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Abstract

We show that any PSLG with v vertices can be tri-
angulated with no angle larger than T /8 by adding
O(v*logw) Steiner points in O(v*log?v) time. We
first triangulate the PSLG with an arbitrary con-
strained triangulation and then refine that triangula-
tion by adding additional vertices and edges. We fol-
low a lazy strategy of starting from an obtuse angle
and exploring the triangulation in search of a sequence
of Steiner points that will satisfy a local angle condi-
tion. Explorations may either terminate successfully
(for example at a triangle vertez), or merge.

Some PSLGs require Q(v?) Steiner poinis in any
triangulation achieving any largest angle bound less
than w. Hence the number of Steiner points added
by our algorithm s within a logv factor of worst case
optimal. For most inputs the number of Steiner points
and running time would be considerably smaller than
i the worst case.

1 Introduction
1.1 Problem statement and motivation

We are concerned with finding a Steiner trian-
gulation of an embedded planar straight-line graph
(PSLG). That is, we seeck an embedded triangular
graph, such that vertices of the input appear as ver-
tices of the output, and edges of the input appear as
a union of edges of the output. The added vertices of
the output are called Steiner points. The triangula-
tion we seek must be conformal, that is, two faces of
the triangulation must intersect at a face of the trian-
gulation, or not at all. A vertex in the interior of an
edge is called non-conformal
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Steiner triangulations whose {triangles have
bounded shape are important for numerical analysis,
in particular for a mesh in a finite element method.
Babuska and Aziz [1] shows that the convergence of
a finite element method depends on the largest an-
gle of the triangulation. Often one wishes to find a
triangulation for a PSLG that is not a polygon. For
example, a semiconductor may have two differently
doped regions. Hence a description of the semicon-
ductor would include an edge with the interior of the
region on both sides. Steiner triangulations without
large angles are also of use in functional interpolation
and computer graphics (see Barnhill [2]).

In addition to the shape of the triangles, another
important criterion for a triangulation is the number
of triangles. For example, in a finite element method
calculation the number of triangles directly affects the
running time. For many triangulation algorithms the
number of triangles produced depends on the input ge-
ometry or embedding, and not just the cardinality of
the input. Bern, Dobkin, and Eppstein [3] pose as an
open problem the existence of an algorithm to trian-
gulate a PSLG without large angles using only a poly-
nomial number of Steiner points. Here “polynomial”
is taken to mean polynomial in the input cardinality,
independent of the geometry.

1.2 Previous results

For polygonal input there are many results concern-
ing the construction of triangulations without large
angles. Bern and Eppstein [4] shows how to triangu-
late an arbitrary polygon so that no angle is obtuse
by adding O(v?) Steiner points. Bern, Dobkin, and
Eppstein [3] shows how to triangulate various types of
input polygons with various angle bounds, using be-
tween O(vlogv) and O(v!®%) Steiner points. Bern,
Eppstein and Gilbert [6] shows how to triangulate a
point set with no obtuse angles using only a linear
number of Steiner points, which is worst case opti-
mal. Eppstein [9] achieves this and simultaneously
approximates the minimum weight Steiner triangula-
tion. Bern, Mitchell and Ruppert [7] has very recently
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Figure 1: A triangulation refinement may require (nm) Steiner points to have any constant angle bound (left).
In fact, a single Steiner path may require Q(np) Steiner points (right).

shown how to triangulate an arbitrary polygon so that
no angle is obtuse using only O(v) Steiner points,
matching the worst case lower bound.

Ruppert [12] shows how to triangulate a PSLG so
that no angle is smaller than #/9, and hence no an-
gle is larger than 77/9. However, any triangulation
that achieves no small angles is doomed to use a non-
polynomial number of Steiner points, dependent on
the input geometry. There are several previous algo-
rithms that achieve similar results (by dissimilar tech-
niques) for polygonal input. See Bern and Eppstein
[5] for a summary.

