INTERNATIONAL PERSPECTIVE ON COATED CONDUCTORS

U. (Balu) Balachandran Argonne National Laboratory

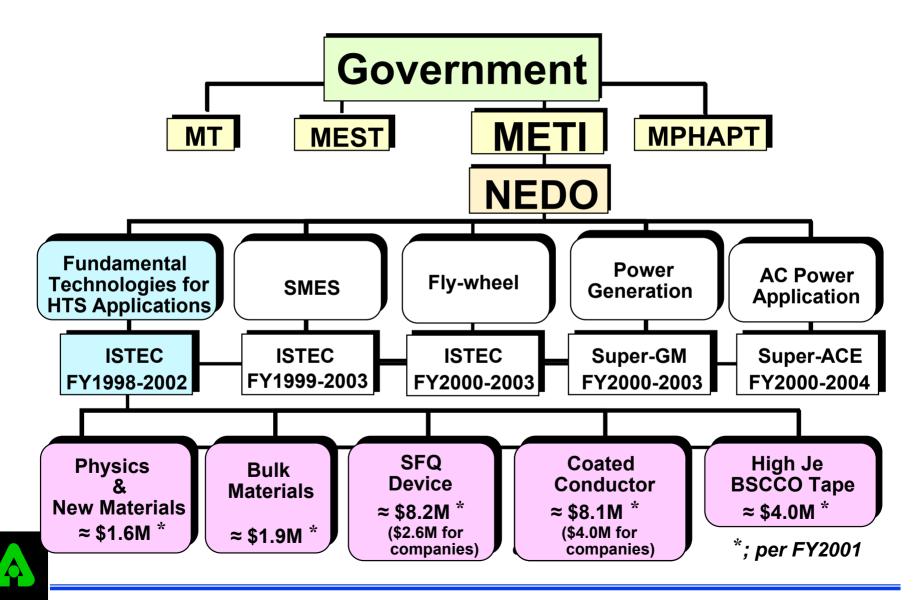
Information Sources

- 10th International Workshop on Critical Currents, Göttingen, Germany, June 2001.
- International Cryogenic Materials Conf., Madison, July 2001.
- European Conf. on Appl. Superconductivity, Copenhagen, Denmark, Aug. 2001.
- International Sym. on Superconductivity, Kobe, Japan, Sept. 2001.
- Materials Research Soc. Fall 2001 Meeting, Boston, Nov. 2001.
- Superconductor Week, 2001.
- Grant (EPRI), Suenaga (N BL), Shiohara (ISTEC), Izumi (ISTEC), Park (KERI, Korea).

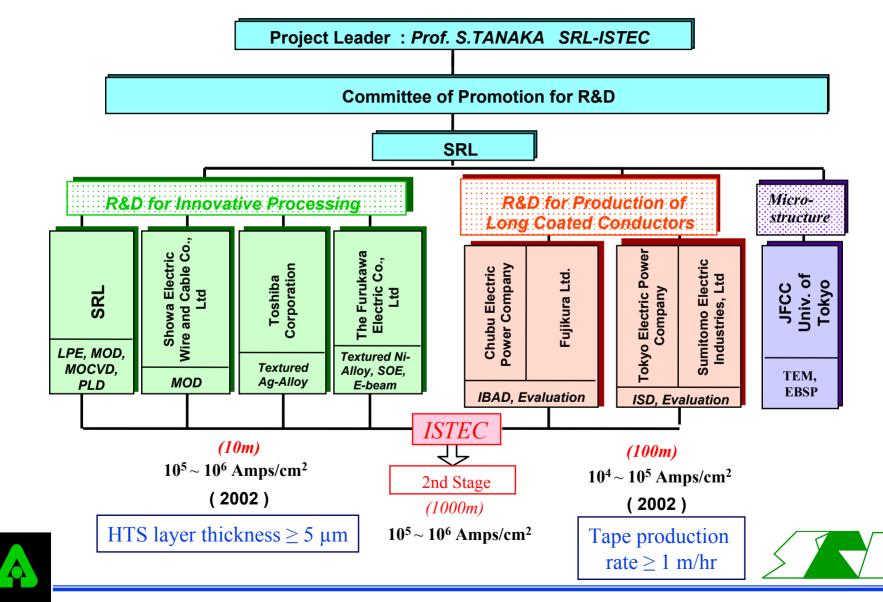
Japanese Organizations Supporting Superconductor R&D

- METI Ministry of Economy, Trade, and Industry
- NEDO New Energy and Industrial Technology Development Organization
- MEST Ministry of Education, Culture, Sports, Science and Technology
- MT Ministry of Land, Infrastructure and Transport
- MPHAPT Ministry of Public Management, Home Affairs, Post and Telecommunications

FY2001 (April '01 - March '02) Budget for Superconductivity-related R&D in Four Ministries


(Unit: million yen)

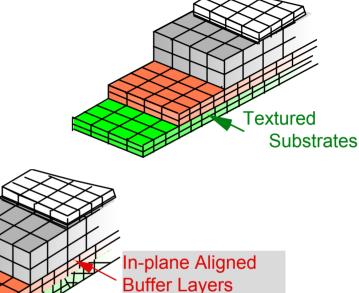
Name of Ministry	Themes	FY2000 Budget	FY2001 Requested Budget
METI	R&D on superconducting generators, flywheel, AC power application, and R&D on fundamental technologies for superconducting applications	8,025	9,093
MEST	Multi-core project for superconducting material studies, nuclear fusion, etc. Consolidation of superconductivity- related research and educational systems	3,275	3,261
MT	MAGLEV	1,184	1,380
МРНАРТ	Research on ultrahigh frequency and high-speed circuit technology using superconducting devices	111	Budget within 19,184
	Total	12,594	13,733



Superconductivity Projects in JAPAN

Organization for Development of CC

ISTEC/SRL Funding Situation (Japanese Fiscal Year April 1- March 31)


- FY 2002 (starts April '02) is expected to get $\approx 10\%$ increase.
- Fundamental Technologies for HTS Applications program will have 2.7 Billion Yen (\approx \$25 M).
- Current 5-yr program ends at the end of JFY '02 (March '03).
- ISTEC will propose to METI an extension to another 5-yr term.
 - will have an intermediate set of goals to fill in the first two years.

