molecular pump: 10−6 – 10−7 mbar

I Self-field tests. In-field tests in-progress†.

†See backup slide for the in-field probe
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Experimental approach Instrumentation

Sample holder – exploded view

2nd stage

bus bar

radiation shield

Cu support board

Thermofoil heaterG10 board

Sapphire

bus bar

G10 jacket
Brass cap screw

X. Wang (ASC-NHMFL-FSU) YBCO quench behavior Fermilab, July 10, 2007 11 / 62



Experimental approach Instrumentation

Quench initiation

Several possible methods:

I Tc ⇒ heater, induction heating, laser heating, . . .

I Ic ⇒ over-current pulse, applied field, . . .

Most of time we use a NiCr heater (34 AWG) to initiate the normal zone.
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Experimental approach Data acquisition

Temperature sensor

1. Transient event: broad ∆T (4 K – 400 K) in a short time (3 s)

2. Distributed and in-field temperature measurements

3. Limited space (4 mm wide tape)

item Cernox RTD TC

range (K) 0.1—420 4—1000
small? yes (bare chip) yes
measurement speed slow fast
price $100 (uncalib.) $5/ft
standard curve? no yes

Type E TC:

I Sensitivity > 20 µV/K for T > 40 K, highest for standard TCs

I Calibrated to a Cernox RTD: ε < 3 K [RT, 30 K]; ε ∼ 7 K @ 4.2 K

I Fair in-field performance (7% @ 10 K and 14 T, Lakeshore)
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Experimental approach Data acquisition

Typical wiring
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Experimental approach Data acquisition

Measurement system

X. Wang (ASC-NHMFL-FSU) YBCO quench behavior Fermilab, July 10, 2007 15 / 62



Experimental approach Experimental protocol

Experimental protocol

I Goal: to find the
minimum quench energy
(MQE) and the normal
zone propagation
velocity (NZPV)

start

measure Ic vs. location

set It

set Vpulse

start collecting data;
pass It

fire the pulse

quenched?

minimum Vpulse?

test at another It?

end

increase Vpulse

reduce Vpulse

Y

Y

N

N

N

Y
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Quench behavior of standard samples Estimate of MQE and NZPV

Minimum quench energy (adiabatic condition)

I MQE = Ehtr − Eepo

I Energy input by the heater

Ehtr =

∫ tp

0
V (t) I (t) dt

I Energy absorbed by the epoxy

Eepo = m

∫ T1

T0

Cepo(T ) dT

I m : 20 ∼ 40 mg

I Eepo < 10% Ehtr
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Quench behavior of standard samples Estimate of MQE and NZPV

Normal zone propagation velocity

I Voltage criterion

v =
d

∆t

I Sections away
from the heater

I Example:
Voltage traces
measured at 70
K with
It = 50%Ic (Wang

et al., JAP, 2007)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.0 2.0 4.0 6.0 8.0 10.0 12.0

0.0

0.5

1.0

1.5

2.0
t30 t31

V
ol

ta
ge

 (
V

)

Pu
ls

e 
or

 s
hu

nt
 v

ol
ta

ge
 (

V
)

Time (s)

pulse

shunt

∆tVref

V15

V16 V17 V30 V31

X. Wang (ASC-NHMFL-FSU) YBCO quench behavior Fermilab, July 10, 2007 19 / 62



Quench behavior of standard samples Results of standard samples

Standard samples

Done:
Cu 75 µm

Solder 5− 10 µm

Ag 3 µm

YBCO 0.8 µm

Buffer 0.125 µm

Substrate 75 µm

AMSC

Ag 3 µm

YBCO 1.4 µm

Buffer 1 µm

Substrate 100 µm

Cu 37 µm

Cu 37 µm

SuperPower

Doing:
I Quench behavior comparison

between three architectures

1. Cu-Cu stabilizer
2. Cu-SS stabilizer
3. SS-SS stabilizer
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Quench behavior of standard samples Results of standard samples

Samples to be shown

For the sake of time, only the following will be covered...