Edelsbrunner, Tan, and Waupotitsch [8] shows how
to generate a constrained triangulation (one where no
Steiner points are allowed) of a PSLG such that the
maximum angle is minimized. The technique used is
edge-insertion, a global strategy that is a generaliza-
tion of local edge flip. Mitchell [10] shows how to gen-
erate a covering triangulation (one where no Steiner
points are allowed on the input edges) of a PSLG such
that the maximum angle is approximately minimum,
using a linear number of Steiner points.

Once a triangulation with bounded large (or small)
angles has been constructed, one may wish to refine
it to reduce the area of triangles in a certain region,
while still maintaining an angle bound. Rivara [11]
gives an overview of the considerable effort that has
been devoted to this problem.

1.3 Overview

We consider the problem of triangulating a PSLG
so that no angles are large. We solve this by first tri-
angulating the PSLG with an arbitrary constrained
triangulation, and then refining that triangulation.
Given any triangulation, we show how to refine it
by adding additional vertices and edges so that no
angle is larger than 7x/8. Our construction adds
O(nm + nplogm) vertices and runs in time O((nm +
nplogm)log(m + p)). We define p to be one plus the

number of holes and interior vertices in the origi-
nal triangulation. That is, p 1s the number of one-
dimensional connected components of the boundary
of the region to be triangulated, plus the number of
vertices strictly interior to the region to be triangu-
lated. We define n to be the number of small angles,
where small means less than /8 (the supplement of
our desired angle bound). We define m to be one plus
the number of obtuse angles in the original triangu-
lation. By Euler’s formula, in any constrained trian-
gulation of a PSLG with v vertices each of p, n and
m is O(v). Hence the final PSLG triangulation has
O(v?logv) vertices and takes O(v” log” v) time. For
a triangulation of a simple polygon, we have p = 1,
so our algorithm adds O(v?) Steiner points (matching
the worst case lower bounds below).

Bern and Eppstein [4] shows how to refine a con-
strained triangulation of a simple polygon so that no
angle is obtuse using O(v*) Steiner points. They pro-
vide a lower bound example, due to Paterson, that
illustrates the key concept in our algorithm. The ex-
ample shows that a triangulation refinement may re-
quire Q(v?) (actually Q(nm)) Steiner points in order
to achieve any angle bound less than 7. The exam-
ple consists of a stack of n = Q(v) long and skinny
triangles capped by m = Q(v) triangles with obtuse
angles directed into the stack as in Figure 1 left. Each
obtuse angle in the cap requires a Steiner point on
the opposite triangle edge in order to refine the tri-
angulation without large angles. This induced Steiner
point in turn induces a Steiner point on the next lower
edge, etc. If the figure is made sufficiently wide and
short, the Steiner points induced for different obtuse
angles are far apart and can not interact with one
another. Hence each of the Q(v) obtuse angle induces
Q(v) Steiner points, for a total of 2(v?) Steiner points.

Steiner path. The key concept in our algorithm
is the fact that if the final triangulation is to have no
large angles, adding a Steiner point on one edge of a
triangle may induce the addition of a Steiner point on



another edge of the triangle. We call a sequence of
induced Steiner points a Steiner path. Besides being
fairly intuitive, the fact that Steiner paths are some-
times necessary can be proved as a direct result of a
lemma about constrained triangulations in Edelsbrun-
ner, Tan, and Waupotitsch [8] (see Section 2.1).

A variation on Paterson’s example provides addi-
tional motivation for Steiner paths in Section 2. We
can change the direction of propagation of a Steiner
path with a sequence of triangles all having a vertex
in common: We build the example of Figure 1 right
by using p = Q(v) such constructions separated by
a middle stack of size n = Q(v). The Steiner path
shown in Figure 1 right is required to intersect each
edge of the middle stack Q(p) times. Hence a trian-
gulation with a single obtuse angle may require Q(v?)
(actually Q(np)) Steiner points in any refinement that
achieves an angle bound less than .