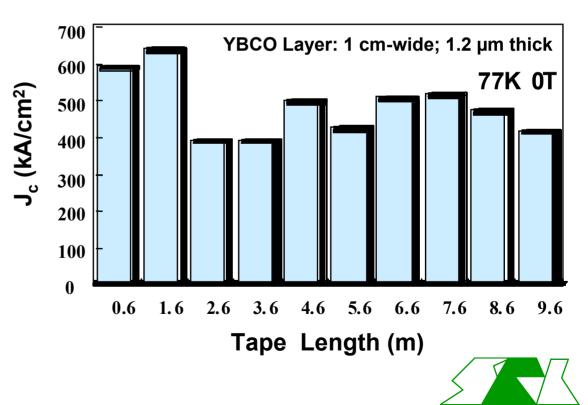
Approach

- Process for Textured Metallic Substrate
 - RABiTSTM
 - SOE, Cute
- Process for In-Plane Aligned Buffer Layers
 - Inclined Substrate Deposition (ISD)
 - Ion Beam Assisted Deposition (IBAD)

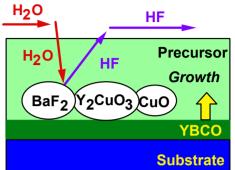
Superconducting

Laver

- Innovative Process for Superconducting Layers
 - Liquid Phase Epitaxy (LPE)
 - Metal Organic Deposition (MOD)


Major Results – Japan

- <u>Textured Metallic Substrates</u>
 - $J_c = 3 \times 10^5 \text{ A/cm}^2 \text{ on SOE} \text{ (short sample)}$
 - $J_c > 10^5 \text{ A/cm}^2 \text{ on } 5\text{-m Ag-Cu/Ag-Ni clad-type tape}$
- <u>ISD</u>
 - Produced 50-m long textured YSZ with CeO₂ cap-layer (ISD speed: 1.0 m/h)
 - $J_c = 10^5 \text{ A/cm}^2$ on 10-m long tape (PLD speed: 1.2 m/h)
- <u>IBAD</u>
 - 60-m long IBAD/Gd₂Zr₂O₇ tape (IBAD speed: 1 m/h; in-plane FWHM = 16-18°)
 - $I_c = 50 \text{ A} (J_c = 0.42 \text{ MA/cm}^2) \text{ on } 9.6\text{-m long } 1\text{-cm wide},$ 1.2 µm thick tape (PLD speed: 1 m/h; in-plane FWHM = 9°)
 - I_c =150A (J_c = 1.2 MA/cm²) on 8-cm long tape.


Major Results

Innovative Process for Superconducting Layer (MOD) H_2^{O} H_F

- Major Results
 - Technology for High Quality Film
 Deposition;

Achieved High J_c in Combination of IBAD & TFA-MOD $J_c = 2.5 \text{ MA/cm}^2 (0T), 0.17 \text{ MA/cm}^2 (5T) @77 \text{ K}$

⁽¹⁾ Process for Thick Film Deposition;

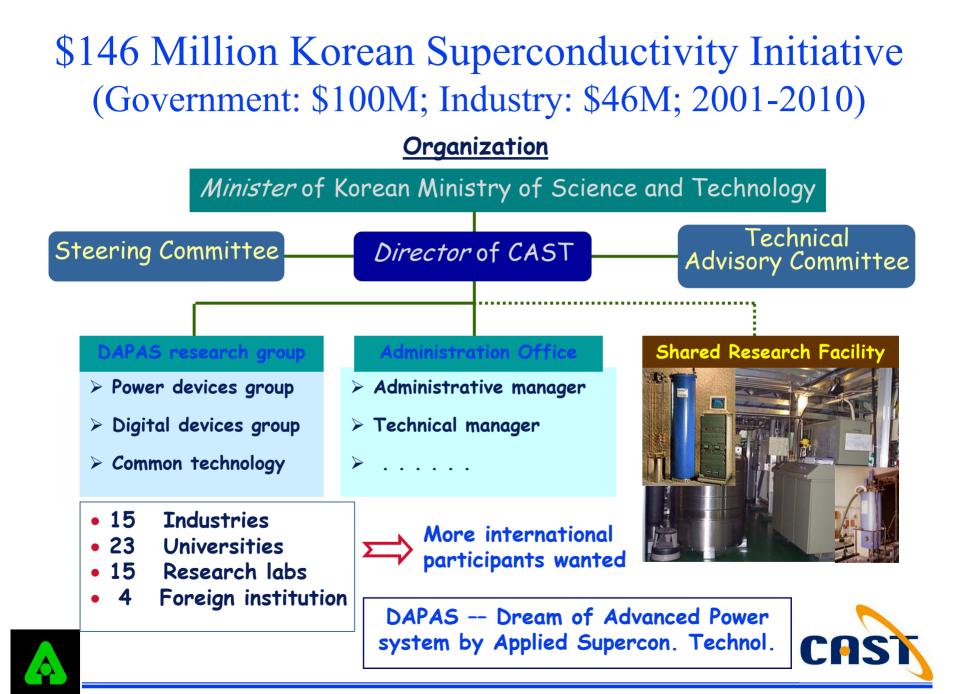
Improved $I_c \& J_c$ by means of Triple Coating (0.9 - 1µm) in TFA-MOD

on Single Crystal Sub. $I_c^*=280 \text{ A/cm-width}, J_c^= 3.1 \text{ MA/cm}^2$

on Metal Sub. (IBAD) I_c *=153 A/cm-width, J_c =1.6 MA/cm²

⁽¹⁾ Technology for Long Length Production

• Deposition of 10 cm long tape by dip-coating & beed-coating



Current Status & Future Prospect

Present Status (FY2001)	Goal of This Project (FY2002)	Future Targets for Real Industrial Application
<long length="" production=""> 1.Length : $=10m$ 2. Jc (77K, 0T): $>10^{5}A/cml$ 3. Production Rate: 1m/h <innovative processing=""> 1.Length : $=10cm$ 2.Jc : Jc (77K, 0T) $=2.5x10^{6}A/cml$ Jc (77K, 5T) $=1.7x10^{5}A/cml$</innovative></long>	<pre><long length="" production=""> 1. Length : >50m 2. Jc (77K, 0T):</long></pre>	

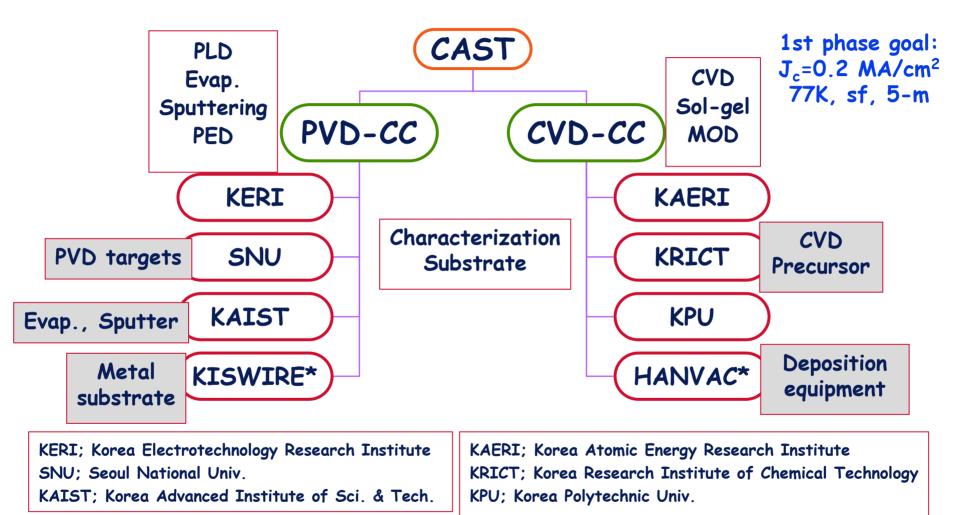
Projects of DAPAS

Main category	Projects	Institution
	Underground cable	KERI
-	Transformer	Korea Polytechnic Univ.
Superconductivity Power devices	Fault-current limiter	Yonsei Univ./ KEPRI
TOWER GEVICES	Motor	KERI
Superconductivity Digital devices	ALU (Arithmetic Logic Unit)	KOPTI
	HTS PIT wire	KERI / KIMM
	HTS CC wire (PVD / MOCVD)	KERI / KAERI
Superconductivity	Cryogenic technologies	Neuros
Common technology	Electric insulation technologies	Gyeongsang Univ.
	Fundamental technology of HTS coil	KBSI
	(joint, AC loss, etc.)	
	Power system application technologies	KERI 📃
		CAS

