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ABSTRACT

This paper presents a technique for the adaptive refinement of tetrahedral meshes. What makes it unique is that no
neighbor information is required for the refined mesh to be compatible everywhere. Refinement consists of inserting
new vertices at edge midpoints until some tolerance (geometric or otherwise) is met. For a tetrahedron, the six edges
present 26 = 64 possible subdivision combinations. The challenge is to triangulate the new vertices (i.e., the original
vertices plus some subset of the edge midpoints) in a way that neighboring tetrahedra always generate the same
triangles on their shared boundary. A geometric solution based on geometric properties (edge lengths) was developed
previously, but did not account for geometric degeneracies (edges of equal length). This paper provides a solution
that works in all cases.
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1. INTRODUCTION

Finite element techniques that use higher order (i.e.,
nonlinear) polynomial maps, Φ : R −→ F and Ξ :
R −→ X, from some parametric space, R, into the
model’s geometric space, X, and solution space, F , of
some set of differential equations are becoming more
common. Although visualization techniques that use
Φ and Ξ directly are under development, being able
to take advantage of the huge number of techniques
aimed at linear maps is highly desirable. We propose
to do this through an adaptive simplicial tessellation of
the parameter space, R, into regions where Φ and/or
Ξ are approximately linear. Specifically, this paper
describes a subdivision scheme based on error metrics
evaluated at edge midpoints of some initial (crude)
tessellation, as shown in Figure 1.

This is not the first time adaptive tessellation using
edge-based subdivision has been considered; however,
other methods either

• work on triangles but not tetrahedra [1, 2],

• produce incompatible mesh elements [3], or

• require neighborhood information and storage
space to hash shared output geometry[3, 4].

Since we require a volumetric model for visualizations
such as volume rendering, adaptive triangulations that
only produce simplicial complexes in lower dimensions
are inadequate. Collections of simplices that do not
meet the requirements of a simplicial complex are in-
sufficient since algorithms such as isosurfacing will pro-
duce inconsistent output. Hashing output geometry so
that simplices share common vertices, edges, and faces
can require storage on the order of the size of the out-
put and, more importantly, can require communica-
tion between processes when tessellation is performed
in parallel. In cases where higher order finite elements
are being rendered for visualization and not analyzed,
the subdivided simplices are not ever stored – they are
sent to a graphics card for immediate rendering via
OpenGL. Because OpenGL does not require output
geometry to share vertices, it is a waste of resources



to spend time insuring the subdivided simplices are
in a shared form. This is especially true for view-
dependent rendering techniques, where a tessellation
of the mesh is produced for each frame rendered.

initial tessellation final tessellation
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Figure 1: Given some initial tessellation of a finite ele-
ment’s parameter space, we subdivide edges until some
error metric is met and we are left with a new, refined
simplicial complex.

1.1 Streaming Subdivision

Given an initial tessellation of an element’s parametric
domain, we apply an adaptive triangulation technique
similar to [2], [1], and [3]. The main difference be-
tween our technique and the first two is that we handle
tetrahedra as well as triangles and currently use chord
error at the parametric midpoint of each edge rather
than the angle between normal vectors at each end-
point. Our approach is a direct extension of [3], but
insures compatibility in all conditions without neigh-
borhood information. As with the previous work, we
assume that the initial tessellation is fine enough that
no large changes in the error metric occur interior to
the simplices; the adaptive tessellation is intended to
improve detail, not capture large changes.

The key design point of our implementation is that
there are two tasks performed by an edge-subdivision
based tessellation algorithm:

1. making a decision about whether an edge should
be subdivided, and

2. applying a template to produce new elements
based on which edges of an initial template re-
quire subdivision.

We split these two tasks into separate C++ classes
so that the same templates for subdivision could be
applied to many different subdivision decision algo-
rithms. The algorithms that decide whether edges re-
quire subdivision vary depending on

1. the interpolation algorithm used for the nonlinear
function,

2. the criteria used in the decision (geometric dis-
tance, scalar field nonlinearity),

3. the purpose of the overall task requiring a tessel-
lation.

