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Abstract

Given a planar straight�line graph� we seek a
covering triangulation whose minimumangle is
as large as possible� A covering triangulation
is a Steiner triangulation with the following
restriction� No Steiner vertices may be added
on an input edge� We give an explicit upper
bound on the largest possible minimum angle
in any covering triangulation of a given input�
This upper bound depends only on local ge�
ometric features of the input� We then show
that our covering triangulation has minimum
angle at least a constant factor times this up�
per bound�

This is the �rst known algorithm for gener�
ating a covering triangulation with a provable
bound on triangle shape� Covering triangula�
tions can be used to triangulate intersecting re�
gions independently� and so solve several sub�
problems of mesh generation�

� Introduction

��� Covering triangulations

We propose a new class of triangulations called
covering triangulations� We de�ne a covering
triangulation of an input planar straight line
graph as a triangular graph in which the ver�
tex set contains the input vertex set� and the
edge set contains the input edge set� If the
input is a polygon� then another way to view
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covering triangulations is that one is allowed
Steiner points in the polygon�s interior� but
not on its boundary� Traditionally� most tri�
angulation algorithms generate either a con�
strained triangulation or a Steiner triangula�
tion� A constrained triangulation has a vertex
set that is exactly the vertex set of the input�
and an edge set that contains the edge set of
the input� A Steiner triangulation has a ver�
tex set that contains the vertex set of the in�
put� and every edge of the input is the union
of some edges of the triangulation�

From these de�nitions� we see that a con�
strained triangulation is a restricted type of
covering triangulation� and a covering trian�
gulation is a restricted type of Steiner triangu�
lation�

��� Previous results

When seeking a constrained triangulation of
a two dimensional input� one typically desires
a triangulation that exactly optimizes some
measure� The �constrained� Delaunay trian�
gulation optimizes several measures� for exam�
ple it maximizes the minimum angle �Lawson
	
���
�� Many algorithms exist for �nding a
Delaunay triangulation� The algorithms fol�
low several di�erent approaches such as plane
sweep� edge �ip� and incremental insertion�
These algorithms are summarized in Fortune
	
���
� and Aurenhammer 	
��

 surveys the
history of the Delaunay triangulations� An in�
teresting observation is that like the present
work� the Delaunay triangulation can be de�
termined locally� In contrast a constrained tri�
angulation that minimizes the maximum an�
gle or maximizes the minimumheight depends
on global features of the input geometry �see
Edelsbrunner� Tan� and Waupotitsch 	
���

and Bern� Edelsbrunner� Eppstein� Mitchell�



and Tan 	
���
�� However� Mitchell and Park
	
���
 has now shown that a covering triangu�
lation whose maximumangle is approximately
as small as possible can be determined from
the local geometry� Bern 	
���
 has recently
shown that a covering tetrahedralization of a
three dimensional polytope can always be con�
structed� but provides no shape bounds �a con�
strained tetrahedralization need not exist� see
Sch�onhardt 	
���
��
When seeking a Steiner triangulation� one

usually settles for a triangulation that is only
approximately optimal� This is because of
the di�culty in obtaining an exactly opti�
mal solution� and also because in many cases
the optimal triangulation has an in�nite num�
ber of triangles� We have algorithms that
approximately maximize the minimum angle
in Chew	
���
� Bern� Eppstein and Gilbert
	
���
� and Rupert	
���
� Mitchell and Vava�
sis	
���
 solves this problem in three dimen�
sions� Bern� Dobkin and Eppstein 	
��


presents an algorithm that maximizes the min�
imum height� and also algorithms that min�
imize the maximum angle� Bern and Epp�
stein 	
���
 summarizes much of the computa�
tional geometry literature relevant to Steiner
and constrained triangulations�

A complete version of this paper appears in
Mitchell 	
���
�

��� Application motivation

Triangulation of polyhedral regions is a funda�
mental geometric problem for numerical analy�
sis� Finite element methods require that com�
plicated input domains be discretized into a
mesh� A triangulation is a typical choice for a
mesh� Triangulations are also desired for other
applications as well� such as solid modeling�
functional interpolation� and computer graph�
ics�

For numerical stability in the �nite element
method� it is necessary that the triangles of
the mesh have some bound on their shape
�Babu�ska and Aziz 	
���
�� We seek a trian�
gulation whose minimum angle is as large as
possible� This implicitly bounds the largest
angle�

The algorithm we present here may �nd ap�
plication in a number of mesh generation sub�
problems� By not adding Steiner points on
a polygon�s boundary� our algorithm allows
us to triangulate intersecting regions indepen�

dently� One application of this is in mesh re�
�nement� That is� suppose a mesh exists for
a given graph� but after running a �nite el�
ement method we discover that the mesh is
too coarse near a heat source� We may then
�erase� the mesh in a neighborhood of the heat
source� Then a �ner mesh could be generated
strictly inside this neighborhood� and our al�
gorithm could be used to triangulate the gap
between the outer and inner mesh�
Another application is to allow standard

mesh generation algorithms to accept degen�
erate input� such as dangling edges with the
interior of the polygon on both sides� Such an
edge could be fattened to a hole of �nite width�
and our algorithm used to triangulate the hole
after the exterior has been triangulated with
a standard mesh generator� Edges shared
by more than one region also arise when tri�
angulating the surface of a three dimensional
polytope� Such edges also arise in an octree
decomposition of a domain� where one wishes
to independently triangulate the two dimen�
sional facets of the intersection of octree boxes
with the input polyhedron �Mitchell and Vava�
sis 	
���
��
In these examples� often one desires a cover�

ing triangulation with a constant bound on the
smallest angle� We show that this is impossible
for general input� However� we give an explicit
characterization of the minimum angle gener�
ated by our algorithm in terms of the input
geometry� Hence in the above examples� the
boundary of the input may be preprocessed
by adding vertices to long edges or �cutting
o�� sharp angles so that the desired bound is
achieved�

� Bounding the largest an�

gle possible� A

An important feature of our algorithm is that
we give explicit bounds on the minimumangle
of our triangulation in terms of local geomet�
ric features of the input� namely edge lengths
and certain derived angles� This is useful in
the above examples where there is some �exi�
bility in designing the polygon� This feature is
in contrast with some of the constrained tri�
angulation literature� Edge�insertion can be
used to �nd a triangulation which minimizes
the maximum angle� but can that angle be de�
termined without generating the triangulation



Figure 
� The maxmin angle constrained tri�
angulation �left� and covering triangulation
�right��

Figure �� The optimal minimum angle for a
covering triangulation may be as bad as lin�
ear in the ratio of the length of an edge to its
closest interfering point�

itself� Our bounds on the minimum angle is a
non�obvious function of the local input geom�
etry� This contrasts with the Steiner triangu�
lation literature� Determining the maximum
minimum angle achievable is trivial� as it is an
angle between two faces of the input�

Constrained triangulations are inadequate
for the applications mentioned above� The
four point example of Figure 
 shows that for
a polygon the optimal minimum angle when
Steiner points are not allowed may be much
worse than the optimal minimum angle when
Steiner points are allowed on the interior�

A key question is what features of a general
planar straight�line graph P determine the op�
timal minimum angle A of a covering triangu�
lation� For Steiner triangulations� Chew	
���

�rst noticed that the distance between an edge
and an interfering point� a point on a closed
face disjoint from the edge� determines how
small triangles must be in order to have aspect
ratio bounded by a constant� For a covering
triangulation� because we are not allowed to
add Steiner points on �P � it may be impossi�
ble to make triangles as small as required to
have a constant bound on A� even when no
edges of the input intersect at a small angle�
For example see Figure ��

Hence A should depend on the ratio of the
distance to an interfering point to the length
of an edge E� However� A is actually more
closely dependent on the angle that the in�
terfering point W makes with E at the closer
vertex V of E � V U � That is� if this angle�
� WV U � is large� it may be possible to triangu�
late with minimum angle much more than the
interfering point distance to edge length ratio�

V

E

U
W

F

Figure �� The optimal minimum angle may
be much better than linear in the ratio of
the length of an edge to its closest interfering
point�

For an intuitive reason for why this is so�
consider Figure �� The closest interfering point
to edge E is the vertex W of F � Suppose an
adversary moves W towards V by shortening
F � which changes the interfering point distance
proportionately� To compensate we allow our�
selves to change the position of the Steiner
points� If the adversary halves the length of F �
we may change the lengths of the edges con�
taining V according to a geometric series� so
that the resulting triangulation has minimum
angle about ������ times that of the original
triangulation� The �
�� arises because there
are ten similar triangles with vertex V � If F
is made su�ciently short� then it will be ad�
vantageous to add more similar triangles with
vertex V � so that the minimum angle depends
logarithmically on L�F ��L�E�� where L�E� de�
notes the length of E�
We may be more precise� Consider an edge

E � V U of P � and an interfering point W �
Suppose V is is the closer vertex of E to W �
Let r be the ratio of the distance between
W and V to L�E�� and assume r � 
� Let
� � � UV W � Then we de�ne a spiral as the
polar curve � � L�E�s�� where s � r

�

� � the
origin is at V � and the � � � axis is aligned
with E� The spiral passes through U and W �
For example� the spiral for E� V and W passes
through the far vertices of the triangles con�
taining V in Figure ��
We de�ne the corresponding optimal spiral

to be an approximately best covering triangu�
lation inside a spiral� The optimal spiral con�
sists of a sequence of similar triangles all con�
taining V � See Figure �� The �rst and longest



edge is E� Each successive edge has length
a constant fraction �about e��� of the previ�
ous edge� and the angle at V of any triangle
is about max��
� log s� ����� Hence in general
we have that an optimal spiral has minimum
angle

h�E�W � � O���max�
�� log r���

Recall � � � UV W and r � L�V W ��L�V U ��
Note that special analysis is needed when r

is close to one� The above values are derived
from an optimization problem� using the fact
that the minimum angle of a triangle is ap�
proximately the product of its angle at V and
the ratio of the lengths of the edges containing
V � The constraints of the optimization prob�
lem are merely that the �rst triangle edge is
E� and the last edge is V W � The solution to
the relaxed problem where the last edge is not
VW � but still no triangle contains W � can be
shown to be not much larger �recallW is closer
to V than U ��
In the full paper �Mitchell 	
���
� we show

that no covering triangulation of P can have
minimum angle much larger than that of any
optimal spiral� Hence an upper bound on A is
A�� the minimum of h�E�W � over all edges E
and points W of P� Our algorithm constructs
a triangulation with minimum angle at least a
constant factor times this upper bound A�� and
hence is within a constant factor of optimal�

� The algorithm

The algorithm has three main steps� First we
triangulate around the edges of P � We han�
dle isolated vertices V of P by a preprocess
that adds a short edge containing V to P � We
also must bound a PSLG in order to have a
well de�ned region to triangulate� but may use
any means to accomplish this� For example�
we may add the convex hull edges �and some
Steiner points on them to avoid changing the
maximum angle possible� or introduce a su��
ciently large bounding box� We treat a PSLG
edge as two edges� one for each side� unless it
is on the boundary of the region to be triangu�
lated� For every edge E of P and each of the
vertices U and V of E� we �nd the spiral with
smallest shrinking rate s� For each such spiral
we raise s by a power of four� and decrease the
initial edge length by a factor of four� This
ensures that the spirals for di�erent P vertices

B

V U

C

Figure �� How to weld a spiral �shaded top
left� to the spiral arising from the same input
vertex �shaded bottom left� and the same in�
put edge �shaded top right��

Figure �� Triangulating between an R edge
�top� and a Q edge �bottom�� We use the spac�
ing of Steiner points on the R edge to generate
a hierarchy of quadrilaterals similar to a bal�
anced quadtree�

are far apart �in terms of A��� but only de�
creases the minimum angle of the correspond�
ing optimal spiral by a constant factor� We
then carefully weld optimal spirals to form a
triangulation that completely covers the edges
of P � Where two optimal spirals arise from the
same input vertex V � we introduce an isosceles
triangle where the curves intersect� Where two
optimal spirals arise from the same input edge
E� we rotate the �rst edge �V B and UC� of
each optimal spiral by the angle of a triangle
�at V and U �� then add edge BC and a diago�
nal �BU or CV �� See Figure �� The edges we
added that do not touch P form the bound�
ary of an untriangulated polygon with holes Q
lying inside P �

We can prove that the polygon Q is well
shaped in two senses� First� all interior angles
of Q are at least ������ Second� somewhat sur�
prisingly� for any edge of Q the ratio between
the distance to the closest interfering point of
Q to the length of the edge is at least a con�
stant times A��



Second we shrink Q to the polygon R� where
R closely resembles a half�sized copy ofQ lying
inside Q� We take care that R is well shaped in
the same sense as Q� We triangulate R using a
maxmin angle Steiner triangulation algorithm�
We chose to use the two dimensional analog of
Mitchell and Vavasis	
���
� but Bern� Eppstein
and Gilbert	
���
 or Rupert	
���
 would also
be acceptable� This introduces Steiner points
on the boundary of R� but there are provable
bounds on the number and spacing of Steiner
points added along a given edge of R in terms
of its length and closest interfering point dis�
tance�

Third we match R to Q� that is we trian�
gulate the region between Q and R using the
edges of Q as a guide� No new vertices on
the boundary of either Q or R are introduced
in this last step� See Figure �� That Q is
well shaped� combined with the bounds on the
Steiner points on �R� show that the minimum
angle introduced in this step is within a con�
stant factor of A��

The hardest task is not describing our algo�
rithm but proving its optimality� The proof is
a step�by�step argument that we never intro�
duce a triangle with an angle smaller than a
constant times A��

� Conclusions

If we use the medial axis to determine the in�
terfering point yielding the spiral with smallest
shrinking rate for each edge� then the running
time of the algorithm is O�� log � � t�� Here
� is the number of edges of the �nal trian�
gulation� and t is the time taken to triangu�
late R� Using the two dimensional analog of
Mitchell and Vavasis	
���
 to triangulate R� t
is no worse than O��� log ���We also note that
� is bounded by the number of edges used to
triangulateR� which is not optimal for the cov�
ering triangulation problem�

Is there an algorithm for generating a tri�
angulation that approximately maximizes the
minimumheight� Mitchell and Park 	
���
 has
recently shown how to generate a covering tri�
angulation that approximately minimizes the
maximum angle� where like the present work
the optimal angle depends on a worst interfer�
ing point� However� the maxmin height possi�
ble in a covering triangulation appears to de�
pend on a collection of interfering points� and

hence its characterization is a more di�cult
problem�
Is there an algorithm for generating cover�

ing triangulations of three dimensional poly�
topes that maximize the minimum angle be�
tween a facet and an edge� Bern 	
���
 has
shown how to generate a covering triangula�
tion of a three dimensional polytope �without
bounds on tetrahedron shape�� The di�culty
in extending the present work to three dimen�
sions is that we must de�ne an optimal spiral
at a vertex of possibly high edge degree� The
boundary of a three dimensional spiral may be
a complicated surface� and not a two parame�
ter curve as in two dimensions�
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