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Abstract

Given a planar straight-line graph, we seek a
covering triangulation whose minimum angle is
as large as possible. A covering triangulation
is a Steiner triangulation with the following
restriction: No Steiner vertices may be added
on an input edge. We give an explicit upper
bound on the largest possible minimum angle
in any covering triangulation of a given input.
This upper bound depends only on local ge-
ometric features of the input. We then show
that our covering triangulation has minimum
angle at least a constant factor times this up-
per bound.

This is the first known algorithm for gener-
ating a covering triangulation with a provable
bound on triangle shape. Covering triangula-
tions can be used to triangulate intersecting re-
gions independently, and so solve several sub-
problems of mesh generation.

1 Introduction

1.1 Covering triangulations

We propose a new class of triangulations called
covering triangulations. We define a covering
triangulation of an input planar straight line
graph as a triangular graph in which the ver-
tex set contains the input vertex set, and the
edge set contains the input edge set. If the
input is a polygon, then another way to view
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covering triangulations is that one is allowed
Steiner points in the polygon’s interior, but
not on its boundary. Traditionally, most tri-
angulation algorithms generate either a con-
strained triangulation or a Steiner triangula-
tion. A constrained triangulation has a vertex
set that 1s exactly the vertex set of the input,
and an edge set that contains the edge set of
the input. A Steiner triangulation has a ver-
tex set that contains the vertex set of the in-
put, and every edge of the input i1s the union
of some edges of the triangulation.

From these definitions, we see that a con-
strained triangulation is a restricted type of
covering triangulation, and a covering trian-
gulation is a restricted type of Steiner triangu-
lation.

1.2 Previous results

When seeking a constrained triangulation of
a two dimensional input, one typically desires
a triangulation that exactly optimizes some
measure. The (constrained) Delaunay trian-
gulation optimizes several measures; for exam-
ple it maximizes the minimum angle (Lawson
[1977]). Many algorithms exist for finding a
Delaunay triangulation. The algorithms fol-
low several different approaches such as plane
sweep, edge flip, and incremental insertion.
These algorithms are summarized in Fortune
[1992], and Aurenhammer [1991] surveys the
history of the Delaunay triangulations. An in-
teresting observation is that like the present
work, the Delaunay triangulation can be de-
termined locally. In contrast a constrained tri-
angulation that minimizes the maximum an-
gle or maximizes the minimum height depends
on global features of the input geometry (see
Edelsbrunner, Tan, and Waupotitsch [1990]
and Bern, Edelsbrunner, Eppstein, Mitchell,



and Tan [1992]). However, Mitchell and Park
[1993] has now shown that a covering triangu-
lation whose maximum angle 1s approximately
as small as possible can be determined from
the local geometry. Bern [1993] has recently
shown that a covering tetrahedralization of a
three dimensional polytope can always be con-
structed, but provides no shape bounds (a con-
strained tetrahedralization need not exist; see
Schénhardt [1928]).

When seeking a Steiner triangulation, one
usually settles for a triangulation that is only
approximately optimal. This is because of
the difficulty in obtaining an exactly opti-
mal solution, and also because in many cases
the optimal triangulation has an infinite num-
ber of triangles. We have algorithms that
approximately maximize the minimum angle
in Chew[1989], Bern, Eppstein and Gilbert
[1990], and Rupert[1992]. Mitchell and Vava-
sis[1992] solves this problem in three dimen-
sions. Bern, Dobkin and Eppstein [1991]
presents an algorithm that maximizes the min-
imum height, and also algorithms that min-
imize the maximum angle. Bern and Epp-
stein [1992] summarizes much of the computa-
tional geometry literature relevant to Steiner
and constrained triangulations.

A complete version of this paper appears in

Mitchell [1993].

1.3 Application motivation

Triangulation of polyhedral regions is a funda-
mental geometric problem for numerical analy-
sis. Finite element methods require that com-
plicated input domains be discretized into a
mesh. A triangulation is a typical choice for a
mesh. Triangulations are also desired for other
applications as well, such as solid modeling,
functional interpolation, and computer graph-
ics.

For numerical stability in the finite element
method, it 1s necessary that the triangles of
the mesh have some bound on their shape
(Babuska and Aziz [1976]). We seek a trian-
gulation whose minimum angle is as large as
possible. This implicitly bounds the largest
angle.

The algorithm we present here may find ap-
plication in a number of mesh generation sub-
problems. By not adding Steiner points on
a polygon’s boundary, our algorithm allows
us to triangulate intersecting regions indepen-

dently. One application of this is in mesh re-
finement. That is, suppose a mesh exists for
a given graph, but after running a finite el-
ement method we discover that the mesh is
too coarse near a heat source. We may then
“erase” the mesh in a neighborhood of the heat
source. Then a finer mesh could be generated
strictly inside this neighborhood, and our al-
gorithm could be used to triangulate the gap
between the outer and inner mesh.