Algorithm. Our algorithm is as follows. Given a
PSLG, we triangulate it with an arbitrary constrained
triangulation algorithm, such as the minmax angle tri-
angulation of Edelsbrunner, Tan, and Waupotitsch [8].
Henceforth we consider that triangulation as our input
PSLG. For each obtuse angle of the input, we subdi-
vide it into two acute angles by adding the altitude
from it to the opposite triangle edge. Hence all trian-
gles are non-obtuse (but also non-conformal), which
i1s important for Section 3. These altitudes introduce
a collection of Steiner points in the interior of trian-
gle edges. These non-conformal points induce Steiner
paths.

Any fixed strategy of consecutively chosing the
Steiner points on a path is doomed to produce a very
long path for some input. Instead, we adopt a “lazy”
refinement approach: For a given desired angle bound
there is some flexibility in picking the next Steiner
point on a path (Section 2). We retain this flexibil-
ity, and consecutively determine an ever widening re-
gion called a horn, such that there is some acceptable
Steiner path from the initial vertex to every point in
the horn. Only later do we chose exactly which path
we take from among all those possible inside the horn.
This allows us to bound the length of a particular path
by O(np).

Eventually each horn will terminate either by inter-
secting the boundary of the input or a triangle vertex,
by intersecting itself in a special way, or by intersect-
ing another horn. In the first case we create a Steiner
path to a Steiner vertex on the input boundary, or the
triangle vertex. In the second case we create a Steiner
path that ends in a loop (see Figure 4). In the third
case, we can create a Steiner path to an intersection

point of the two horns on a triangle edge (see Figure
6).

Because of the third case our algorithm is itera-
tive: We may have to create a Steiner path for the
intersection point, which we do in the next iteration.
The number of Steiner paths m; we need to intro-
duce at iteration ¢ decreases geometrically, so there
are O(logm) iterations. The collection of paths may
intersect an input edge O(m; + p) times, which is sur-
prisingly close to our bound of O(p) for single path.
Hence at each iteration we add O(n(m; + p)) Steiner
points, for a total of O(nm+nplogm). As a practical
consideration, the constants in this bound are rela-
tively small. In particular, we derive an upper bound
of 9nm+ 24nplogs,, m+2n/3 +m Steiner points, and
even this is not tight. Furthermore, assuming most in-
puts do not have long sequences of adjacent triangles
with small angles, for most inputs the refinement al-
gorithm would add considerably fewer points (perhaps
only 3m).

When introducing a path, we just introduce ver-
tices, and not edges between consecutive vertices of
the path. We do this because edges for two different
paths may cross interior to a triangle. We introduce
edges to make the graph conformal only after all paths
have been created. We resolve the crossings of Steiner
path edges in two ways. If two crossing edges have
vertices near a small angle vertex of a triangle, we can
swap vertices so that the edges do not cross, and add
a diagonal to triangulate the resulting quadrilateral.
This strategy does not work near the large angle ver-
tices of a triangle, since paths involving all three of the
triangle edges may interact. So instead we introduce
one vertex inside the triangle near the edge opposite
the small angle, and connect it with an edge to each
remaining vertex on the triangle boundary.

The remainder of this paper is organized as follows.
Section 2 concerns the development of the Steiner
paths, and Section 3 describes how to fix the non-
conformal input triangles. In Section 4 we present
selected open problems. The omitted proofs may be
found in the full paper.

2 Introducing Steiner points
2.1 Steiner path motivation

Consider refining a given triangulation so that no
angle i1s greater than some bound. From Edelsbrun-
ner, Tan, and Waupotitsch [8] we have the following
lemma, where (7)) denotes the maximum angle of a
triangulation 7.



Lemma 1 Given a vertex set A, in any constrained
triangulation T containing edge WV, we have u(7) >
maxgsea LZWSV.

For a Steiner triangulation, the edge opposite a
large angle of a triangle must be subdivided in order
to reduce the bound of this lemma (adding Steiner
vertices elsewhere merely increases A). So suppose we
add a vertex S to subdivide an edge. Unless S is on
the boundary of the region to be triangulated, there
may be a triangle edge VW that subtends a large an-
gle at S. Hence to reduce the bound of the lemma we
need to subdivide this edge as well, etc., inducing a
Steiner path.