Korean Institutes

- KERI Korea Electrotechnology Research Institute
- KOPTI Korea Photonic Technology Institute
- KIMM Korea Institute of Machinery and Materials
- KAERI Korea Atomic Research Institute
- KBSI Korea Basic Science Institute

Development Targets of Each Phase


1 st Phase	2 nd Phase	3 rd Phase	
2001 2002 2003	2004 2005 2006	2007200820092010	
Develop HTS wire and system technology suitable for use in electric devices	Develop and test prototypes of electric devices	Develop and test commercial-scale electric devices	

Devices: Transmission cable Transformer Fault-current limiter Motor Arithmetic logic unit

Coated Conductor Program in CAST

* industry

EUROPEAN FRAMEWORK PROGRAM PARTICIPANTS

- U. Göttingen & ZFW
- IFW Dresden
- TU München
- Forschungszentrum Julich
- Siemens
- THEVA GmbH
- Inst. Tech. Phy. Karlsruhe
- Europa Metalli SpA

- IRC Cambridge
- Imperial College
- U. Birmingham
- Oxford Instruments
- Atomic Institute Vienna
- U. Geneva
- MASPEC- Parma
- Alcatel

Results of the European Program

- <u>IBAD</u> @ Göttingen
 - 17.5-m-long IBAD tape (in-plane FWHM = 11-13°; Dep. time: 14 hr)
 - 2-m-long tape with $I_c = 142 \text{ A} (J_c = 1.23 \text{ MA/cm}^2; 10\text{-mm wide}; 1.23 \ \mu\text{m}$ thick YBCO)
 - YBCO deposition rate using HR-PLD is 40 nm \bullet m²/hr
 - Current processing time to make 100-m-long, 3.5-mm-wide YBCO tape is ≈280 hr
 - Total processing time will be reduced to ≈ 40 hr in ≈ 2 yrs.
- ISD @ Munich
 - 35-m-long textured MgO (tape speed: 8 m/hr; 200-500 nm/min; 2 µm thick)
 - $J_c = 0.8 \text{ MA/cm}^2$ (1.5 cm x 0.5 cm); 0.5 MA (10-cm x 0.8 cm); 0.1 MA (1-m x 0.8 cm).

Results of the European Program (cont.)

- Textured Ni-alloy tapes @ Dresden, Karlsruhe, Europa Metalli, THEVA, Munich, Cambridge
 - Controlled micro-alloying (0.1% Mo) prevents secondary recrystallization
 - High alloy concentration (13% Cr, 9% V) reduce grain boundary grooving but texture is imperfect
 - $I_c = 60$ A in 9-mm wide, 12-cm long and 1.4 µm thick YBCO $(J_c \approx 0.5 \text{ x } 10^6 \text{ A/cm}^2)$
- Textured Ag-alloy tapes @ Geneva, Oxford
 - J_c $\approx 10^5$ A/cm² in short samples
- YBCO deposition
 - PLD, magnetron sputtering, LPE, MOCVD, thermal coevaporation, aerosol.

2001 Highlights – International

- 50-mm dia. YBCO films with $J_c \approx 11$ MA/cm² by TFA-MOD (ISTEC).
- 60-m long IBAD/ $Gd_2Zr_2O_7$ tape (Fujikura).
 - 9.6-m long tape with end-to-end $I_c=50A$ ($J_c=0.4$ MA/cm²).
 - 8-cm long tape with $I_c = 150 \text{ A} (J_c = 1.2 \text{ MA/cm}^2)$.
- 10-m long tape (by ISD) with $J_c = 10^5 \text{ A/cm}^2$ (Sumitomo).
- 5-m long tape (clad-type, metallic substrates) with $J_c > 10^5 \text{ A/cm}^2$ (Furukawa).
- 2-m long tape (by IBAD) with $I_c=142 \text{ A} (J_c=1.23 \text{ MA/cm}^2)$ (Göttingen). - 17.5 m long IBAD tape fabricated .
- 35-m long biaxially textured MgO layer by ISD (tape speed = 8 m/hr) on SS substrate (Munich).
- Korea had established a \$146M/10-yr superconductivity initiative.

Summary

- Japan has a large, broad-based, multiorganization effort.
 - Consortia type arrangement
 - Developments are shared among companies; makes it easier for rapid technical progress
 - Achievable targets are set
 - Technical feasibility is most important compared to performance & cost effectiveness
- Impressive IBAD, ISD, and YBCO results are obtained in the European program.
- Small prototype devices using CCs have been demonstrated in Europe and Japan.

Results of the European Program (cont.)

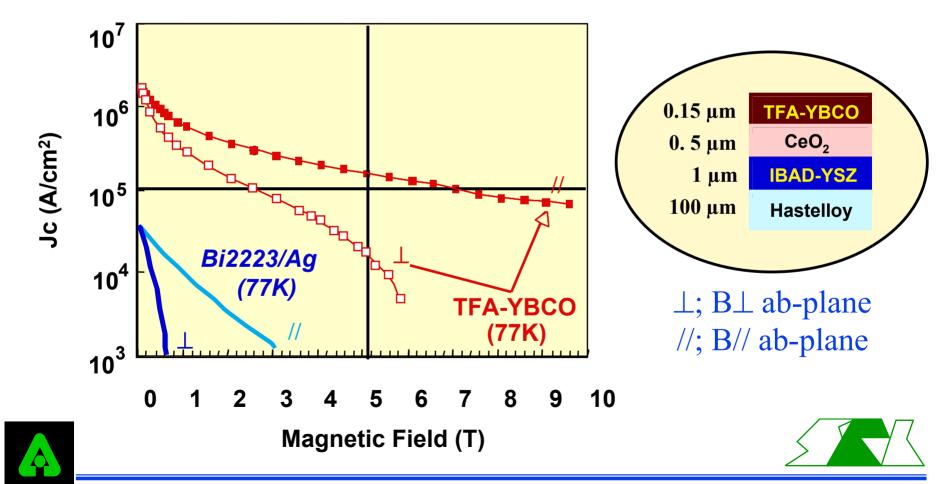
- IBAD on stainless steel tape (strong, non-magnetic) @ Göttingen
 - Tape speed 8 cm/min; Dep. time 11 hr/m; Dep. window 6-cm x 12.5-cm; Volumetric dep. rate 14 nm • m²/h
- PLD @ Göttingen
 - Volumetric dep. rate (present) 24 nm \cdot m²/h (future 43 nm \cdot m²/h)
 - $J_c = 2.3 \text{ MA/cm}^2$ (23-cm x 1-cm); 0.6 MA (50-cm x 1-cm, $I_c = 54 \text{ A}$); 0.4 MA (100-cm x 3.4 -cm)
 - Production rate < 0.3 m/h (conventional PLD); 9 m/h (HR-PLD @ present);
 > 20 m/h (in 2 years)
 - 20-mm thick YBCO target with an area of 300 cm² is sufficient to process
 7 km long, 1-cm wide tape
- ISD/MgO @ TU Munich
 - Rate 200-500 nm/min; thickness $\approx 2~\mu m$
 - $J_c = 0.8 \text{ MA/cm}^2$ (1.5 cm x 0.5 cm); 0.5 MA (10-cm x 0.8 cm); 0.1 MA (1-m x 0.8 cm)