Another application 1s to allow standard
mesh generation algorithms to accept degen-
erate input, such as dangling edges with the
interior of the polygon on both sides. Such an
edge could be fattened to a hole of finite width,
and our algorithm used to triangulate the hole
after the exterior has been triangulated with
a standard mesh generator. Edges shared
by more than one region also arise when tri-
angulating the surface of a three dimensional
polytope. Such edges also arise in an octree
decomposition of a domain, where one wishes
to independently triangulate the two dimen-
sional facets of the intersection of octree boxes
with the input polyhedron (Mitchell and Vava-
sis [1992]).

In these examples, often one desires a cover-
ing triangulation with a constant bound on the
smallest angle. We show that this is impossible
for general input. However, we give an explicit
characterization of the minimum angle gener-
ated by our algorithm in terms of the input
geometry. Hence in the above examples, the
boundary of the input may be preprocessed
by adding vertices to long edges or “cutting
oft” sharp angles so that the desired bound is
achieved.

2 Bounding the largest an-
gle possible, A

An important feature of our algorithm is that
we give explicit bounds on the minimum angle
of our triangulation in terms of local geomet-
ric features of the input, namely edge lengths
and certain derived angles. This is useful in
the above examples where there is some flexi-
bility in designing the polygon. This feature is
in contrast with some of the constrained tri-
angulation literature: Edge-insertion can be
used to find a triangulation which minimizes
the maximum angle, but can that angle be de-
termined without generating the triangulation
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Figure 1: The maxmin angle constrained tri-
angulation (left) and covering triangulation

(right).

Figure 2: The optimal minimum angle for a
covering triangulation may be as bad as lin-
ear in the ratio of the length of an edge to its
closest interfering point.

itself? Our bounds on the minimum angle is a
non-obvious function of the local input geom-
etry. This contrasts with the Steiner triangu-
lation literature: Determining the maximum
minimum angle achievable is trivial, as it is an
angle between two faces of the input.

Constrained triangulations are inadequate
for the applications mentioned above. The
four point example of Figure 1 shows that for
a polygon the optimal minimum angle when
Steiner points are not allowed may be much
worse than the optimal minimum angle when
Steiner points are allowed on the interior.

A key question is what features of a general
planar straight-line graph P determine the op-
timal minimum angle A of a covering triangu-
lation. For Steiner triangulations, Chew[1989]
first noticed that the distance between an edge
and an interfering point, a point on a closed
face disjoint from the edge, determines how
small triangles must be in order to have aspect
ratio bounded by a constant. For a covering
triangulation, because we are not allowed to
add Steiner points on 9P, it may be impossi-
ble to make triangles as small as required to
have a constant bound on A, even when no
edges of the input intersect at a small angle.
For example see Figure 2.

Hence A should depend on the ratio of the
distance to an interfering point to the length
of an edge E. However, A is actually more
closely dependent on the angle that the in-
terfering point W makes with E at the closer
vertex V of E = VU. That is, if this angle,
LWV U, s large, it may be possible to triangu-
late with minimum angle much more than the
interfering point distance to edge length ratio.

\Y U
WF

Figure 3: The optimal minimum angle may
be much better than linear in the ratio of
the length of an edge to its closest interfering
point.

For an intuitive reason for why this is so,
consider Figure 3. The closest interfering point
to edge E is the vertex W of F'. Suppose an
adversary moves W towards V by shortening
F, which changes the interfering point distance
proportionately. To compensate we allow our-
selves to change the position of the Steiner
points. If the adversary halves the length of F,
we may change the lengths of the edges con-
taining V' according to a geometric series, so
that the resulting triangulation has minimum
angle about 271/1° times that of the original
triangulation. The “10” arises because there
are ten similar triangles with vertex V. If F
is made sufficiently short, then it will be ad-
vantageous to add more similar triangles with
vertex V, so that the minimum angle depends
logarithmically on L(F)/L(E), where L(E) de-
notes the length of F.

We may be more precise. Consider an edge
E = VU of P, and an interfering point W.
Suppose V is is the closer vertex of £ to W.
Let r be the ratio of the distance between
W and V to L(F), and assume r < 1. Let
w = LUVW. Then we define a spiral as the
polar curve p = L(FE)s?®, where s = r%, the
origin is at V| and the ¢ = 0 axis is aligned
with E. The spiral passes through U and W.
For example, the spiral for £,V and W passes
through the far vertices of the triangles con-
taining V' in Figure 3.

We define the corresponding optimal spiral
to be an approximately best covering triangu-
lation inside a spiral. The optimal spiral con-
sists of a sequence of similar triangles all con-
taining V. See Figure 3. The first and longest



edge is £. Each successive edge has length
a constant fraction (about e™!) of the previ-
ous edge, and the angle at V' of any triangle
is about max(—1/logs, 7/2). Hence in general
we have that an optimal spiral has minimum
angle

h(E, W) = O(w/max(1, —logr)).

Recall w = LZUVW and r = L(VW)/L(VU).

Note that special analysis 1s needed when r
is close to one. The above values are derived
from an optimization problem, using the fact
that the minimum angle of a triangle is ap-
proximately the product of its angle at V and
the ratio of the lengths of the edges containing
V. The constraints of the optimization prob-
lem are merely that the first triangle edge is
E, and the last edge is VIW. The solution to
the relaxed problem where the last edge is not
VW, but still no triangle contains ¥, can be
shown to be not much larger (recall T is closer
to V than U).