To gain some intuition about long Steiner paths, we
have a sufficient condition on a triangle 7" such that
LV SW is not large: ZV.SW is at least the supplement
of the smallest angle of 7. Hence Steiner paths only
continue through triangles with a small angle.

If LVSW 1is large, we wish to find an acceptable
placement of S; on WV in terms of the angles ZV S5y
and ZWSS, such that the lower bound from Lemma 1
is reasonably small: If we place S; so that both of these
angles are less than o > /2, then the lower bound
from Lemma 1 is at most «. Requiring ZVSS) =
(WSS, = 7/2 leads to a single choice for S;. This
1s too restrictive in that it could lead to long Steiner
paths (e.g. infinitely long in Figure 4). We chose o =
37/4, so that there is a range of acceptable placements
for S;.

In fact, regardless of the choice of «a, we need a
global strategy for placing the S; that takes into ac-
count the entire induced Steiner path: For any local
strategy, there is an input that leads to a very long
Steiner path.

We do not fix Sy, but instead only consider it to
be in the acceptable range, with the freedom to go
back and fix its exact location later. Hence we have
more freedom in where to place Ss, or we may even
discover a position for S7 where Sy is unnecessary due
to a triangle vertex of 77. The longer the path is,
the more freedom we have in the placement of the
last Steiner vertex (see Figure 2). We are able to take
advantage of this freedom to prove that paths are only
of length O(np). Recall that for Section 3, the first
point S is always on the altitude containing the large
angle vertex, and we consider that altitude to be as
any other triangle edge. We now formalize.

2.2 Horns

Cone. Consider a Steiner point S on WU of
AUVW. The cone at S consists of all points P of

Figure 2: A horn (shaded) and its center path
(dashed) terminating on its maw.

AUVW such that ZPSW and ZPSU are at most
37/4. Alternatively, the cone is the intersection of
AUVW and the infinite sector at S whose bounding
rays make angle 7/4 with WU. The angle between
the bounding rays of the cone is 7/2.

Maw. The maw of a cone 1s the portion of the cone
on the boundary of AUVW  excepting S itself. If tri-
angle vertex V is in the maw, then the lower bound
from Lemma 1 is at most 37/4. Otherwise, the maw is
contained in WV, and corresponds to a range of posi-
tions for S ensuring that the lower bound of Lemma
1 is at most 37 /4.

Horn. We iteratively build the horn at S as a union
of cones. Initially the horn is the cone at S. The horn
at stage j + 1 is the union of cones for the points in
the maw at stage j. See Figure 2.

Center and boundary paths. We define the
center path of a horn to be the sequence of line seg-
ments connecting the midpoints of the maws for con-
secutive stages, starting at S. See Figure 2. We call
the two sequences of segments from the starting ver-
tex of a horn making angle 7/4 with each triangle edge
boundary paths.

Terminating criteria. We continue the construc-
tion of the horn in stages until one of the following
occurs (the first three are considered case one in the
introduction):

1. The maw contains a triangle vertex. As a heuris-
tic, we also terminate if the maw contains a
Steiner path vertex of a previous iteration (see

Section 2.5).

2. The maw is on a triangle edge where the next
triangle has all angles at least =/8.

3. The maw is on an edge of the boundary of the
region to be triangulated.

4. The maw contains a center path point of a pre-
vious stage of the horn, and moreover the horn
defined from that center path point contains that
center path point (see Figure 4).
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Figure 3: In a cone, the maw is twice the center path (left). In a horn, the maw is more than the center path

(right).

Figure 4: A horn may self intersect (left). The horn
shown will self terminate by Item 4 after three more
stages, since the horn from center path point F; will
contain F;.

5. The maw intersects a horn constructed earlier in
the current iteration, and either the horns are ori-
ented in the same direction, or in opposite direc-
tions and the maw intersects a boundary path or
center path of the other horn (see Figure 6).