Name Width Length comment circa
(mm) (mm)

AMSC-OR1† 10 120 only Ag stabilizer 1/04-5/04
AMSC-OR2 10 120 with Cu stabilizer 1/04-5/04
AMSC-51750 10 180 neutral-axis with Cu layer 5/05

SPI-FSU1 4 180 surrounded Cu stabilizer 7/05

Cu 75 µm

Solder 5− 10 µm

Ag 3 µm

YBCO 0.8 µm

Buffer 0.125 µm

Substrate 75 µm

Ag 3 µm

YBCO 1.4 µm

Buffer 1 µm

Substrate 100 µm

Cu 37 µm

Cu 37 µm

†Provided by AMSC through ORNL
X. Wang (ASC-NHMFL-FSU) YBCO quench behavior Fermilab, July 10, 2007 21 / 62



Quench behavior of standard samples Results of standard samples

Standard samples quench results — AMSC†
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I MQE ∼ 1 J, NZPV ∼ 10 mm/s

I Additional Cu stabilizer improves stability

I Ic doubled in 1 year

†Wang et al., IEEE TAS, 15(2), 2586, 2005
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Quench behavior of standard samples Results of standard samples

Quench behavior of a specific sample architecture

I Non-equipotential voltage development observed in experiments†

I Theoretical investigation: contact resistance‡

I Possible usage for quench detection
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‡Breschi et al., SuST, 2007; Levin et al. preprint, ArXiv:0706.4040
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Quench behavior of standard samples Results of standard samples

Standard samples quench results — SuperPower†
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I Measured at 40 K, 50 K, 60 K, 70 K, and 77 K

I MQE ∼ 1 J, NZPV ∼ 10 mm/s ⇒ Samples by different vendors have
similar quench performance

I Compared to v = Jm
C

√
κmρm

Tt−Top

†Wang et al., JAP, 101, 053904, 2007
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Quench behavior of standard samples Results of standard samples

Indications of single conductor quench behavior†
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I Trade-off: stability (high MQE) and protection (high NZPV).

I Top ⇓ improves Ic, stability and quench behavior

I NZPV still low (layer-layer velocity one order lower!) ⇒ innovative
detection and protection technique

†Wang et al., JAP, 101, 053904, 2007
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Quench behavior of standard samples Results of standard samples

Quench behavior of an AMSC pancake coil
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I cryocooled @ 50 K, s.f. Ni-alloy heater embedded.

I MQE ∼ 10 J

I Transverse velocity one order lower than the longitudinal velocity

I Longitudinal velocity: coil < single conductor
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Quench behavior of defective samples

Introduction

I Uniform Ic for long length conductor may be difficult.

I Will the non-uniformity in Ic(x) profile affect the stability of the
conductor? Or to what extent can we tolerate in terms of stability?

I The relationship between the end-to-end and the defect’s Ic
I Use a sample with well-characterized defects to find the minimum

quench current
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Quench behavior of defective samples Ic of a superconductor with a defect

A superconductor with a defective section

I Defective section: dark area. Length ratio: Lt
Ld

= m ≥ 1

I Measure Ic,t with transport. Power law: V = c I n

I Ic,t = Ic,d?

O I

V

Ic,d

Vc,d

Ic,t

Vc,t
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Quench behavior of defective samples Ic of a superconductor with a defect

Ic,t vs. Ic,d
I Electric-field criterion: ⇒ Ic,t

Ic,d
= n
√

m (see backup slide for proof)

I Ic,t ≥ Ic,d. Larger m, smaller n ⇒ more overestimation. In industry,
m = 100 and n ∼ 25, Ic,t 20% higher than Ic,d possible.

I Is the Ic,d the minimum quench current?
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Quench behavior of defective samples Over-time tests

Experimental: a defective sample

I AMSC 344 coated conductor

I Non-uniform Ic profile: V22 lower than
others. n = 15 and m = 5.
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Quench behavior of defective samples Over-time tests

Over-time quench tests

I Constant It from below the Ic,d. Test up to 15 minutes, if not
quenched, increase It. Top from 50 K to 75 K.

I Ic,t/Ic,d as predicted within 0.5%. Iq/Ic,t: 1.3→ 1.2 as Top ⇓. Longer
test duration, effect of stabilizer, cooling?

 40

 60

 80

 100

 120

 140

 160

 180

 50  55  60  65  70  75
1.22

1.24

1.26

1.28

1.30

1.32

1.34

1.36

C
ur

re
nt

 (
A

)

I
q 

/ I
c,

t

Top (K)

Ic,d

Ic,t

Iq

Iq/Ic,t

X. Wang (ASC-NHMFL-FSU) YBCO quench behavior Fermilab, July 10, 2007 32 / 62



Quench-induced degradation

Contents

Introduction

Experimental approach

Quench behavior of standard samples

Quench behavior of defective samples

Quench-induced degradation

Quench simulation

Preliminary studies on MgB2 wires

Summary and conclusion

Backup slidesX. Wang (ASC-NHMFL-FSU) YBCO quench behavior Fermilab, July 10, 2007 33 / 62



Quench-induced degradation

Introduction

I Superconducting magnets are not like electric bulbs. (Y. Iwasa)

I Low NZPV ⇒ HTS magnets are not self-protective.

