
Supercond. Sci. Technol. 13 (2000) 592–597. Printed in the UK PII: S0953-2048(00)11180-7

Scaling of percolative current flow to
long lengths in biaxially textured
conductors

E D Specht, A Goyal and D M Kroeger

Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6118,
USA

E-mail: esy@ornlogov (E D Specht)

Received 20 January 2000

Abstract. A random mixture of conducting and non-conducting sites or bonds on a
two-dimensional lattice is used to model textured polycrystalline superconducting conductors
in which high currents are carried only by low-angle grain boundaries. We calculate the
frequency with which unfavourable configurations will significantly decrease current flow.
For realistic distributions, in very narrow conductors (∼10 grains wide) critical current is
reduced, sometimes to zero, over long lengths. For a typical conductor, 1 cm wide with 50 µm
grain size, fluctuations in critical current of less than 10% are expected for kilometre lengths.

1. Introduction

Current in polycrystalline superconductors flows through
grain boundaries with a distribution of grain boundary
misorientations. Various techniques are under development
to texture the superconductor so that most of the grain
boundaries are low-angle boundaries with high critical
current (Jc), including ion beam-assisted deposition (IBAD)
[1, 2], inclined-substrate deposition (ISD) [3], and rolling-
assisted biaxially-textured substrates (RABiTSTM) [4, 5].
Most often the high-angle boundaries with low Jc are isolated
obstacles, around which current can easily flow. However,

Figure 1. Bond percolation on a hexagonal lattice. Circles
represent grains. Full lines represent non-conducting boundaries;
conducting boundaries are blank. The dashed line is the
non-unique path which limits Jc.

even if processing conditions are well controlled, there
remains a non-zero probability that randomly located low-Jc

boundaries will form a barrier which significantly restricts
current flow. For this reason, demonstration of high Jc

in short lengths of superconductor does not necessarily
guarantee that production of long lengths is feasible.

Scale-up to long lengths is a particular concern for
the RABiTSTM technique, in which superconducting films
are grown epitaxially on metal substrates with grain sizes
∼50 µm. Conducting tapes are thus only ∼100 grains wide,
increasing the likelihood of statistical fluctuations. Grain
sizes for IBAD and ISD are determined by the deposition
technique, and are ∼1 µm, so conducting tapes are ∼104

grains wide.

Figure 2. Site percolation on a hexagonal lattice. Circles
represent conducting grains. Non-conducting grains are black.
The dashed line is the non-unique path which limits Jc.
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Figure 3. 〈Jc〉 for various fractions f of conducting grain boundaries on a hexagonal lattice. Curves are least-squares fits to equation (3).

Deutscher [6] has considered the problem of current
transport through a large number of grains with random
conductivity, for films with thickness less than the 3D
percolation length. By considering the probability that
conductivity is completely blocked in a system close to
the percolation threshold, Deutscher finds that average
conductivity of a strip with grain size d, length L and width
w can be approximated as

〈Jc〉 ∼ exp

{
L

ξ
ln[1 − (1 − d/ξ)w/d ]

}
. (1)

ξ is a 2D correlation length,

ξ ∼ d(f − fc)
−ν (2)

where f is the fraction of conducting material, fc is
the percolation threshold, and ν is a critical exponent.
Percolation crosses over from 2D to 1D at a critical length
Lc = ξ exp(w/ξ). For L � Lc the conductor behaves
as a 2D sample, and Jc does not depend strongly on the

sample dimensions. For L � Lc, the conductor obeys 1D
percolation, and conductivity decreases rapidly with length:

Jc ∼ exp(−L/Lc). (3)

Small changes in ξ have a large effect on the critical
length Lc. Consider, for example, a sample with width
w = 200d (1 cm for 50 µm grains): when ξ/d changes
from 7.5 to 15, Lc/d changes from 3 × 1012 to 9 × 106. The
scaling relationship used to find ξ (equation (2)) is valid only
close to fc, where Jc will be low. A useful conductor must be
far from threshold. The scaling results of equations (1)–(3)
may provide a qualitative description of the crossover from
1D to 2D percolation, but they cannot be used for a reasonable
estimate of the length scale at which 1D percolation effects
occur.

In order to obtain an order of magnitude estimate of
percolation effects in long lengths, we present numerical
results in which conductivity is modelled using a simple
coupling scheme. A variable fraction of the grain boundaries
are non-conducting and the conducting boundaries all have

593



E D Specht et al

Figure 4. 〈Jc〉 for various fractions f of conducting grains on a hexagonal lattice. Curves are guides to the eye.

the same critical current. The non-conducting boundaries
are distributed in two ways. The first models the ideal
case in which all the grains are close in orientation to the
average texture. Random deviations in grain orientation lead
to random deviations in misorientation at grain boundaries,
so a random fraction f of the boundaries are assigned
as conducting (figure 1). This is a bond percolation
model, in which current passes through the low-angle
boundaries. If the orientations are primarily uniaxial,
with a Gaussian distribution with FWHM F , the grain
boundary misorientations will have a Gaussian distribution
with FWHM

√
2F , in the absence of any local correlations.

Measurements of texture on a microscopic scale show
evidence that the grain boundary misorientations in most
cases are less, reflecting a bias towards low-angle boundaries
[7]. Measurements of grain boundary critical current
show that grain boundaries carry a high current when
misorientation is below φc ∼ 5◦ [8], so we make the simple
assumption that all boundaries with misorientation below
φc have the same critical current and those with higher
misorientation are non-conducting. Assuming a Gaussian

distribution as above, the probability that each boundary is
conducting is erf(1.18φc/F ), where

erf(x) = 2
∫ x

0
exp(−y2) dy/

√
π. (4)

For example, if the FWHM of the grain distribution is F = 6◦

and boundaries are conducting below φc = 5◦, 83% of the
boundaries will be conducting. Measurements of texture
on a microscopic scale [8] show evidence that the grain
boundary misorientations may be smaller than predicted by
a random distribution of grain orientations; due to these local
correlations, this probability represents a lower bound.