Acceptable path. When one of these termination
criteria occurs, there is an acceptable Steiner path in-
side the horn. By an acceptable path, we mean that
the cone from a Steiner path vertex contains the next
Steiner path vertex. FExcept for the last triangle in
Item 5, from this it follows that the lower bound from
Lemma 1 for all triangles touched by the path is no
more than 3m/4 (37/8 for the last triangle in Ttem
2). Given a final Steiner point, it is easy to compute
an acceptable path by working from the final Steiner
point back to the first point S of the horn. If the horn
terminates because of Item 4, then we must form a
loop containing the distinguished center path point as
well (see Figure 4).

In Ttem 1, the final Steiner point is the vertex con-
tained in the maw. In Item 2 and Item 3 we may pick

any point in the maw. In Item 5, we pick the point
that is both in the maw and on the boundary path of
the other horn. (We may not actually use the corre-
sponding path, depending on whether any later horns
in the current iteration terminate on it; see Section
2.5). In Item 4, we pick the center path point P; that
caused the horn to terminate.

2.3 Bounding a single path

In order to bound the number of times horns may
intersect a given edge, we need some lemmas about
how quickly the maw of a horn grows in relation to its
center path length.

Lemma 2 For the cone at S, the width of the maw is
twice the length of the center path.

In general, the center point of the next cone is not
the center point of the next maw, so that the width
of the maw is not always twice the center path length.
However, we are able to establish a smaller linear

bound.

Lemma 3 The width of the maw is greater than the
length of the center path. Also, the cone for P; con-
tains Pjyq.

Lemma 4 If a horn intersects an edge with maw
width M and again at a later stage with maw width
M’ then M’ > 2M.

We wish to bound the number of times a center
path may cross a given edge. We first show that suc-
cessive center path points have some ordering along
an edge.

Lemma 5 Suppose a horn intersects an edge E with
center path point Py, and again at a later stage with
center path point Py. If the horn intersect E at a later
stage with center point Ps between Py and Ps, then it
self terminates as in Item 4.



Figure 5: Here we show two consecutive reversals,
their horns (darkly shaded), and the inverse horn be-
tween them (lightly and very darkly shaded). The
inverse horn terminates with negative width, where
the two horns overlap (very darkly shaded).

Proof. This proof illustrates a general technique we
use often: We show that a center path must be long,
so that a maw is wide. Hence either the center path is
far away from some feature or the maw contains that
feature.

Consider the horn from Py (whether or not P really
is the first point of a horn). Let d be the distance from
P; to Py. Let M5 be the maw width at Py, where from
Lemma 3 My > d. Let M3 be the maw width at Ps.
From Lemma 4 we have M3z > 2M,. Hence M3 > 2d,
and if P5 has distance to P; less than d, then the maw
at P53 contains P; and the horn terminates as in Item

4. 1

We may use this lemma to analyze the number of
intersections a center path may have on an edge if all
points of intersection lie on one side of the first center
path point.

Hop. The center path between two center path
points P; and P;4; on an edge E, together with the
portion of E/ between P; and P11, forms the boundary
of a compact set in the plane. We call this set a hop.

Theorem 1 Suppose a horn intersects an edge E with
center path pownt Py. Consider the line L containing
E. Then the horn may intersect E at most p times on
one side of Py before intersecting L on the other side

Ofpl.

Proof. By Lemma 5, Py, Ps, ... are consecutive along
E, and hence the corresponding hops have disjoint in-
teriors. Each hop contains at least one vertex of the
input in its interior (else the horn crosses an edge twice
consecutively, a contradiction) and hence there can be
at most p such hops. 1

We now consider the case that all of the points of
a center path on E do not lie on the same side of

the first point. For this to happen, there needs to be
a reversal. Intuitively, a reversal is two consecutive
hops that travel in opposite directions.

Reversal. A reversal is the center path of a horn
from a point P on edge E to a point P, on L (or E)
to a point Ps; on F, where P; and P, are on opposite
sides of P, and L is the line through E. Also, the
center path must not cross £ at any point other than
Py between P and P, (otherwise we may find a shorter
reversal instead). See Figure 5. Just as for a hop, we
say that a reversal contains the input vertices in the
region bounded by the center path from P to P, and
E.