METI's FY'02 Budget Request for Superconductivity (mid-Aug '01)

		B-JYN	
•	AC Applications	1.45	
	SC Generator	0.8	
)	Flywheel	0.35	
)	SMES	1.05	
•	Fundamental Technologies	3.5	
	 Coated Conductors 		
	 Bulk Materials 		
	 Industrial HTS Magnets 		
	– Electronics		
	Tota	l: 7.15	
	\$59.39]	M @ 120.4 Yen = 1	

FY2002 Target for Development of Coated Conductor

> • Critical Current Density $- J_c \ge 300 \text{ kA/cm}^2$ at 77K & 5T $L \ge 20 \text{ cm}$


> • Critical Current Density $-J_{c} \ge 10 \text{ kA/cm}^{2}$ at 77K & 0T $L \ge 50 \text{ m}$

Major Results

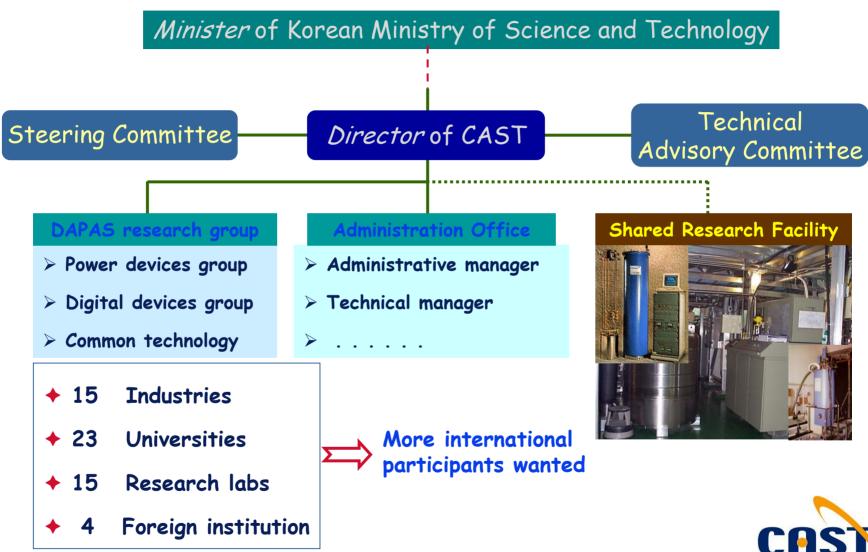
J_c-B Properties of YBCO Coated Conductor on IBAD Metallic Sub. Deposited by TFA-MOD Process

Projects of DAPAS

Main category	Projects	Institution
	Underground cable	KERI
Superconductivity	Transformer	Korea Polytechnic Univ
Power devices	Fault-current limiter	Yonsei Univ./ KEPRI
	Motor	KERI
Superconductivity Digital devices	ALU (Arithmetic Logic Unit)	KOPTI
	HTS PIT wire	KERI / KIMM
Superconductivity	HTS CC wire (PVD / MOCVD)	KERI / KAERI
Common technology	Cryogenic technologies	Neuros
	Electric insulation technologies	Gyeongsang Univ.
	Fundamental technology of HTS coil	KBSI
	(joint, AC loss, etc.)	
	 Power system application technologies 	KERI

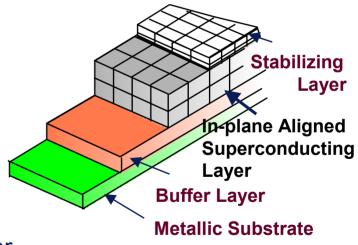
• KERI Korea Electrotechnology Research Institute

- KOPTI Korea Photonic Technology Institute
- KIMM Korea Institute of Machinery and Materials
- KAERI Korea Atomic Research Institute
- KBSI Korea Basic Science Institute


Development targets of each			
phase			
1 st Phase	2 nd Phase	3 rd Phase	
2001 2002 2003	2004 2005 2006	2007200820092010	
Develop HTS wire and system technology suitable for use in electric devices	Develop and test prototypes of electric devices	Develop and test commercial-scale electric devices	

Devices: Transmission cable Transformer Fault-current limiter Motor Arithmetic logic unit

Organization



Objectives

Development of primary technologies for RE123 coated conductors in order to use under the high magnetic fields:

- •Substrates, Buffer Layers
 - —Search for Appropriate New Materials
 - -Processing to obtain Textured Metallic
 - High Strength Substrates
 - —High Speed Process for In-plane Aligned Buffer Layers
- Superconducting Layer
 - —High Speed Process for a Long Length, High Crystallinity & Thick Superconducting Layer

Innovative Process for Superconducting Layer

HF

HF

Precursor

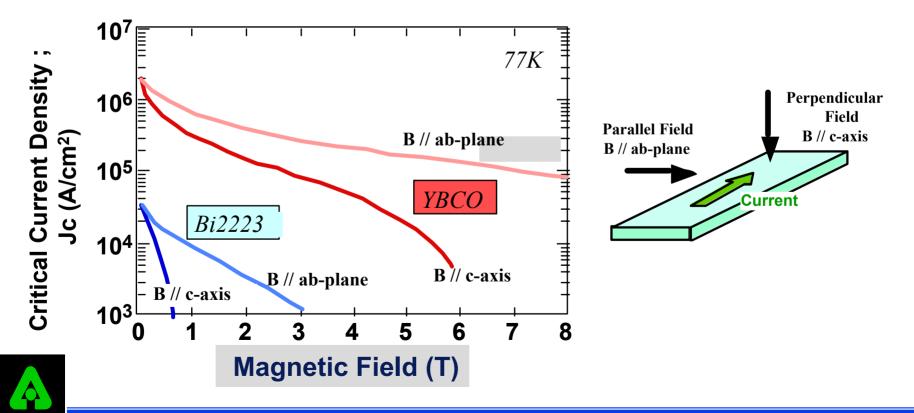
Growth

YBCO

Substrate

 H_2O Approach H_2O Metal Organic Deposition(MOD) BaF₂ Y₂CuO₃ CuO Major Results 1. Technology for High Quality Film Deposition; Achieved High Jc in Combination of IBAD & TFA-MOD Jc=2.5 x10⁶ A/cm²(0T), 0.17 x 10⁶ A/cm² (5T) @77K 2. Process for Thick Film Deposition; Improved Ic & Jc by means of Triple Coating (0.9-1 μ m) in TFA-MOD on Single Crystal Sub. Ic*=280A/cm-width Jc=3.1 x10⁶ A/cm²