I Understand how they fail may help us to protect them.
I Work on Nb3Sn cables and magnets†

I cable: Tpeak 420 K fine in a straight sample.
I subscale magnet: 430 K fine, 450 K ⇒ detraining effects, 580 K ⇒

irreversible degradation
I simulation limits: 400 K

I Any quench-induced degradation in HTS conductors? Why? And
what’s the operational limits?

I Just show the scenario as the investigation is underway.

†Imbasciati, PhD thesis and e.g., SuST 17, S389, 2004
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Quench-induced degradation

Quench-induced degradation in single coated conductors
I It = 160 A (70%Ic), 37 K

I In only 2 s, Tpeak = 450 K

I 50% of critical current decrease

I Recently, quench degraded a pancake
coil (Ic 233 A → 152 A, 35%⇓)
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Quench-induced degradation

Spatial and temporal temperature gradients

Spatial (K/cm):

∇Tx(i , j) =
Ti − Tj

Dij
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Quench-induced degradation

What happened in a degraded sample?†

I No crack found in the quench-degraded sample seen in the ESEM

I Tc not changed (Dr. Trociewitz) ⇒ no chemical change

I Now checked in the magneto-optical imaging (Dr. Heinrich) and SEM

I εc (95% Ic): 0.43% → 0.33%

†Mbaruku et al. IEEE TAS, in press
X. Wang (ASC-NHMFL-FSU) YBCO quench behavior Fermilab, July 10, 2007 37 / 62



Quench-induced degradation

Another example – sensitivity to the detection time

Dp= 1.2 s.
Recovery, Vmax =
2 mV, ∆T = 3 K

Dp = 2.3 s.
Normal zone
propagates, Vmax

= 4 mV, ∆T = 7
K

Dp = 3 s. Quench,
Vmax = 1400 mV,
∆T = 400 K!
Tape burn out...
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Quench-induced degradation

Peak temperature vs. peak voltage

I The Tmax corresponding to the Vmax during a quench

I Relationship recorded for a SS-SS sample @ 60 K

I When Tmax = 200 K, Vmax = 0.3 ∼ 0.35 V

I Quench may be detected before it’s getting too hot.
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Quench simulation
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Quench simulation

Introduction

I Better understanding the quench behavior

I Focus on the 1D finite-difference model

I ANSYS coupled-field work in-progress
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Quench simulation 1D model for voltage-temperature response

1D model — assumptions

I Sample SPI-FSU1, surrounded Cu
stabilizer

I Ic ∝ Top

I C and κ volume-averaged. No thermal
and electrical contact resistance
considered. Buffer layer neglected.

I Rnm = 1Pn
i=1

1
Ri

Ag 3 µm

YBCO 1.4 µm

Buffer 1 µm

Substrate 100 µm

Cu 37 µm

Cu 37 µm
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Quench simulation 1D model for voltage-temperature response

Heat balance equation

The partial differential equation is

ρC
∂T

∂t
=

∂

∂x
(κ
∂T

∂x
) + f ,

solved by finite difference method based on the control volume method†.

P0 Pi−1 Pi Pi+1 PM

S0 Si−1 Si Si+1 SM−1

xhtr0 xhtr1

L

†S. V. Patankar. Numerical Heat Transfer and Fluid Flow, Hemisphere, 1980
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Quench simulation 1D model for voltage-temperature response

Solving the model — the scheme

For n = 0, initial condition,

T 0
i = T (xi , 0) i = 0, 1, . . . ,M. (1)

For n ≥ 1, boundary condition,

T n
0 = T (0, tn), (2a)

T n
M = T (L, tn). (2b)

For n ≥ 1 and i = 1, . . . ,M − 1, we have

− aEiT
n
i+1 + αiT

n
i − aWiT

n
i−1 = γiT

n−1
i + f (xi , t

n)∆x , (3)

Coded in FORTRAN. Implicit scheme used to guarantee the stability.
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Quench simulation 1D model for voltage-temperature response

Material properties

I Temperature dependent material properties

I No effect of magnetic field

I Given fitted function or fitted by polynomial up to 6 order

Material ρ C κ R

Cu(100) s1 4–300 K, s2 4–300 K, s2 20–300 K, s1
Ag(30) s1 20–300 K, s1 20–300 K, s1 20–300 K, s1
YBCO s1 20–300 K, s1 20–300 K, s1 20–300 K, s1

H C276 s3 55–302 K , s2 20–811 K , s3 >> RCu

Stycast s4 4–302 K, s5 4.2–300 K , s6 n/a

s1: Cryocomp, s2: NIST website, s3: Haynes website, s4: Emmerson-Cumming website, s5: literature, s6: Lakeshore

website.