In the full paper (Mitchell [1993]) we show
that no covering triangulation of P can have
minimum angle much larger than that of any
optimal spiral. Hence an upper bound on A4 is
A’, the minimum of A(E, W) over all edges £
and points W of P. Our algorithm constructs
a triangulation with minimum angle at least a
constant factor times this upper bound A’, and
hence 1s within a constant factor of optimal.

3 The algorithm

The algorithm has three main steps. First we
triangulate around the edges of P. We han-
dle isolated vertices V' of P by a preprocess
that adds a short edge containing V' to P. We
also must bound a PSLG in order to have a
well defined region to triangulate, but may use
any means to accomplish this. For example,
we may add the convex hull edges (and some
Steiner points on them to avoid changing the
maximum angle possible) or introduce a suffi-
ciently large bounding box. We treat a PSLG
edge as two edges, one for each side, unless it
is on the boundary of the region to be triangu-
lated. For every edge F of P and each of the
vertices U and V of F| we find the spiral with
smallest shrinking rate s. For each such spiral
we raise s by a power of four, and decrease the
initial edge length by a factor of four. This
ensures that the spirals for different P vertices

Figure 4: How to weld a spiral (shaded top
left) to the spiral arising from the same input
vertex (shaded bottom left) and the same in-
put edge (shaded top right).

Figure 5: Triangulating between an R edge
(top) and a @ edge (bottom). We use the spac-
ing of Steiner points on the R edge to generate
a hierarchy of quadrilaterals similar to a bal-
anced quadtree.

are far apart (in terms of A’), but only de-
creases the minimum angle of the correspond-
ing optimal spiral by a constant factor. We
then carefully weld optimal spirals to form a
triangulation that completely covers the edges
of P: Where two optimal spirals arise from the
same input vertex V', we introduce an isosceles
triangle where the curves intersect. Where two
optimal spirals arise from the same input edge
E, we rotate the first edge (VB and UC) of
each optimal spiral by the angle of a triangle
(at V and U), then add edge BC and a diago-
nal (BU or C'V). See Figure 4. The edges we
added that do not touch P form the bound-
ary of an untriangulated polygon with holes
lying inside P.

We can prove that the polygon @ is well
shaped in two senses. First, all interior angles
of @ are at least 0.397. Second, somewhat sur-
prisingly, for any edge of ) the ratio between
the distance to the closest interfering point of
@ to the length of the edge i1s at least a con-
stant times A’.



Second we shrink @) to the polygon R, where
R closely resembles a half-sized copy of @ lying
inside ). We take care that R is well shaped in
the same sense as ). We triangulate R using a
maxmin angle Steiner triangulation algorithm.
We chose to use the two dimensional analog of
Mitchell and Vavasis[1992], but Bern, Eppstein
and Gilbert[1990] or Rupert[1992] would also
be acceptable. This introduces Steiner points
on the boundary of R, but there are provable
bounds on the number and spacing of Steiner
points added along a given edge of R in terms
of its length and closest interfering point dis-
tance.

Third we match R to @, that is we trian-
gulate the region between ) and R using the
edges of () as a guide. No new vertices on
the boundary of either @ or R are introduced
in this last step. See Figure 5. That @ is
well shaped, combined with the bounds on the
Steiner points on JR, show that the minimum
angle introduced in this step is within a con-
stant factor of A’.

The hardest task is not describing our algo-
rithm but proving its optimality. The proof is
a step-by-step argument that we never intro-
duce a triangle with an angle smaller than a
constant times A’.

4 Conclusions

If we use the medial axis to determine the in-
terfering point yielding the spiral with smallest
shrinking rate for each edge, then the running
time of the algorithm is O(ylogy + t). Here
v is the number of edges of the final trian-
gulation, and ¢ is the time taken to triangu-
late R. Using the two dimensional analog of
Mitchell and Vavasis[1992] to triangulate R, ¢
is no worse than O(vy%log+). We also note that
v is bounded by the number of edges used to
triangulate R, which is not optimal for the cov-
ering triangulation problem.

Is there an algorithm for generating a tri-
angulation that approximately maximizes the
minimum height? Mitchell and Park [1993] has
recently shown how to generate a covering tri-
angulation that approximately minimizes the
maximum angle, where like the present work
the optimal angle depends on a worst interfer-
ing point. However, the maxmin height possi-
ble in a covering triangulation appears to de-
pend on a collection of interfering points, and

hence its characterization is a more difficult
problem.

Is there an algorithm for generating cover-
ing triangulations of three dimensional poly-
topes that maximize the minimum angle be-
tween a facet and an edge? Bern [1993] has
shown how to generate a covering triangula-
tion of a three dimensional polytope (without
bounds on tetrahedron shape). The difficulty
in extending the present work to three dimen-
sions is that we must define an optimal spiral
at a vertex of possibly high edge degree. The
boundary of a three dimensional spiral may be
a complicated surface, and not a two parame-
ter curve as in two dimensions.
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