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Modeling Objectives
Should be linked to business needs and use
Can influence:

the logical design of the model
the sampling design
the statistical techniques employed in estimation
the benchmarking and performance tracking 
techniques
the interpretation of validation results

Should generally be determined early in the 
modeling process
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Modeling Objectives
Discrimination and Prediction

The qualitative or ordinal discrimination between 
two or more types of credit
Examples:

Risk ranking of delinquent borrowers to allocate followup-
efforts
Segmentation of applications for different review

The forecasting of cardinal risk levels for 
individual credits
Examples:

Default probability estimation
Loss forecasting
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Traditional Credit Risk Model Design

Default, delinquency and segmentation 
models have traditionally been developed to 
meet a classification objective.
The dependent variable of interest takes a 
limited set of values, {0,1}, corresponding to 
membership in a class.
Examples:

Good vs. Bad
Non-Delinquent vs. Delinquent
Non-Default vs. Default
Low Risk vs. High Risk
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Traditional Credit Risk Model Design

 Rating and scoring models develop predictions of class 
membership as a function of borrower characteristics, Xi. 

 
 Typical Model 
  The score: zi =Z(Xi, β̂) 
  Implementation:  
  Choose a score cutoff z*. 

 If borrower's score is less than cutoff, predict bad; 
  if score is greater than or equal to cutoff, predict good. 

 
 Let F(z|Good) and F(z|Bad), respectively, represent the 

cumulative distribution functions of “good” borrowers and 
“bad” borrowers generated by the score.  

 
 Question:  How should z* be chosen? 
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Discriminatory Power
Choosing a Score Threshold: Types of Errors

Model predictions of class membership are compared 
to realized outcomes

Realized Outcome 
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Bad 
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No ErrorType II 
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This is closely related to retail scorecard “swap-set”
analysis
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Discriminatory Power
One Score Threshold: The K-S Statistic

One way to choose z* is by picking a value that minimizes expected 
costs from making Type I and Type II errors:

cb Prob[Type I Error] + cg Prob[Type II Error]

cb (1-F(z*|Bad)) Prob[Bad] + cg F(z*|Good) Prob[Good]

Here “cb” is the cost from making a loan that turned out bad, and “cg”
is the opportunity cost of failing to make a loan that would have turned 
out good.

Note that if cgProb[Good] = cbProb[Bad], then this problem reduces to 
maximizing

F(z*|Bad) – F(z*|Good)

This is equivalent to setting the score threshold at the value for which 
the K-S statistic is maximized (see Thomas, et. al. [2002])
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A problem with this argument….

We seldom observe approve/decline decisions made 
by setting a cutoff equal to the score value which 
maximizes K-S.

In fact, we usually see many thresholds used in 
decisioning.  What should we conclude?

The use of K-S to evaluate a model’s 
discriminatory power might not provide insight 
into the model’s performance in the range 
required by the business decision (Hand [2004])

Other metrics might be needed.
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Forecast Evaluation
Accuracy and Precision

The concepts of accuracy and precision can be employed 
when evaluating rating and scoring model performance at a 
number of different thresholds.

A forecast is considered accurate if it is “right” on average, 
i.e. if the predicted outcome on average coincides with the 
actual outcome. This concept of accuracy is closely related to 
the unbiasedness of a statistical estimator.

Precision is usually defined as the inverse of the standard 
error (or variance) of an estimator. Less precision is reflected
by a larger standard error.
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Business Decisions Influenced by Forecast Accuracy

Reject-inference (prediction of performance for rarely-
booked credits)
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= ln(PD/(1-PD)

Score
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Business Decisions Influenced by Forecast Precision

The variability in capital that could be induced by variability in PD.

IRB Capital 
Charge
with 
LGD=100%

PD

Source: Basel II formula for corporates, sovereigns, and banks(BCBS [2005]).
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Statistical Evaluation of Accuracy and Precision

The Central Limit Theorem tell us that that when based upon a 
sufficiently large sample, the sample mean of an estimator,     ,
will be distributed normally around the true population mean (µx), with 
a standard deviation equal to the population standard deviation (σx) 
divided by the square root of the sample size (n).

µx

nxσ

x

( )x

x

Probability 
Density of 
the 
Sample 
Mean
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To examine the accuracy and precision of a PD or LGD forecast for an 
individual rating grade, we can use the Central Limit Theorem to construct a 
test of the null hypothesis that the true mean is equal to the predicted value 
for the grade.  We then compare the observed value of PD or LGD with this 
interval. 

We construct a 95% confidence interval as

Parameter Estimate +/- 1.96*Parameter Standard Error

When focusing on PD, the standard error can be computed as
SquareRoot(PD*(1-PD)/N), where N equals the number of observations in a 
rating bucket.  The interval is computed as ranging from

Evaluating Rating or Score Level Forecasts
The Interval Test

N
PDPDPD

N
PDPDPD )1(96.1to)1(96.1 −×

×+
−×

×−
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Example
Rated loan portfolio for RMH Bank
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Example
Interval Tests for RMH Bank’s PD Estimates

Rating Expected Standard Confidence Interval Actual
Grade Default Rate (PD) N Error Lower Upper Default Rate

1 0.0003 3660 0.000286 0.000 0.001 0.0008
2 0.0005 5800 0.000294 0.000 0.001 0.0009
3 0.0025 9500 0.000512 0.001 0.004 0.0011
4 0.0120 38200 0.000557 0.011 0.013 0.0057
5 0.0550 21240 0.001564 0.052 0.058 0.0186
6 0.1100 1100 0.009434 0.092 0.128 0.1009
7 0.1500 990 0.011348 0.128 0.172 0.1788

N
PDPDPD

N
PDPDPD )1(96.1to)1(96.1 −×

×+
−×

×−
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Example
Interval tests for RMH Bank’s PD Estimates

(Bars denote 95% confidence interval around grade PD;
dots are actual realized default rates for each grade.)
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Evaluating Forecast Performance Globally
The Chi-Square Test

The Chi-Square Goodness-of-Fit statistic (Pearson [1900]) can be 
used to test the null hypothesis that the observed data follow a
specified distribution.