Item 3 requires some further explanation; if the tessel-
lation is being produced simply for display purposes,
then a view-dependent subdivision may be performed.
This greatly reduces the amount of work required,
since no function evaluation need take place if both
edge endpoints are safely outside the viewing frus-
tum1. On the other hand, if the tessellation is pro-
duced as input to some further post-processing step,
then no regions may be excluded from the calculation.

The templates that produce new simplices given a
starting simplex σ and the edges of σ requiring subdi-
visions deserve some discussion. The problem of tri-
angulating the new set of points (i.e., the original ver-
tices of σ and the mid-edge nodes being introduced
by the subdivision) is not unique – there may be 1 or
many possible triangulations of the point set. With
a streaming algorithm, we must guarantee that each
simplex may be processed without any information on
its neighbors. Since we want to maintain a compati-
ble tessellation, this means that any simplices that are
shared as a boundary between two higher-dimensional
simplices must be tessellated identically when all the
higher-dimensional simplices are divided, even where
there are several distinct tessellations. For example,
any triangle, τ , shared by two tetrahedra, σ0 and σ1,
must be tessellated the same way when σ0 and σ1 are
subdivided.

[3] developed a method for deciding on a subdivi-
sion template so that adjacent simplices produced
compatibly-tessellated boundaries. Their technique
chooses triangulations that have the best aspect ra-
tios. Unfortunately, they offer no solution when sev-
eral tessellations exist and have identical aspect ratios.
The next two sections review and extend [3] to handle
even these cases.

1.2 Unambiguous Cases

We use the same nomenclature as [3], so this section
is just a brief review of their results. When a tetra-
hedron, σ, is to be subdivided, we are given a list of
edges of σ that will be divided. First, the vertices of σ
are permuted into σ′, a positive arrangement of σ that
matches one of 12 cases ([3] present 11 cases but we
divide their case 3c into 3c and 3d so that σ′ will al-
ways be a positive arrangement of σ). Cases are called
out with

• the number of edges of a tetrahedron, σ, that
should be subdivided, and

• a letter representing a unique configuration of
those edges relative to each other.

Then, a collection of points, P , is created that includes
σ′ and the midpoints of edges in σ′ that must be sub-

1We assume that some safety margin is included so that
edges which curve into the frustum are not excluded.



divided. This set of points, P , must be tessellated in
a consistent manner so that simplices adjacent to σ
will be compatible at the boundary they share with σ.
Let’s say we can produce such a tessellation. Call it
σ′′. For each of the 12 cases, there will be edges in σ′′

that are constrained to be present and possibly some
edges of σ′′ that are not constrained. [3] use geometry
– the length of the edges of σ′ – to decide how to con-
nect points in P to form σ′′. They choose edges for σ′′

that produce tetrahedra with the best possible aspect
ratio given P . Each case with unconstrained edges in
σ′′ will have several variants based on which edges of
σ′ are longer than the others (relative to which edges
must be subdivided). Figure 2 shows all 6 variants for
Case 3a.

Unfortunately, when edges of σ′ are of equal length,
the edge length criterion gives no answer for how σ′′

should be obtained. This leaves several possibilities
for σ′′ and it is ambiguous which one we should use so
that σ′′ remains compatible with its neighbors.
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Figure 2: Subdivision of unambiguous case 3a.

2. AMBIGUOUS CASES

Ambiguous cases occur when a face can be split in two
different ways, i.e., whenever at least one face has ex-

actly two edges of equal length that must be split. A
simple enumeration shows that all such situations can
be summarized by the means of reference configura-
tions 2a, 3a, 3c, 4a, 4b or 5 (see Figure 3).
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Figure 3: Potentially ambiguous configurations.

To resolve the ambiguity when edges of σ′ are of equal
length, we propose adding a new point, a, to each
face with an ambiguous triangulation. More precisely,
the face must be split unequivocally into a triangle
and an isosceles trapezoid, the latter having two pos-
sible triangular subdvisions, both of them being ac-
ceptable according to the subdivision algorithm (cf.
Figure 4(a)). By placing a on the angle bisector of the
vertex opposite the base of the trapezoid, as shown in
Figure 4(b), there exists a triangulation that is sym-
metric about the angle bisector and will be identical
for σ and any tetrahedron that shares the face with σ.
The exact placement of a on the angle bisector for the
best resulting tetrahedra is unclear. Hence, two ques-
tions must now be addressed: where to put the point,
and, once the point has been placed, how to decom-
pose the tetrahedron. We are now proposing answers
to both questions.