- on Metal Sub.(IBAD) Ic*=153A/cm-w Jc=1.6 x10⁶ A/cm²
- 3. Technology for Long Length Production;


Deposition of 10cm Long Tape by Dip-coating & Beed-coating

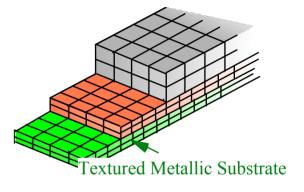
Background

Comparison of Jc-B Properties between Bi-2223 & Y123 Tapes

< Effect of Direction of Applied Magnetic Field >

4

Approach


Process for Textured Metallic Substrate *RABiTS™* SOE, Cute Textured **Substrates Process for In-Plane Aligned Buffer Layers** Incllined Substrate Deposition(ISD) In-plane Aligned Ion Beam Assisted Deposition(IBAD) **Buffer Layers High Strength** Metal Substrate **Innovative Process for** Superconducting Layers Liquid Phase Epitaxy (LPE) Superconducting Layer Metal Organic Deposition(MOD)

Major Results Process for Textured Metallic Substrate

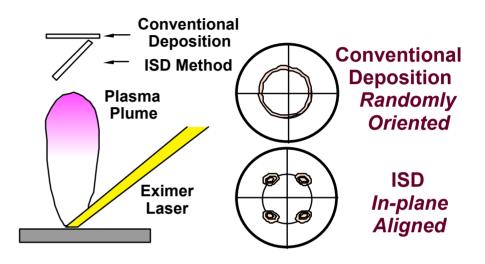
Approach RABiTS (Ni&Ag)& Surface Oxidation Epitaxy(SOE)

Major Results

1. Development of Long Length SOE Tape

50m SOE-NiO/Textured Ni

- 2. High Strength & Low Magnetic Substrates using Clad-Type Metallic Substrete SOE-NiO/Ni/Ni-Cr (30m)
- 3. Jc=3x10⁵ A/cm² (@77K,0T) YBCO on SOE



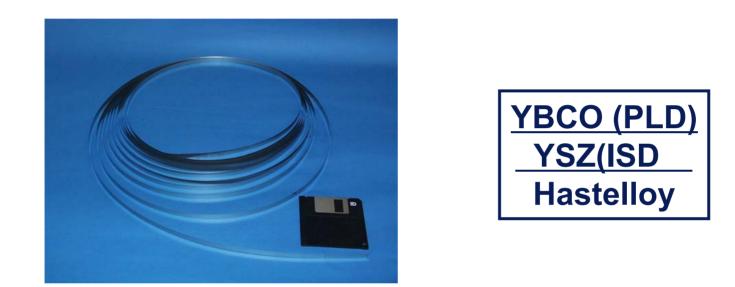
Jc> 10⁵ A/cm² & L=5m YBCO/Ag-Cu/Ag-Ni

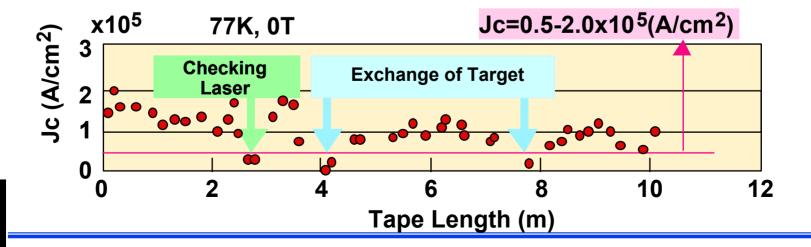
Process for In-plane Aligned Buffer Layer (Inclined Substrate Deposition)

- Approach Inclined Substrate Deposition(ISD) Major Results
 - 1. Technology for Stable

- Long Length Tape Production; 200W Industrial Laser & Large Chamber Stable Oscillation >100hrs
- Production of Long Length Coated Conductor; L=10m Jc=10⁵ A/cm² (@77K,0T)

YBCO/ISD-YSZ/Hastelloy




Achieved in 50m Long CeO₂ Buffer Layer Deposition

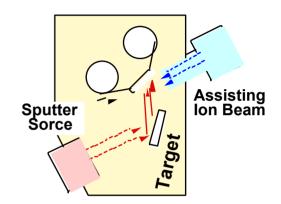
 \mathbf{A}

Major Results

Process for In-plane Aligned Buffer Layer (Ion Beam Assisted Deposition)

Approach Ion Beam Assisted Deposition(IBAD)

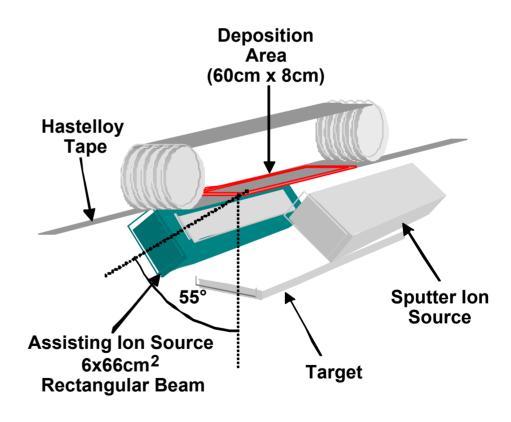
Major Results


- 1. Technology for Stable Long Length Tape Production; Enlargement of IBAD
 - System (Rectangular Ion Souce) Deposition Time > 500 hrs
- Technology for High Speed & High Crystallinity Buffer Layer Deposition; Discovery of New Buffer Material (Zr₂Gd₂O₇)
- 3. Production of Long Length Coated Conductor;

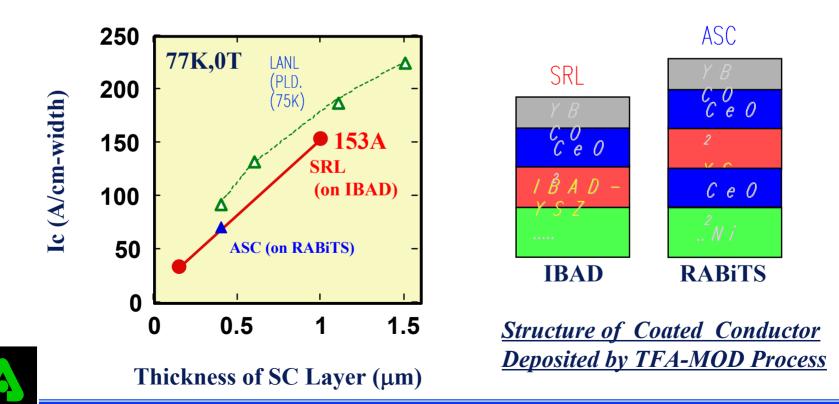
L=10m (Production Rate=1m/h) Jc=4x10⁵ A/cm² (@77K,0T)