I Heater: R(T ) measured and fitted; C and κ neglected.
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Quench simulation 1D model for voltage-temperature response

Results

I Model results compared to 2 experiments — 1 recovery and 1 quench

I ξ adjusted to fit V15 to the measured value

I Agreement between calculation and experiments not good
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Quench simulation 1D model for voltage-temperature response

Comparison 1 — Experiment #6, recovery

It = 199 A (90% of Ic), Vp = 1.13 V, ξ = 2.8.
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Quench simulation 1D model for voltage-temperature response

Comparison 2 — Experiment #9, quench

It = 199 A (90% of Ic), Vp = 1.35 V, ξ = 2.8.
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Preliminary studies on MgB2 wires
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Preliminary studies on MgB2 wires

Quench experiment variation

MgB2 is an interesting emerging conductors.

I Potential cost ∼ NbTi with much higher field

I Conductor form can be isotropic wire in long length

I Potential application of MgB2 for accelerator magnets†

†Cooley et al., Proceedings of PAC 2001, Chicago
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Preliminary studies on MgB2 wires

Samples

I Two kinds of wires provided by HyperTech through CAPS

I φ 0.83 mm, 20 cm long, s/c ∼ 16%

glid Cu sheathed, 6 filaments CuNi sheathed (Monel), 16 filaments
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Preliminary studies on MgB2 wires

Ic vs. field

Measured with ITER barrel by HyperTech Research.
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Preliminary studies on MgB2 wires

Experimental setup

I Tested in liquid helium, self field

I Normal zone initiated by NiCr heater wound around the sample

I V (x , t) and T (x , t) monitored
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Preliminary studies on MgB2 wires

MQE and NZPV results
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I MQE ∼ 1 J, NZPV ∼ 1 m/s

I ∼ 11% MQE of Bi-2212 round wire†; ∼ 1250% NZPV of Bi-2212

†Bi-2212 data by Timothy Effio
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Summary and conclusion
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Summary and conclusion

Summary and conclusion

I Quench behavior of single YBCO coated conductors of different
architectures are studied

I Samples are cryocooled and tested in self field

I MQE ∼ 1 J; NZPV ∼ 10 mm/s

I Severe quench does degrade conductors catastrophically; conductors
sensitive to the detection/protection time

I We should look for innovative quench detection and protection
techniques for future HTS magnets
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Backup slides

In-field quench probe

4

5

6

7

8

9

1 2

3

1, sample holder; 2, FGRP tension relief board; 3, Cu braids; 4, Cu extension rod; 5, HTS current leads; 6, cold head; 7, top

flange; 8, instrumentation port; 9, power feedthrough
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Backup slides

Source term — applied heat (backup)

The source term is

f (x , t) = fappl(x , t) + fself(x , t).

The heat generated by the heater is

fappl(x , t) · Uhtr =

{
V 2

R(T ) x ∈ [xhtr0, xhtr1] and t ∈ [ts, te]

0 otherwise.

The volume, Uhtr, is a constant and expressed by

Uhtr = wtape lhtr (ξ ttape),

1 < ξ ≤ ttape + tsty
ttape

.
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Backup slides

Source term — self generation (backup)

The self generation is

fself(x , t) · U(x) =


I 2
t Rnm Ti ≥ Tc

I 2
nmRnm + (InmRnm)Isc Ti < Tc and It > Isc

0 Ti < Tc and It ≤ Isc,

where the current conservation applies,

Inm + Isc = It.
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Backup slides

Source term — self generation (cont.)

Assumption 1,

Isc(T ) =
Tc − T

Tc − T0
Isc(T0),

T0 T Tc

Isc(T0)

Isc(T )
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Backup slides

Ic,t/Ic,d derivation
Three criterions: electric field, resistivity, and offset.† For electric field and
offset criterions:

Vc,t = c I n
c,t, (4a)

Vc,d = c I n
c,d, (4b)

Since the same criterion is used, so we have

Vc,t

Vc,d
=

Lt

Ld
= m. (5)

Divide Eq. (4a) by Eq. (4b) and substitute Eq. (5), we have

Ic,t
Ic,d

= n
√

m. (6)

For resistivity criterion:
Ic,t
Ic,d

= n−1
√

m

†Ekin, Experimental techniques for low-temperature measurements, OUP, 2007
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