2.1 The Point and Where to Put It

Because the point placement method must be designed
such that the same point is found when applied from
either of the elements sharing the ambiguous face, the
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Figure 4: Ambiguous isosceles face refinement: (a) two
different subdivisions are possible, and (b) unambiguous
subdivision thanks to a point insertion.

point must necessarily be inserted on the orthogonal
bisector of the nonsplit edge (which is also the median
and the angle bisector, because the face is isosceles),
as illustrated in Figure 4(b). Therefore, topologically
speaking, the point may be placed anywhere on the
open segment of this edge bisector contained in the
interior of the iscosceles trapezoid. However, geomet-
rically speaking, not all placements are the same, since
triangle quality will vary, which will in turn have an ef-
fect on tetrahedral quality [5]. We will measure quality
using the normalized edge to inradius triangle quality
measure ζ, defined as follows:

ζt =
p

3
√

3r
,

where p and r respectively denote the semiperimeter
and the inradius of the triangle t to be evaluated.
Thanks to the normalization factor one always has
ζt ≥ 1, with equality if and only of the triangle is
equilateral. For the sake of our specific needs, we will
use the angle formulation derived in [6]:

ζ(α, β) =
(sinα+ sinβ + sin(α+ β))2

6
√

3 sinα sinβ sin(α+ β)
, (2.1)

where α and β denote any two (nonoriented) angles of
the triangle.

Remark 2.1. In fact, ζ is the symmetrized aspect-
ratio, in the sense that the aspect-ratio is generally
defined as the quotient of the largest edge length to the
inradius (cf. [5]). However, the latter lacks symmetry,
and therefore lacks a smooth behavior around its op-
timum and is less convenient to handle algebraically.
Replacing the largest edge length with the semiperime-
ter (rather than the perimeter for more convenient al-
gebraic formulas) solves both issues. See [6] for more
details on this matter.

Without loss of generality, we now assume that the
ambiguous face is 012, isosceles at vertex 2, with 12
and 02 having to be split with their respective mid-
points 5 and 6; all other ambiguous cases can be
deduced from this one by vertex permutation. The
(fixed) nonoriented angle 0̂12 = 1̂02 is denoted α. We
evaluate the overall quality of the subdivision by sim-
ply taking the arithmetic mean of the ζ qualities of the
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Figure 5: Point placement in the isotrapezoid case (in
the case of face 012 with |02| = |12|).

triangles subdviding the isotrapezoid, that therefore
depends solely on the additional point a be inserted,
as follows:

ζ(a) =
ζa06 + ζa65 + ζa51 + ζa10

4
. (2.2)

Since a must be inserted on the orthogonal bisector of
the nonsplit edge and in the interior of the isosceles
triangle, it is uniquely determined by the knowledge
of φ = 0̂1a = 1̂0a; for the sake of simplicity, we set
ψ = 5̂6a = 6̂5a (see Figure 5). Denoting x the distance
between edge 01 and point a, elementary trigonometric
considerations show that 0 < x < 1

2
sinα = xmax. It

thus immediately follows that

φ = arctan
x

cosα
, (2.3)

ψ = arctan
2(xmax − x)

cosα
, (2.4)

and 2 tanφ+ tanψ = tanα. We can now express ζ in
angular terms, by combining (2.1) with (2.2):

ζ(φ, ψ) =
ζ(φ, φ) + ζ(ψ,ψ) + 2ζ(α− φ, φ+ ψ)

4
.

Thanks to (2.3) and (2.4), ζ(φ, ψ) can thus be
uniquely determined by the knowledge of x (α being
fixed). We therefore provide numerical plots of ζ for
various values of α in Figure 6; the abscissa displays

x
xmax

rather than x since xmax, and thus the range
of x, varies with α, and it is more useful to consider
the relative position of a along the bissector than its
absolute placement.

Figure 6 clearly shows that the optimal ζ-position of a
varies with α; in particular, none of the intuitively best
placements (either 1

2
or 2

3
, the latter corresponding to

the diagonals intersection, as easily shown by Thales’
Theorem) turns out to be optimal in general.