If there are k grades and c=2 states (default and non-default) 
then we are testing a null hypothesis about k binomial random 
variables.  If the outcomes for each grade are independent, then
the joint test will be distributed as a Chi-Square random variable 
with k degrees of freedom.

The observed (O) and expected (E) frequencies of default and 
non-default are compared for each grade, and the statistic is 
computed as:
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Example
The Chi-Square Test for RMH Bank’s PD Estimates

Rating
Grade PD N Default Non-Default Default Non-Default Default Non-Default

1 0.0003 3660 3 3657 1 3659 4.00 0.00
2 0.0005 5800 5 5795 3 5797 1.33 0.00
3 0.0025 9500 10 9490 24 9476 8.17 0.02
4 0.012 38200 217 37983 458 37742 126.81 1.54
5 0.055 21240 396 20844 1168 20072 510.26 29.69
6 0.11 1100 111 989 121 979 0.83 0.10
7 0.15 990 177 813 149 842 5.26 1.00

689.02
7

0.00
Degrees of Freedom =

Prob(Chi-Sq>Critical Val)=

Observed Expected ChiSq Contrib

Chi-Square  Statistic=

∑
=
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(Bars denote 95% confidence interval around grade PD; dots are actual realized 
default rates for each grade.)

Example
The Chi-Square Test for RMH Bank’s PD Estimates

Total
689.0

6.3

0.9540.0

128.38.21.34.0
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Be careful with these tests!

Default rates are very low for most grades. With such 
low default rates, need a very large number of loans to 
achieve desirable levels of statistical confidence.

The tests assume that defaults in each grade are 
independent, and they almost certainly are not.

The tests assume that the “true” default rate is 
constant, and it almost certainly is not.

The practical implication is that the true 95% 
confidence bands for the PD estimates are 
probably wider than derived.
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Testing Global Accuracy
Other Related Tests

The Chi-Squared test’s sensitivity to how observations are 
distributed across the k grades has led to the development of 
some alternative tests:

The Hosmer-Lemeshow Test (Hosmer and Lemeshow
[2000])

A Chi-Square test where the data is regrouped into deciles 
rather than k grades

The Modified HL Test (Phibbs, et. al. [1991])

A Chi-Square test where deciles are defined in terms of the 
expected number of outcomes, rather than the number of 
observations in the grades
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Measuring Accuracy and Precision
Mean-Squared Error

Errors are made whenever decisions about an unknown 
quantity, such as PD, are based upon sample information.

As we have seen, these errors will generally have two 
components:

some error may be due to bias or inaccuracy;

some error is due to random variance or imprecision arising 
from use of a sample

A statistical measure that reflects both the accuracy and 
precision of an estimator is the Mean Squared Error of the 
Estimate (MSE):

MSE = Variance of the Estimate + Squared Bias of the Estimate
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Example
Using MSE to Evaluate PD Rating System Granularity (Kiefer and 
Larson [2004])

Consider two different groups of obligors, with respective true 
(but unobservable) default rates given by θ1=.04 and and 
θ2=.06. We assume that defaults are uncorrelated.

We are interested in the question of whether these two 
groups should or should not be combined for the 
purposes of estimating default.

If we have n1=500 and n2=250 obligors from each group, we 
can we compute the sample default rates p1 and p2 to use as 
estimators of θ1 and θ2.

Alternately, we could pool the sample data and 
estimate a single combined-group default rate, which 
we will call pc.
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Example: Using MSE
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Example: Using MSE
Bias Estim ator Expected 

Value 

Θ1 
=.04  

 

Θ2 
=.06  

Variance M SE 
= Variance+  

Bias2 

p1 
 

(n1=500) 

Θ1 
 
 

0 n.a. Var(p1) 
=θ1(1-θ1)/n1 

= .0000768 

.0000768 

p2 
 
 

(n2=250) 

Θ2 n.a. 0 Var(p2) 
=θ2(1-θ2)/n2 

= .0002256 
 

.0002256 

Portfo lio  
w ith tw o 

rating 
buckets 

Θ1 and 
Θ2 

0 0 Var(p1)+Var(p2) 
= .0003024 

.0003024  

pc 
(Portfolio  
w ith one 

rating 
bucket) 

 

(n1θ1+ 
n2θ2) 

/(n1+n2) 

n2(θ2-θ1) 
/(n1+n2) 
= .0067  

 

-n1(θ2-θ1) 
/(n1+n2) 
= - .0133  

 

Var(pc) 
= (n1θ1(1-θ1)+  

n2θ2(1- θ2)) 
/(n1+n2)2 

=  .0000592  
 
 

.0003406  
 

 
Since MSE from using the single combined estimate, pc, is greater than the 
overall MSE from estimating p1and p2 separately, the granularity is warranted 
from a perspective of minimizing errors in default rate estimation.
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Conclusions

Models can be built to different objectives
Accuracy and precision are often required by 
the business use of a model
Models should be evaluated in how they meet 
both design and use objectives
Discriminatory power and forecast 
performance should both be assessed at the 
time of development and on a continuing basis 
subsequent to implementation.
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