Lemma 6 The vertices contained in two reversals of
a center path are not identical, unless the horn termi-
nates as in Item 4.

Proof. The proof lies in the observation that if hops
contain the same vertices and are oriented in the
same direction, then they grow closer together as their
stages increase. This holds true for two hops for the
same Steiner path but different starting stages, and
also for two hops for different Steiner paths (used in
the next subsection).

We define an inverse horn as the region between the
hops of two such horns, and its maw width is the dis-
tance between the two horns. See Figure 5. The rate
of decrease of the inverse horn width can be bounded
below in the same way that the rate of increase of the
width of a maw can be bounded below. Hence the
proof reduces to showing that the center path of the
inverse horn is long, so that the outer reversal must
contain the starting center path vertex of the inner
reversal. 1

Theorem 2 A horn may intersect a given edge at
most O(p) times.

Proof. Because of reversals, hops are not necessarily
disjoint. However, hops are partially ordered by con-
tainment. Hence there are at most 2p unique input
vertex sets contained in hops. We enumerate the hops
by charging the vertex sets for hops. Using a care-
ful charging scheme, Lemma 6, and Theorem 1, each
vertex set gets charged at most four times. |1

2.4 Bounding the collection of paths

We now consider all of the horns in a given itera-
tion, and how they interact. We seek a bound on the
number of times these horns may collectively cross a
given edge. We consider two horns with hops oriented
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Figure 6: A collection of horns may merge. The horns
for the next iteration are darkly shaded, and Steiner
paths are dashed.

in the same direction with respect to £. In the fol-
lowing two lemmas we show that two horns cannot
each have two consecutive hops containing the same
triangle vertices.

Lemma 7 Suppose a horn H has two consecutive
hops M and My (not a reversal), and another horn
H' has two consecutive hops M' and M7, such that M
and M' contain the same input verter set, and sim-
ilarly My and M| contain the same inpul vertex sel.
If neither H nor H' self terminates on M, M', M, or
M as in Item 4, then My and M{ intersect as in Item
&

Lemma 8 Suppose a horn H has a reversal R, and
another horn H' has a reversal R’ with hops that con-
tain the same vertex sets as those of R. If neither
horn terminates on R or R' as in Item /J, then the
two reversals intersect as in Item 5.

Theorem 3 The collection of horns may intersect a
given edge O(m; + p) times.

Proof. The proof is very similar to the proof of The-
orem 2, and relies on on Theorem 2, Lemma 7 and
Lemma 8. |1

2.5 Introducing Steiner paths for the col-
lection

The algorithm for constructing the Steiner paths
is iterative. If no horn terminated by Item 5 then
we could construct the Steiner paths and no more it-
erations would be required. However, if a horn ter-
minates because of Item b then its last Steiner point
may induce a path in the next iteration. We have
shown above that each iteration will produce only

O(n(m; + p)) Steiner path points, where m; is the
number of horns in iteration . We show below that
at each iteration we reduce the number of horns by
at least a factor of 2/3, so the sum of the m; is 3m.
Furthermore, since the m; are bounded above by a ge-
ometric series, there is only a logarithmic number of
iterations in terms of m.

Theorem 4 The number of horns in the next itera-
tion is at most 2/3 times the number of horns in the
current tteration. That is, m;jy1 < 2m;/3.

Proof. The proof of this theorem is a matter of speci-
fying exactly which paths we create when horns inter-
sect. We may consider a horn H as a root of a subtree,
whose children are the like-oriented horns that termi-
nate on H as in Item 5. The children are divided into
left and right sides, depending on where they intersect
H. (There are also the oppositely oriented horns that
terminate on the center or boundary path of H, but
such horns will not contribute to the next iteration.)

In any tree, there is a node N whose children are all
leaves. We may recursively remove the subtree at N
by adding a tree-like Steiner path for each non-empty
side of N. The “root” vertex of such a Steiner path lies
on the boundary path of the corresponding horn, and
gives rise to a horn in the next iteration. See Figure 6.
As a heuristic, it is sometimes worthwhile to continue
a Steiner path along the boundary path to the parent
of N, and sometimes worthwhile to introduce no path
on a side with one child. If there is one child on each
side, then we remove a subtree of size three and add
two root vertices. In all other cases, the ratio of the
size of the removed subtree to the number of added
root vertices is at least 2. Hence m;11 < 2m; /3.