Example 2.2. With α = π
6
, the average ζ-quality

is ca. 3.02896 and 4.07374 with respective relative
positions of 1

2
and 2

3
, while we can attain 2.95994 with

x
xmax

= 16
3

.
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Figure 6: Average ζ-quality of the decomposition de-
pending on the point placement, for various values of α.

However, establishing an anlytical optimum, if feasi-
ble, seems to be at least extremely complicated. For
the time being, and since this seems to provide an
approximation that is “good enough”, we choose to
insert a at 1

2
xmax = 1

4
sinα.

Remark 2.3. It shall be acknowledged that this choice
for a is not of the diagonals intersection; in particular,
the subdivided triangles do not have colinear edges.

We do not discuss here the influence over the tetra-
hedral quality, since it depends on a fourth vertex;
however, as explained in [5], good face quality helps
to achieve good element quality.

2.2 Element Subdivision

We will now categorize and resolve all the ambiguities
for each ambiguous case. Where a face needs an ad-
ditional point, we use a letter to reference that point.
We use the letter a, b, c, or d for the point on face 012,
031, 132, or 023, respectively. Note that the position of
this point depends on which edges of that face are sub-
divided, but this is always unequivocal since at most
one additional point per face is required. Each sub-
category is called out with a Greek letter appended to
the index and letter of the ambiguous case from which
it derives.

Case 2a Case 2a becomes equivocal when |01| =
|12|, with the ambiguous face 012 that requires a point
insertion to remove the ambiguity. By inserting a new
vertex, we produce a subdivision of the triangle that
is symmetric (cf. Figure 12(a)).

Case 3a Edges to be split are 01, 02 and 03, and
therefore ambiguities arise if and only if at least two of
them have the same lengths (see Figure 7). If exactly
two of these edges have same length, then the third
one might be either shorter or longer. Hence, 1 +(
2
3

)
× 2 = 7 ambiguous configurations may arise. But,

up to a vertex permutation, those can be summarized
with only three cases: |01| = |02| > |03| (case 3aα),
|01| = |02| < |03| (case 3aβ), and |01| = |02| = |03|
(case 3aγ). ����
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Figure 7: Ambiguous configurations of case 3a.

Case 3c As shown in Figure 8, edges to be split
are 01, 12 and 03, whence only faces 012 and 031
can have equivocal decompositions. One possibility
is that exactly one face decomposition is ambiguous,
which means that either |01| = |12| and |12| 6= |03|, or
|12| = |03| and |01| 6= |12|. Depending on whether 6=
is indeed < or >, these 2 × 2 = 4 configurations are
represented, up to vertex permutation, by case 3cα
(|01| = |12| > |03|) and 3cβ (|01| = |12| < |03|). The
other possibility is that both face decompositions are
ambiguous, i.e. |01| = |12| = |03| (case 3cγ).

Case 4a Three edge midpoints belong to the same
face, represented here as 023, that is therefore neces-
sarily unambiguous. The remaining split edge, 13, is
shared by faces 013 and 123; each of these faces also
has another edge midpoint, so both may be ambigu-
ous. The remaining face, 012, has a unique edge mid-
point and is thus unambiguously triangulated. What
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Figure 8: Ambiguous configurations of case 3c.

matters here are thus the lengths of 03 and 23 com-
pared to 13, since they decide the fate of the poten-
tially ambiguous faces: |13| may be equal to either
one or two of |03| and |23|, which means respectively
one or two ambiguous faces. In other words, there are
2 × 2 + 1 = 5 ambiguous configurations, that can be
represented, up to a vertex permutation, by either 4aα
(|03| = |13| > |23|), 4aβ (|03| = |13| < |23|), or 4aγ
(|03| = |13| = |23|), see Figure 9.
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Figure 9: Ambiguous configurations of case 4a.