YBCO/IBAD- Zr₂Gd₂O₇ /Hastelloy

Achieved in 60m Long Zr₂Gd₂O₇ Buffer Layer Deposition



Major Results Large IBAD System



Major Results

Improvement of Ic by Thickening YBCO Layer on IBAD by TFA-MOD

 \diamond

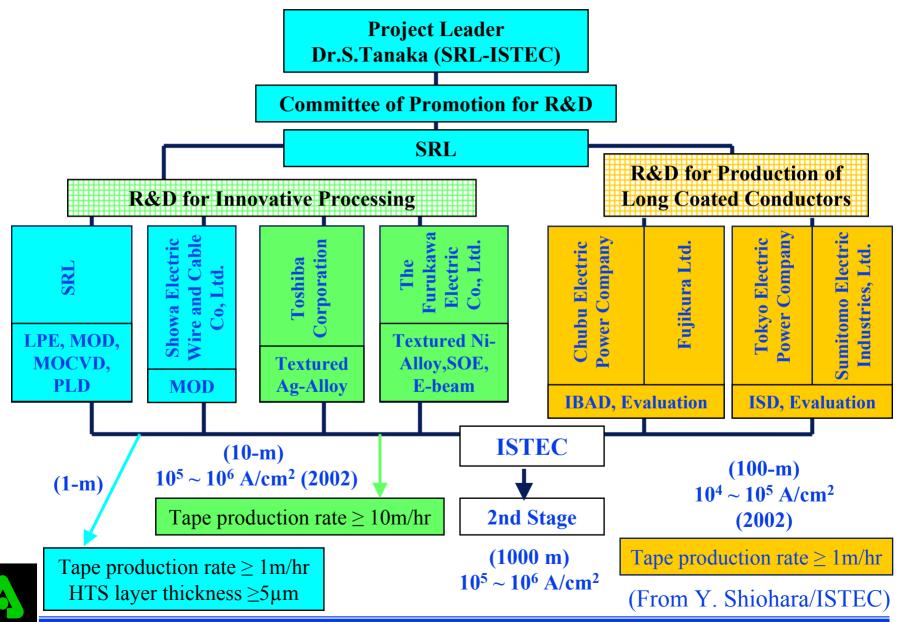
Current Status & Future Prospect

Present Status FY2001	Goal of This Project FY2002		
Long Length Production 1.Length 10m 2. Jc 77K, 0T): 10 ⁵ A/ 3. Production Rate: 1m/h Innovative Processing 1.Length 10 2.Jc Jc 77K, 0T 2.5x10 ⁶ A/ Jc 77K, 5T 1.7x10 ⁵ A/	Long Length Production 1. Length 50m 2. Jc 77K, 0T): 10 4 A/ 3. Production Rate: 1m/h 4.SC Thickness 100 μ Innovative Processing 1.Length 1m 2. Jc Jc 77K, 0T 10 6 A/ L 20 Jc 77K, 5T 3x10 5 A/ L 20		

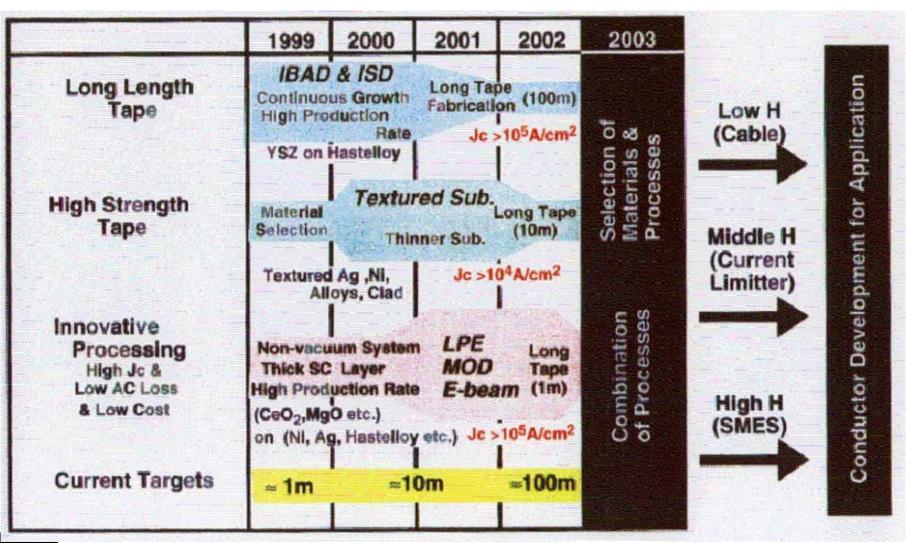
FY2001 Budget for Superconductivity-related R&D in five Ministries and Agencies (Requested Budget)

(Unit: million yen)

	(Onte: minion yen)						
Item Name of Ministry or Agency	Themes	FY 2000 Budget (Note 1)	FY2001 Requested Budget	Remarks			
Ministry of International Trade and Industry (Ministry of Economy, Trade and Industry)	R & D on superconducting generators, flywheel electric power storage systems, SMES systems, and R&D on fundamental technologies for superconducting applications	8,025	9,093				
Science and Technology Agency (Ministry of Education, Science and Technology)	Multi-core project for superconducting material studies, nuclear fusion, etc.	2,746	2,731				
Ministry of Education (Ministry of Education, Science and Technology)	Consolidation of superconductivity related research and educational systems	529	530				
Ministry of Transport (Ministry of National Land and Transportation)	Subsidy for technical development of superconducting magnetically levitated railroads	1,184	1,380				
Ministry of Posts and Telecommunications (Ministry of Public Management, Home Affairs, Posts andTelecommunica- tions)	Grant to run an independent administrative corporation named General Research Institute of Communication "Research on Ultrahigh Frequency and High-speed Circuit Technology Using Superconducting Devices" as part of the "Research on New functions and Ultimate Technologies for Information and Communication Devices" program		Budget within 19,184				
	Total	12,594	13,733*				



Information Sources


- SCENET Superconductivity European Network Workshop on coated conductors, Göttingen, May 2000.
- ASC 2000 Applied Superconductivity Conference, Virginia Beach, Sept. 2000.
- 9th ISIS International Superconductivity Industry Summit, Copenhagen, Oct. 2000.
- ISS 2000 International Symposium on Superconductivity, Tokyo, Oct. 2000.
- Fall 2000 MRS Materials Research Society, Boston, Dec. 2000.
- Journal articles.