The second distribution models less ideal textures, in
which the orientation of a fraction of the grains deviates
markedly from the average orientation. For example,
thermomechanical processing can lead to a microstructure
in which most of the material is {100}〈100〉 textured (cube-
textured) with a small fraction of {221}〈221〉 texture (twin-
textured). None of the boundaries of the {221}〈221〉 grains
will carry high currents. This is a site percolation model,
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Figure 5. 〈Jc〉 for various fractions f of conducting grain boundaries on a square lattice. Curves are guides to the eye.

Table 1. Percolation threshold: fraction fc of conducting sites
(i.e. grains) or bonds (i.e. grain boundaries) at which long-range
percolation first occurs.

Lattice Percolation fc

Hexagonal Bond 0.35
Hexagonal Site 0.50
Square Bond 0.50
Square Site 0.59

in which current passes through the cube-textured grains
(figure 2).

Calculations are shown for site and bond percolation on
both a hexagonal lattice, which more accurately models the
microstructure, and on a square lattice as in other work [9].
The percolation thresholds fc for all four cases are shown in
table 1.

2. Method

Following Rhyner and Blatter [9], we use the limiting-path
method to determine Jc for the model systems. For the

bond percolation cases, a fraction f of bonds are randomly
assigned as conducting (figure 1). The site percolation cases
are converted to bond percolation problems by first randomly
assigning a fraction f of grains as conducting, then assigning
boundaries as conducting when both neighbouring grains are
conducting (figure 2). Jc is normalized so that Jc = 1 when
all boundaries are conducting. Sample length and width are
measured in units of the near-neighbour grain separation. In
order to eliminate end effects, periodic boundary conditions
are applied in the direction of current flow. As shown in
figures 1 and 2, we include returning paths [10] which are
inclined at 30◦ with respect to current flow, but not those
inclined at 90◦.

In order to find Jc for a range of sample lengths, we
calculate Jc for 20 000 samples, each 1000 grains long, and
tabulate the distribution. Thus the total length sampled is
2 × 107 grains (1 km for 50 µm grains). We model sample
widths of 10, 20, 50, 100, and 200 grains. We compute the
frequency distribution of Jc and its average 〈Jc〉 for longer
conductors by noting that if a 1000-grain segment has Jc � j

with frequency p, a conductor with length L will have Jc � j

with probability pL/(1000d).
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Figure 6. 〈Jc〉 for various fractions f of conducting grains on a square lattice. Curves are guides to the eye.

3. Results

Figures 3–6 show 〈Jc〉. The lines in figure 3 are least-
squares fits to equation (3); agreement is poor. Equation (3)
is derived by assuming that 〈Jc〉 is determined by clusters
which completely block conduction; the frequency of these
clusters corresponds to Lc. Our results show that 〈Jc〉 is in
fact affected by conduction bottlenecks with a range of Jc,
so there is no single critical length Lc. Note that 〈Jc〉 is
increased far more by an increase in w than 〈Jc〉 is decreased
by an increase in L by a similar factor. For this reason,
decreasing the grain size will increase 〈Jc〉.

The results are summarized in figures 7 and 8. Figure 7
shows the minimum Jc for each set of 20 000 simulations, i.e.
the 〈Jc〉 for a long-length sample. Figure 8 compares Jmax

c

and Jmin
c , respectively the Jc for the best and worst 1000-

grain segment for each set of simulations. Plotted is (Jmax
c −

Jmin
c )/Jmax

c , the maximum relative decrease expected when
comparing short and long samples. The data are linear on
a log–log scale, with a slope corresponding to (Jmax

c −
Jmin

c )/Jmax
c ∼ w−1/2. The results scale approximately as

f − fc; non-conducting grains have a larger effect than a
similar fraction of non-conducting grain boundaries, since
fc is larger for site percolation than bond percolation.

For the best polycrystalline superconductors, Jc is ∼0.5
that observed for epitaxial thin films [10], consistent with
f = 0.83 as predicted from the texture (see above). For
superconductors grown epitaxially on thermomechanically
processed metal substrates, the texture is determined by the
substrate, with a grain size of ∼50 µm, and conductors are
typically ∼100 grains wide. For the most realistic model,
bond percolation on a hexagonal lattice, this implies that
fluctuations in Jc will be ∼10%. This may be too small to
observe, since variations in deposition conditions can cause
larger fluctuations in Jc. Other texturing techniques yield
much smaller grain sizes, making sample widths larger (in
units of grains) and statistical fluctuations in Jc insignificant.
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Figure 7. Minimum Jc observed in 2 × 107 grains of simulated length for fraction f of conducting grains or boundaries: 0.9 (�), 0.8 (),
0.7 (�), 0.6 (◦), 0.5 ( ), and 0.4 (�).

Figure 8. Relative variation in Jc: (a) hexagonal lattice, fraction f of conducting grain boundaries, (b) hexagonal lattice, fraction f of
conducting grains, (c) square lattice, fraction f of conducting grain boundaries, and (d) square lattice, for fraction f of conducting grains or
boundaries: 0.9 (�), 0.8 (), 0.7 (�), 0.6 (◦), 0.5 ( ), and 0.4 (�).
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