Case 4b This case, illustrated in Figure 10, is by
far the most complex one: four edge midpoints dis-
tributed such that every face contains exactly two of
them. Indeed, the distribution of midpoints along a
“diametral” path around the tetrahedron allows each
face to be ambiguous, and most of such ambiguities

may be further refined in subcases, depending on the
configuration of unambiguous faces. Again, grouping
of topologically equivalent cases may be done, depend-
ing on the number, and respective positions, of am-
biguous faces. First, it is interesting to notice that
the fate of the faces is solely determined by |02|, |12|,
|03| and |13|, the two other edges playing no role here.
It is also straightforward to see that one cannot have
exactly three ambiguous faces, since having three am-
biguous faces means that three distinct pairs of the
split edges have the same length, and thus by tran-
sitivity that all of these edges have the same length;
in other words, four faces are ambiguous. Face 012
will be used as the ambiguous face to represent the
class of all configurations with a unique ambiguity; in
this case, |02| = |12| and several possibilities are left
to the other faces to be split, namely 023, 031 and
132, depending on the values of |03| and |13| relative
to |02| = |12|. Each of these subcases can be deduced,
up to vertex permutation, by either 4bα (|02| = |12| <
|13| < |03|), or 4bβ (|02| = |12| > |13| > |03|), or 4bγ
(|03| < |02| = |12| < |13|). If exactly two faces are
ambiguous, then they are either opposed or adjacent.
The former case has a unique topological representa-
tion, 4bδ (|02| = |12| < |03| = |13|), and all actual
configurations can be deduced thereof, thanks to a
vertex permutation. The latter case has a remaining
degree of freedom, in the sense that three of the split
edges have the same length, and the fourth one can
be either shorter or longer; therefore, two configura-
tions will represent all possible subcases: 4bε (|02| =
|12| = |03| < |13|), and 4bζ (|02| = |12| = |03| > |13|).
Finally, the unique case with four ambiguous faces is
called 4bη (|02| = |12| = |03| = |13|).

Case 5 All edges but 01 must be split, and thus only
faces 012 and 031 can lead to ambiguities, while faces
132 and 023 are decomposed each into 4 unambiguous
subfaces (see Figure 3). Therefore, only 3 ambiguous
configurations are possible, depending on whether one
(two cases, represented up to a face permutation by
configuration 5α: |02| = |12| and |03| > |13|), or two
(one configuration, 5β: |02| = |12| and |03| = |13|)
faces are ambiguous (see Figure 11).

As introduced in 2.1, we proposed lifting the above
ambiguities by the means of point(s) insertion(s) in
the interior of the ambiguous faces. Designing com-
patible tetrahedral subdivisions for each case is very
lengthy and sometimes complex but, labor omnia vicit
improbus, we have gone through this process. Because
of format requirement, we do not detail the actual
proofs that these decompositions form simplicial con-
forming meshes of the original element, but a summary
is provided in Table 3. In addition, Figures 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
and 30 provide the reader with an intuitive justifica-
tion.
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Figure 10: Ambiguous configurations of case 4b.

Remark 2.4. The decompositions we propose seem
to be the most natural ones, displaying decent ele-
ments qualities (at least when the initial tetrahedron
so does).

3. CONCLUSION

We have presented a new scheme for refining tetra-
hedral meshes that does not require neighborhood in-
formation. This makes it viable for streaming large
datasets and for parallel processing, where commu-
nication would be required to process elements on
boundaries between processes.

One property of our proposed technique is that, of
the 4 triangles produced by tessellating the isosceles
trapezoid, 2 of them will be isosceles triangles. This
means that if further subdivisions are required on the
two equal-length edges of either isosceles triangle, we
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Figure 11: Ambiguous configurations of case 5.

will again have an ambiguous case. This is undesir-
able since detecting the ambiguity and placing point a
is slightly more work than handling an unambiguous
case.

Although we have studied the quality of the triangles
on tetrahedra produced by ambiguous cases, we have
not studied the overall quality of the resulting tetrahe-
dra. This, along with a characterization of the number
of tetrahedra required over the unambiguous cases is
future work.