Organization for Development of Coated Conductor

Road-map for Development of Coated Conductors

Ref: Y. Shiohara, ISTEC

Japanese Coated Conductor Program Goals

Developmental Targets

Item	Length (m)	Thickness of substrate (μm)	J _c (A/cm ²)	Thickness of superconducting layer (μm)	Manufacturing speed (m/h)
Textured substrate wire	10 ~ 100	² 100	$10^{5} \sim 10^{6}$		10
Aligned buffer layer wire	100 ~ 1000	² 100	$10^{5} \sim 10^{6}$		1
Rapid-growth superconducting layer wire	1 ~ 10	² 100	$10^{5} \sim 10^{6}$	³ 5	1

Ref: ISTEC Journal Vol. 13 no. 3 2000

IBAD YSZ/YBCO (Fujikura) (Y. Shiohara, Fall 2000 MRS)

200

β (°)

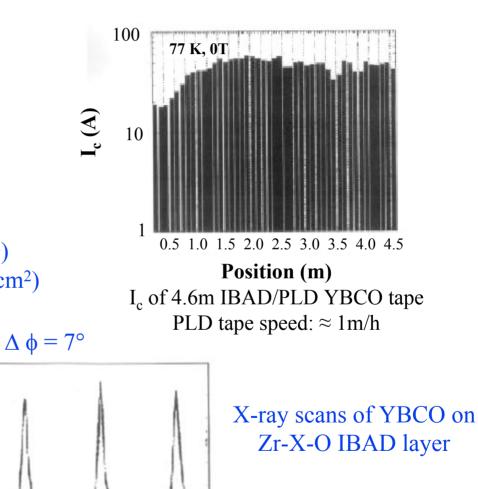
300

100

IBAD YSZ

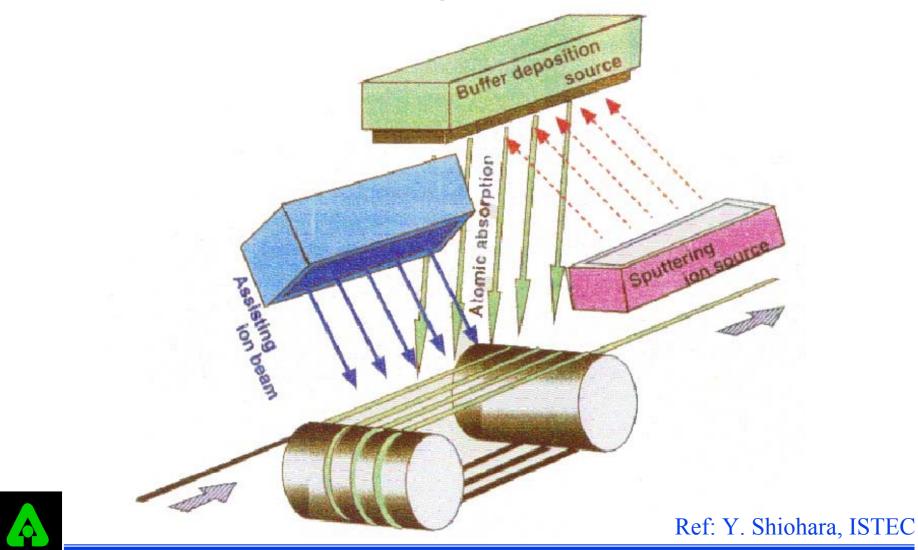
Tape speed: 0.1 m/h Thickness: 1.0 μ m Length: 5.6 m Time: 60 h FWHM: 12°-13° 1-m section I_c: 54 A (3.8 x 10⁵ A/cm²) 4.6-m section I_c = 35 A (2.5 x 10⁵ A/cm²)

Intensity (counts)

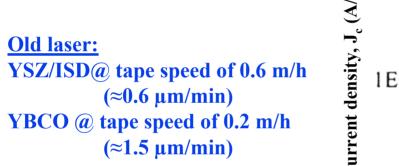

8000

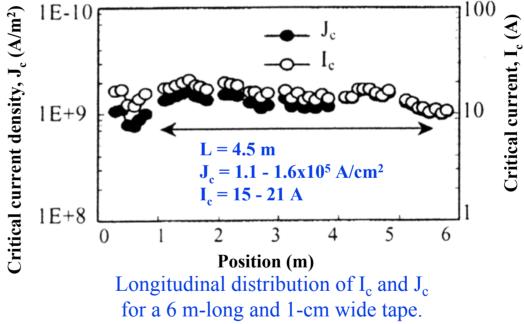
6000

4000


2000

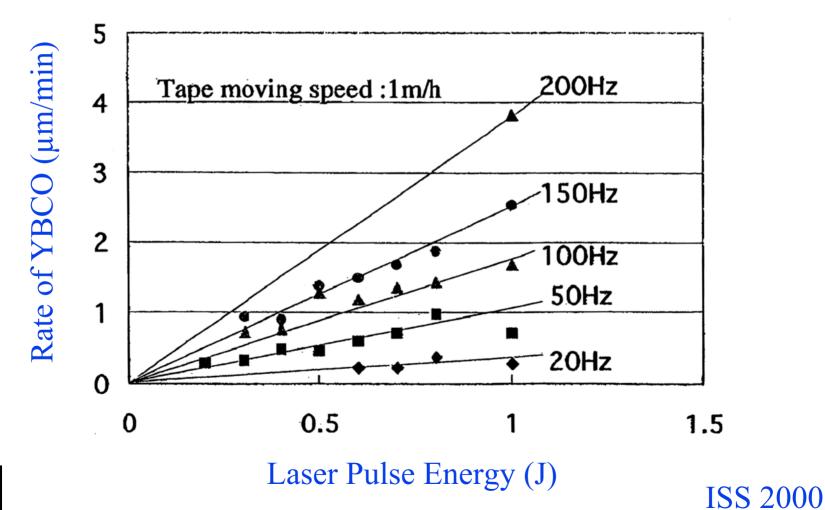
0





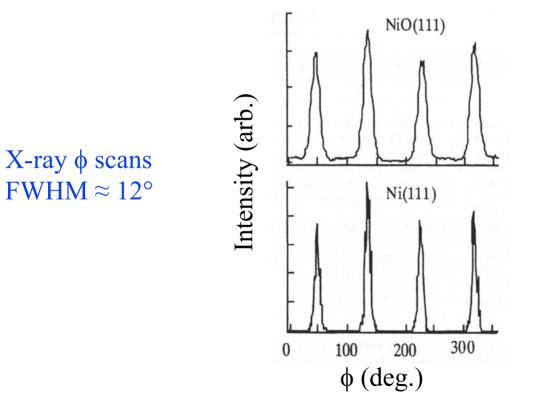
Schematic of Continuous IBAD Deposition Process (Fujikura)