Note that the root of the entire tree terminates by a
different criteria, and admits a Steiner path that does
not give rise to a horn in the next iteration. Thus
subtrees of size one need not be accounted for. |

Theorem 5 At most O(nm+nplogm) Steiner points
are added.

3 Triangulating the non-conformal tri-
angles

We now have a non-conformal triangulation in
which some triangles have Steiner points on their
edges. We now show how to triangulate these trian-
gles, taking advantage of the special geometry of the
Steiner points in order to ensure that all angles are at
most 77 /8.
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Figure 7: How to triangulate a triangle with Steiner
points on its boundary.

3.1 Fixing small angle triangles

We introduce the Steiner path edge AB when the
angle between the triangle edges containing A and B is
less than 7 /8. We say such edges are drawn. The other
Steiner path edges are forever ignored, and also some
drawn edges may be erased later. We have bounds on
the angle that Steiner path edges make with triangle
edges.

Lemma 9 The angles at the intersection of a drawn
Steiner path edge and a triangle edge are between /8
and Tw /8.

We can swap vertices of drawn Steiner path edges
so that they do not cross, and still maintain the above
angle bounds.

Lemma 10 Steiner path edges may be redrawn so
that no two cross, while maintaining the angle bounds
of Lemma 9.

We retain only the drawn edges that are far from
UV: We erase all Steiner path edges AB where both
(UVA < /4 and LVUB < x/4. Since the edges do
not cross, there will be an edge AB “closest” to UV
that is not erased: Any edge with a vertex on AU or
BV will be erased, and any edge with a vertex on AW
or BW will be drawn.

What remains is a the non-conformal trape-
zoid ABVU, and conformal triangles and trapezoids
bounded by drawn edges, UW, and VIW. According
to Lemma 9 and Lemma 10, the triangles and trape-
zoids have largest angle no more than 77/8. Hence
the conformal trapezoids may be triangulated with an
arbitrary diagonal and achieve largest angle no more
than 77/8.

We now triangulated region ABVU. We introduce
a vertex C' in the interior of the triangle. We place

C so that LZUVC = (VUC = n/8. We triangulate by

introducing an edge from C' to each of the Steiner and
triangle vertices in region ABVU. See Figure 7.

It may be that B =V or A = U. Also there may
not be a drawn edge AB, so that the region degener-
ates to AWV U. The construction needs no modifica-
tions for these cases.

Lemma 11 The triangulation of region ABVU has
no angle larger than Tn /8.

3.2 Fixing all-large angle triangles

It remains to consider triangles with every angle
larger than 7/8. Using a construction almost iden-
tical to that of Section 3.1, we may triangulate with
no angle larger than 77/8 (see Figure 7). Tt is pos-
sible to use the fact that the angle at W is large to
directly bound the largest angle in the region WAB.
For region ABV U, the proof of Lemma 11 holds with
slightly different angle bounds in various places, but
with the same overall bound of 77 /8.

4 Conclusions

There is a tradeoff between the cone angle of the
horns and the number of times that a triangle edge is
crossed. We state our cone angle to be «/2. If the
cone angle is ¢, we conjecture that the techniques of
Section 3 can be used to obtain triangles with largest
angle at most 3w/4+ ¢/4. On a more general note, we
have the following problems.

What is the relationship between the largest angle
permitted in a triangulation and the number of Steiner
points necessary to achieve that bound? How does this
depend on the type of input (e.g. convex polygon,
simple polygon, polygon with holes, PSLG)?

The cardinality of our PSLG triangulations is
within a logv factor of worst case optimal. Is there
an algorithm that is within a constant factor of worst
case optimal? A more interesting open problem is the
existence of an algorithm that generates triangulations
of PSLGs or polygons with cardinality within a factor
of optimal for the given input.
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