References

[1] Velho L. “Simple and Efficient Polygonization
of Implicit Surfaces.” Journal of Graphics Tools,
vol. 1, no. 2, 5–24, 1996

[2] Chung A.J., Field A.J. “A Simple Recursive Tes-
sellator for Adaptive Surface Triangulation.” Jour-
nal of Graphics Tools, vol. 5, no. 3, 2000

[3] Ruprecht D., Müller H. “A Scheme for Edge-based
Adaptive Tetrahedron Subdivision.” H.C. Hege,
K. Polthier, editors, Mathematical Visualization,
pp. 61–70. Springer Verlag, Heidelberg, 1998

[4] Oliker L., Biswas R., Gabow H.N. “Parallel Tetra-
hedral Mesh Adaptation with Dynamic Load Bal-
ancing.” Parallel Computing Journal, Special Issue
on Graph Partitioning, pp. 1583–1608, 2000

[5] Frey P.J., George P.L. Mesh Generation. Hermes
Science Publishing, Oxford & Paris, 2000
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APPENDIX: SUBDIVISIONS OF AMBIGUOUS CASES

Summary

Table 1: Subdivisions of ambiguous cases

Case Ambiguity Tetrahedra

2a |01| = |12| 04a3 0a23 4153 45a3 a523

3aα |01| = |02| > |03| 0467 4367 a123 a263 a643 a413

3aβ |01| = |02| < |03| 0467 1327 a127 a267 a647 a417

3aγ |01| = |02| = |03| 0467 26ad 37db 41ab b6a4 b6da
b67d b647 2abd 1ab2 2b3d 321b

3cα |01| = |12| > |03| 4153 a047 a207 a743 a273 a523 a453

3cβ |01| = |12| < |03| 7153 7523 a047 a207 a527 a457 1547

3cγ |01| = |12| = |03| 415b b153 a047 a207 a523
a273 a74b a7b3 a45b ab53

4aα |03| = |13| > |23| 7893 670b 601b 6978 67b8 6b18 1268 2689

4aβ |03| = |13| < |23| 7893 670b 601b 6978 67b8 6b18 1269 1689

4aγ |03| = |13| = |23| 7893 670b 601b 6978 67b8
6b18 612c 629c 698c 681c

4bα |02| = |12| < |13| < |03| 7823 a607 a158 a017 a718
67a8 6a58 6278 6528

4bβ |02| = |12| > |13| > |03| 6523 a607 a158 a018 a708
67a8 6a58 6378 6538

4bγ |03| < |02| = |12| < |13| 6238 a607 a158 a018 a708
67a8 6a58 6378 6528

4bδ |02| = |12| < |03| = |13| 7823 a607 a158 a01b ab18 a0b7
a7b8 67a8 6a58 6278 6528

4bε |02| = |12| = |03| < |13| a607 a158 a018 a708 d625 d378
d238 d285 67a8 6a58 6d78 65d8

4bζ |02| = |12| = |03| > |13| a607 a158 a017 a718 d625 d378
d235 d385 67a8 6a58 6d78 65d8

4bη |02| = |12| = |03| = |13| a607 a158 a01b ab18 a0b7 a7b8 d625 d378
d23c d2c5 dc38 d5c8 67a8 6a58 65d8 6d78