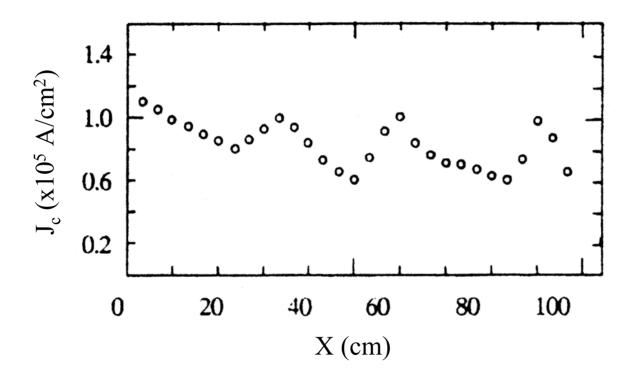
Inclined Substrate Deposition (Ref: Y. Sato, et al. Applied Supercond. Conf, 2000.) Sumitomo & TEPCO



<u>New laser:</u> 200 Hz/200 W laser: YSZ/ISD rate 1 μm/min YBCO rate ≈4 μm/min

10-m long tape with 1 μ m thick YBCO had J_c of 0.5 - 2 x10⁵ A/cm²

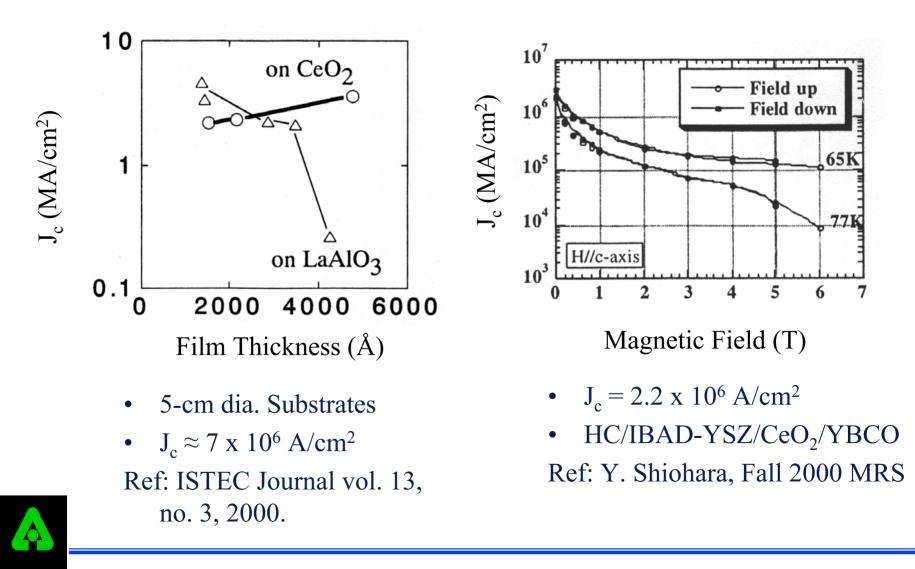

Deposition Rate of YBCO (Sumitomo/ISTEC/TEPCO result)


Surface Oxidation Epitaxy (SOE) Method (Furukawa/ ISTEC)

• 50-m long Ni tape with SOE NiO was produced

 Short sample J_c of 3 x 10⁵ A/cm² obtained on Ni/NiO/MgO/YBCO architecture.

YBCO on Rolled Ag Tape (Toshiba Corp)



 J_c distribution of a Y-123 film deposited (PLD) on rolling textured Ag tape with a length of 1 m.

Ref: Y. Iijima and K. Matsumoto, Supercond. Sci. Technol. <u>13</u> (2000) 68-81.

TFA - Metalorganic Deposition (MOD) - ISTEC

Liquid-Phase Epitaxy (LPE) - ISTEC

- $J_c \approx 2 \times 10^6 \text{ A/cm}^2$ on MgO single crystals (YBCO $\approx 5 \text{ }\mu\text{m}$)
- LPE on metallic substrates are being tried

YBCO LPE film			
(YBCO + MgO) LPE film			
YBCO seed			
MgO			
Hastelloy			
MgO			
YBCO seed			
(YBCO + MgO) LPE film			
YBCO LPE film			

Superconductivity Research at ISTEC No. of Patent Applications

	Japanese applications			International applications			
F.Y.	SRL- ISTEC	Entrusted	Total	SRL- ISTEC	Entrusted	Total	Grand Total
1988	35	0	35	0	0	0	35
1989	52	10	62	3	0	3	65
1990	7	5	22	18	6	24	46
1991	12	18	30	19	1	20	50
1992	10	16	26	25	12	37	63
1993	8	30	38	8	15	23	61
1994	2	17	19	9	34	43	62
1995	0	24	24	0	19	19	43
1996	1	29	30	0	16	16	46
1997	1	18	19	1	20	21	40
1998	0	18	18	2	8	10	28
1999	0	23	23	0	19	19	42
Total	138	208	349	85	150	235	581

International applications include the total number of applications to USA, EPC, Korea and Canada.

Ref: ISTEC Journal Vol. 13 No. 3, Nov. 30, 2000

"Finally, the most important point in the practical application of Y-123-coated conductors is the manufacturing cost. It is expected that a truly practical high-temperature superconducting tape will be realized by the development and combination of various manufacturing methods described in this review."

Y. Iijima & K. Matsumoto, High-Temperature-Superconductor Coated Conductors: Technical Progress in Japan, Supercond. Sci. Technol. <u>13</u> (2000) 68-91.



EUROPEAN FRAMEWORK PROGRAM (Brite-Euram)

- MUST- Multifunctional Flexible High-Temperature Superconducting Tapes
- READY- Refrigerated Efficiency AC Conductor by (MOCVD) Deposition of YBCO
- CONTEXT- Consortium on Textured Substrates
- SUPERTEXT- Superconductor on Textured Substrates
- SUPERPOLI- Superconducting Power Link
- SHIFT- Superconducting High Field Coils for High Field Technology
- CONECTUS- Consortium of European Companies Determined to Use Superconductivity

Large IBAD Chamber @ Göttingen, Germany

Conductor Prices

- Copper
 - \$10/kA-m (RL Hughey)
 - Very high volume and very mature
- Aluminum
 - \$2/kA-m (RL Hughey)
 - Very high volume and very mature
- NbTi
 - \$1/kA-m (Grant)
 - Mature

- NbSn₃
 - \$8/kA-m (Grant)
 - Early production
- OPIT BSCCO
 - \$500/kA-m (ASC)
 - Early production

Ref: 3M Corp./1999 wire workshop.

Comparison of Coated Conductor Manufacturing Cost Estimates in \$/kA-m

- DOE goal- \$10 price
- IGC- \$20
- Chapman- \$4.28
 - 18,000 km/yr
 - 7.2 million kA-m/yr
- Hammond- \$7.40
 - 50,000 km/yr
 - 5 million kA-m/yr

- Grant- \$1875
 - 10 km/yr
 - 4000 kA-m/yr
- 3M <\$10
 - Very preliminary

Ref: 3M Corp./1999 wire workshop.