5α |02| = |12|, |03| > |13| 6529 7893 a607 a158 a017
a718 a859 a789 a679 a569

5β |02| = |12|, |03| = |13| 6529 7893 a607 a158 a01b ab18
a0b7 a7b8 a859 a789 a679 a569
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Figure 12: Ambiguous case 2a (|01| = |12|): (12(a)) constrained configuration, and (12(b)) complete subdivision.����
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Figure 13: Ambiguous case 3aα (|01| = |02| > |03|): (13(a)) constrained configuration, (13(b)) after removal of 0467,
(13(c)) after removal of 4367, and (13(d)) complete subdivision.����
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Figure 14: Ambiguous case 3aβ (|01| = |02| < |03|): (14(a)) constrained configuration, (14(b)) after removal of 0467,
(14(c)) after removal of a267, and (14(d)) complete subdivision.����
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Figure 15: Ambiguous case 3aγ (|01| = |02| = |03|): (15(a)) constrained configuration, (15(b)) after removal of 0467,
(15(c)) after removal of 62d74a, and (15(d)) complete subdivision.
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Figure 16: Ambiguous case 3cα (|01| = |12| > |03|): (16(a)) constrained configuration, (16(b)) after removal of 4153,
(16(c)) after removal of a047 and a207, and (16(d)) complete subdivision.
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Figure 17: Ambiguous case 3cβ (|01| = |12| < |03|): (17(a)) constrained configuration, (17(b)) after removal of 7153
and 7523, (17(c)) after removal of a047 and a207, and (17(d)) complete subdivision.
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Figure 18: Ambiguous case 3cγ (|01| = |12| = |03|): (18(a)) constrained configuration, (18(b)) after removal of 415b
and b153, (18(c)) after removal of a047 and a207, and (18(d)) complete subdivision.
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Figure 19: Ambiguous case 4aα (|03| = |13| > |23|): (19(a)) constrained configuration, (19(b)) after removal of 7893,
670b and 601b, (19(c)) after removal of 6978, 67b8 and 6b18, and (19(d)) complete subdivision.
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Figure 20: Ambiguous case 4aβ (|03| = |13| < |23|): (20(a)) constrained configuration, (20(b)) after removal of 7893,
670b and 601b, (20(c)) after removal of 6978, 67b8 and 6b18, and (20(d)) complete subdivision.
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Figure 21: Ambiguous case 4aγ (|03| = |13| = |23|): (21(a)) constrained configuration, (21(b)) after removal of 7893,
670b and 601b, (21(c)) after removal of 6978, 67b8 and 6b18, and (21(d)) complete subdivision.
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Figure 22: Ambiguous case 4bα (|02| = |12| < |13| < |03|): (22(a)) constrained configuration, (22(b)) after removal of
7823, (22(c)) after removal of a607, a158, a017 and a718, and (22(d)) complete subdivision.

�������
� ����

����

��

	�		�	




0

1

3

2

5

7

a

8

6

(a)

�������
�

��

�������
�

0

1

3

5

7

a

8

6

(b)

3

5

7

a

8

6

(c)

�������
� ����

����

��

	�		�	




0

1

3

2

5

7

a

8

6

(d)

Figure 23: Ambiguous case 4bβ (|02| = |12| > |13| > |03|): (23(a)) constrained configuration, (23(b)) after removal of
6523, (23(c)) after removal of a607, a158, a018 and a708, and (23(d)) complete subdivision.
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Figure 24: Ambiguous case 4bγ (|03| < |02| = |12| < |13|): (24(a)) constrained configuration, (24(b)) after removal of
a607, a158, a018 and a708, (24(c)) after removal of 67a8, 6a58 and 6378, and (24(d)) complete subdivision.
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Figure 25: Ambiguous case 4bδ (|02| = |12| < |03| = |13|): (25(a)) constrained configuration, (25(b)) after removal of
7823, (25(c)) after removal of a607, a158, a01b, ab18, a0b7 and a7b8, and (25(d)) complete subdivision.
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Figure 26: Ambiguous case 4bε (|02| = |12| = |03| < |13|): (26(a)) constrained configuration, (26(b)) after removal of
a607, a158, a018 and a708, (26(c)) after removal of d625, d378, d238 and d285, and (26(d)) complete subdivision.
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Figure 27: Ambiguous case 4bζ (|02| = |12| = |03| > |13|): (27(a)) constrained configuration, (27(b)) after removal of
a607, a158, a017 and a718, (27(c)) after removal of d625, d378, d235 and d385, and (27(d)) complete subdivision.
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Figure 28: Ambiguous case 4bη (|02| = |12| = |03| = |13|): (28(a)) constrained configuration, (28(b)) after removal of
a607, a158, a01b, ab18, a0b7 and a7b8, (28(c)) after removal of d625, d378, d23c, d2c5, dc38 and d5c8, and (28(d))
complete subdivision.
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Figure 29: Ambiguous case 5α (|02| = |12|, |03| > |13|): (29(a)) constrained configuration, (29(b)) after removal of 6529
and 7893, (29(c)) after removal of a607, a158, a017 and a718, and (29(d)) complete subdivision.
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Figure 30: Ambiguous case 5β (|02| = |12|, |03| = |13|): (30(a)) constrained configuration, (30(b)) after removal of 6529
and 7893, (30(c)) after removal of a607, a158, a01b, ab18, a0b7 and a7b8, and2 (30(d)) complete subdivision.
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