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Abstract

We show that any PSLG with v vertices can be tri�
angulated with no angle larger than ���� by adding
O�v� log v� Steiner points in O�v� log� v� time� We
�rst triangulate the PSLG with an arbitrary con�
strained triangulation and then re�ne that triangula�
tion by adding additional vertices and edges� We fol�
low a lazy strategy of starting from an obtuse angle
and exploring the triangulation in search of a sequence
of Steiner points that will satisfy a local angle condi�
tion� Explorations may either terminate successfully
�for example at a triangle vertex�� or merge�

Some PSLGs require ��v�� Steiner points in any
triangulation achieving any largest angle bound less
than �� Hence the number of Steiner points added
by our algorithm is within a logv factor of worst case
optimal� For most inputs the number of Steiner points
and running time would be considerably smaller than
in the worst case�

� Introduction

��� Problem statement and motivation

We are concerned with �nding a Steiner trian�
gulation of an embedded planar straight�line graph
�PSLG�� That is� we seek an embedded triangular
graph� such that vertices of the input appear as ver�
tices of the output� and edges of the input appear as
a union of edges of the output� The added vertices of
the output are called Steiner points� The triangula�
tion we seek must be conformal� that is� two faces of
the triangulation must intersect at a face of the trian�
gulation� or not at all� A vertex in the interior of an
edge is called non�conformal�
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Steiner triangulations whose triangles have
bounded shape are important for numerical analysis�
in particular for a mesh in a �nite element method�
Babu	ska and Aziz 
�� shows that the convergence of
a �nite element method depends on the largest an�
gle of the triangulation� Often one wishes to �nd a
triangulation for a PSLG that is not a polygon� For
example� a semiconductor may have two di
erently
doped regions� Hence a description of the semicon�
ductor would include an edge with the interior of the
region on both sides� Steiner triangulations without
large angles are also of use in functional interpolation
and computer graphics �see Barnhill 
����

In addition to the shape of the triangles� another
important criterion for a triangulation is the number
of triangles� For example� in a �nite element method
calculation the number of triangles directly a
ects the
running time� For many triangulation algorithms the
number of triangles produced depends on the input ge�
ometry or embedding� and not just the cardinality of
the input� Bern� Dobkin� and Eppstein 
�� pose as an
open problem the existence of an algorithm to trian�
gulate a PSLG without large angles using only a poly�
nomial number of Steiner points� Here �polynomial�
is taken to mean polynomial in the input cardinality�
independent of the geometry�

��� Previous results

For polygonal input there are many results concern�
ing the construction of triangulations without large
angles� Bern and Eppstein 
�� shows how to triangu�
late an arbitrary polygon so that no angle is obtuse
by adding O�v�� Steiner points� Bern� Dobkin� and
Eppstein 
�� shows how to triangulate various types of
input polygons with various angle bounds� using be�
tween O�v logv� and O�v����� Steiner points� Bern�
Eppstein and Gilbert 
�� shows how to triangulate a
point set with no obtuse angles using only a linear
number of Steiner points� which is worst case opti�
mal� Eppstein 
�� achieves this and simultaneously
approximates the minimum weight Steiner triangula�
tion� Bern� Mitchell and Ruppert 
�� has very recently



Figure �� A triangulation re�nement may require ��nm� Steiner points to have any constant angle bound �left��
In fact� a single Steiner path may require ��np� Steiner points �right��

shown how to triangulate an arbitrary polygon so that
no angle is obtuse using only O�v� Steiner points�
matching the worst case lower bound�

Ruppert 
��� shows how to triangulate a PSLG so
that no angle is smaller than ���� and hence no an�
gle is larger than ����� However� any triangulation
that achieves no small angles is doomed to use a non�
polynomial number of Steiner points� dependent on
the input geometry� There are several previous algo�
rithms that achieve similar results �by dissimilar tech�
niques� for polygonal input� See Bern and Eppstein

�� for a summary�

Edelsbrunner� Tan� and Waupotitsch 
�� shows how
to generate a constrained triangulation �one where no
Steiner points are allowed� of a PSLG such that the
maximum angle is minimized� The technique used is
edge�insertion� a global strategy that is a generaliza�
tion of local edge �ip� Mitchell 
��� shows how to gen�
erate a covering triangulation �one where no Steiner
points are allowed on the input edges� of a PSLG such
that the maximum angle is approximately minimum�
using a linear number of Steiner points�

Once a triangulation with bounded large �or small�
angles has been constructed� one may wish to re�ne
it to reduce the area of triangles in a certain region�
while still maintaining an angle bound� Rivara 
���
gives an overview of the considerable e
ort that has
been devoted to this problem�

��� Overview

We consider the problem of triangulating a PSLG
so that no angles are large� We solve this by �rst tri�
angulating the PSLG with an arbitrary constrained
triangulation� and then re�ning that triangulation�
Given any triangulation� we show how to re�ne it
by adding additional vertices and edges so that no
angle is larger than ����� Our construction adds
O�nm� np logm� vertices and runs in time O��nm�
np logm� log�m � p��� We de�ne p to be one plus the

number of holes and interior vertices in the origi�
nal triangulation� That is� p is the number of one�
dimensional connected components of the boundary
of the region to be triangulated� plus the number of
vertices strictly interior to the region to be triangu�
lated� We de�ne n to be the number of small angles�
where small means less than ��� �the supplement of
our desired angle bound�� We de�ne m to be one plus
the number of obtuse angles in the original triangu�
lation� By Euler�s formula� in any constrained trian�
gulation of a PSLG with v vertices each of p� n and
m is O�v�� Hence the �nal PSLG triangulation has
O�v� logv� vertices and takes O�v� log� v� time� For
a triangulation of a simple polygon� we have p � ��
so our algorithm adds O�v�� Steiner points �matching
the worst case lower bounds below��

Bern and Eppstein 
�� shows how to re�ne a con�
strained triangulation of a simple polygon so that no
angle is obtuse using O�v�� Steiner points� They pro�
vide a lower bound example� due to Paterson� that
illustrates the key concept in our algorithm� The ex�
ample shows that a triangulation re�nement may re�
quire ��v�� �actually ��nm�� Steiner points in order
to achieve any angle bound less than �� The exam�
ple consists of a stack of n � ��v� long and skinny
triangles capped by m � ��v� triangles with obtuse
angles directed into the stack as in Figure � left� Each
obtuse angle in the cap requires a Steiner point on
the opposite triangle edge in order to re�ne the tri�
angulation without large angles� This induced Steiner
point in turn induces a Steiner point on the next lower
edge� etc� If the �gure is made su�ciently wide and
short� the Steiner points induced for di
erent obtuse
angles are far apart and can not interact with one
another� Hence each of the ��v� obtuse angle induces
��v� Steiner points� for a total of ��v�� Steiner points�

Steiner path� The key concept in our algorithm
is the fact that if the �nal triangulation is to have no
large angles� adding a Steiner point on one edge of a
triangle may induce the addition of a Steiner point on



another edge of the triangle� We call a sequence of
induced Steiner points a Steiner path� Besides being
fairly intuitive� the fact that Steiner paths are some�
times necessary can be proved as a direct result of a
lemma about constrained triangulations in Edelsbrun�
ner� Tan� and Waupotitsch 
�� �see Section �����

A variation on Paterson�s example provides addi�
tional motivation for Steiner paths in Section �� We
can change the direction of propagation of a Steiner
path with a sequence of triangles all having a vertex
in common� We build the example of Figure � right
by using p � ��v� such constructions separated by
a middle stack of size n � ��v�� The Steiner path
shown in Figure � right is required to intersect each
edge of the middle stack ��p� times� Hence a trian�
gulation with a single obtuse angle may require ��v��
�actually ��np�� Steiner points in any re�nement that
achieves an angle bound less than ��

Algorithm� Our algorithm is as follows� Given a
PSLG� we triangulate it with an arbitrary constrained
triangulation algorithm� such as the minmax angle tri�
angulation of Edelsbrunner� Tan� and Waupotitsch 
���
Henceforth we consider that triangulation as our input
PSLG� For each obtuse angle of the input� we subdi�
vide it into two acute angles by adding the altitude
from it to the opposite triangle edge� Hence all trian�
gles are non�obtuse �but also non�conformal�� which
is important for Section �� These altitudes introduce
a collection of Steiner points in the interior of trian�
gle edges� These non�conformal points induce Steiner
paths�

Any �xed strategy of consecutively chosing the
Steiner points on a path is doomed to produce a very
long path for some input� Instead� we adopt a �lazy�
re�nement approach� For a given desired angle bound
there is some �exibility in picking the next Steiner
point on a path �Section ��� We retain this �exibil�
ity� and consecutively determine an ever widening re�
gion called a horn� such that there is some acceptable
Steiner path from the initial vertex to every point in
the horn� Only later do we chose exactly which path
we take from among all those possible inside the horn�
This allows us to bound the length of a particular path
by O�np��

Eventually each horn will terminate either by inter�
secting the boundary of the input or a triangle vertex�
by intersecting itself in a special way� or by intersect�
ing another horn� In the �rst case we create a Steiner
path to a Steiner vertex on the input boundary� or the
triangle vertex� In the second case we create a Steiner
path that ends in a loop �see Figure ��� In the third
case� we can create a Steiner path to an intersection

point of the two horns on a triangle edge �see Figure
���

Because of the third case our algorithm is itera�
tive� We may have to create a Steiner path for the
intersection point� which we do in the next iteration�
The number of Steiner paths mi we need to intro�
duce at iteration i decreases geometrically� so there
are O�logm� iterations� The collection of paths may
intersect an input edge O�mi� p� times� which is sur�
prisingly close to our bound of O�p� for single path�
Hence at each iteration we add O�n�mi � p�� Steiner
points� for a total of O�nm�np logm�� As a practical
consideration� the constants in this bound are rela�
tively small� In particular� we derive an upper bound
of �nm���np log���m��n���m Steiner points� and
even this is not tight� Furthermore� assuming most in�
puts do not have long sequences of adjacent triangles
with small angles� for most inputs the re�nement al�
gorithm would add considerably fewer points �perhaps
only �m��

When introducing a path� we just introduce ver�
tices� and not edges between consecutive vertices of
the path� We do this because edges for two di
erent
paths may cross interior to a triangle� We introduce
edges to make the graph conformal only after all paths
have been created� We resolve the crossings of Steiner
path edges in two ways� If two crossing edges have
vertices near a small angle vertex of a triangle� we can
swap vertices so that the edges do not cross� and add
a diagonal to triangulate the resulting quadrilateral�
This strategy does not work near the large angle ver�
tices of a triangle� since paths involving all three of the
triangle edges may interact� So instead we introduce
one vertex inside the triangle near the edge opposite
the small angle� and connect it with an edge to each
remaining vertex on the triangle boundary�

The remainder of this paper is organized as follows�
Section � concerns the development of the Steiner
paths� and Section � describes how to �x the non�
conformal input triangles� In Section � we present
selected open problems� The omitted proofs may be
found in the full paper�

� Introducing Steiner points

��� Steiner path motivation

Consider re�ning a given triangulation so that no
angle is greater than some bound� From Edelsbrun�
ner� Tan� and Waupotitsch 
�� we have the following
lemma� where ��T � denotes the maximum angle of a
triangulation T �



Lemma � Given a vertex set A� in any constrained
triangulation T containing edge WV � we have ��T � �
maxS�A � WSV �

For a Steiner triangulation� the edge opposite a
large angle of a triangle must be subdivided in order
to reduce the bound of this lemma �adding Steiner
vertices elsewhere merely increases A�� So suppose we
add a vertex S to subdivide an edge� Unless S is on
the boundary of the region to be triangulated� there
may be a triangle edge V W that subtends a large an�
gle at S� Hence to reduce the bound of the lemma we
need to subdivide this edge as well� etc�� inducing a
Steiner path�

To gain some intuition about long Steiner paths� we
have a su�cient condition on a triangle T such that
� V SW is not large� � V SW is at least the supplement
of the smallest angle of T � Hence Steiner paths only
continue through triangles with a small angle�

If � V SW is large� we wish to �nd an acceptable
placement of S� onWV in terms of the angles � V SS�
and � WSS� such that the lower bound from Lemma �
is reasonably small� If we place S� so that both of these
angles are less than � � ���� then the lower bound
from Lemma � is at most �� Requiring � V SS� �
� WSS� � ��� leads to a single choice for S�� This
is too restrictive in that it could lead to long Steiner
paths �e�g� in�nitely long in Figure ��� We chose � �
����� so that there is a range of acceptable placements
for S��

In fact� regardless of the choice of �� we need a
global strategy for placing the Sj that takes into ac�
count the entire induced Steiner path� For any local
strategy� there is an input that leads to a very long
Steiner path�

We do not �x S�� but instead only consider it to
be in the acceptable range� with the freedom to go
back and �x its exact location later� Hence we have
more freedom in where to place S�� or we may even
discover a position for S� where S� is unnecessary due
to a triangle vertex of T�� The longer the path is�
the more freedom we have in the placement of the
last Steiner vertex �see Figure ��� We are able to take
advantage of this freedom to prove that paths are only
of length O�np�� Recall that for Section �� the �rst
point S is always on the altitude containing the large
angle vertex� and we consider that altitude to be as
any other triangle edge� We now formalize�

��� Horns

Cone� Consider a Steiner point S on WU of
�UVW � The cone at S consists of all points P of

S
P1

P5

Figure �� A horn �shaded� and its center path
�dashed� terminating on its maw�

�UVW such that � PSW and � PSU are at most
����� Alternatively� the cone is the intersection of
�UVW and the in�nite sector at S whose bounding
rays make angle ��� with WU � The angle between
the bounding rays of the cone is ����
Maw� The maw of a cone is the portion of the cone

on the boundary of �UVW � excepting S itself� If tri�
angle vertex V is in the maw� then the lower bound
from Lemma � is at most ����� Otherwise� the maw is
contained in WV � and corresponds to a range of posi�
tions for S� ensuring that the lower bound of Lemma
� is at most �����
Horn� We iteratively build the horn at S as a union

of cones� Initially the horn is the cone at S� The horn
at stage j � � is the union of cones for the points in
the maw at stage j� See Figure ��
Center and boundary paths� We de�ne the

center path of a horn to be the sequence of line seg�
ments connecting the midpoints of the maws for con�
secutive stages� starting at S� See Figure �� We call
the two sequences of segments from the starting ver�
tex of a horn making angle ��� with each triangle edge
boundary paths�
Terminating criteria� We continue the construc�

tion of the horn in stages until one of the following
occurs �the �rst three are considered case one in the
introduction��

�� The maw contains a triangle vertex� As a heuris�
tic� we also terminate if the maw contains a
Steiner path vertex of a previous iteration �see
Section �����

�� The maw is on a triangle edge where the next
triangle has all angles at least ����

�� The maw is on an edge of the boundary of the
region to be triangulated�

�� The maw contains a center path point of a pre�
vious stage of the horn� and moreover the horn
de�ned from that center path point contains that
center path point �see Figure ���
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Figure �� In a cone� the maw is twice the center path �left�� In a horn� the maw is more than the center path
�right��
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Figure �� A horn may self intersect �left�� The horn
shown will self terminate by Item � after three more
stages� since the horn from center path point Pj will
contain Pj �

�� The maw intersects a horn constructed earlier in
the current iteration� and either the horns are ori�
ented in the same direction� or in opposite direc�
tions and the maw intersects a boundary path or
center path of the other horn �see Figure ���

Acceptable path� When one of these termination
criteria occurs� there is an acceptable Steiner path in�
side the horn� By an acceptable path� we mean that
the cone from a Steiner path vertex contains the next
Steiner path vertex� Except for the last triangle in
Item �� from this it follows that the lower bound from
Lemma � for all triangles touched by the path is no
more than ���� ����� for the last triangle in Item
��� Given a �nal Steiner point� it is easy to compute
an acceptable path by working from the �nal Steiner
point back to the �rst point S of the horn� If the horn
terminates because of Item �� then we must form a
loop containing the distinguished center path point as
well �see Figure ���

In Item �� the �nal Steiner point is the vertex con�
tained in the maw� In Item � and Item � we may pick

any point in the maw� In Item �� we pick the point
that is both in the maw and on the boundary path of
the other horn� �We may not actually use the corre�
sponding path� depending on whether any later horns
in the current iteration terminate on it� see Section
����� In Item �� we pick the center path point Pj that
caused the horn to terminate�

��� Bounding a single path

In order to bound the number of times horns may
intersect a given edge� we need some lemmas about
how quickly the maw of a horn grows in relation to its
center path length�

Lemma � For the cone at S� the width of the maw is
twice the length of the center path�

In general� the center point of the next cone is not
the center point of the next maw� so that the width
of the maw is not always twice the center path length�
However� we are able to establish a smaller linear
bound�

Lemma � The width of the maw is greater than the
length of the center path� Also� the cone for Pj con�
tains Pj���

Lemma � If a horn intersects an edge with maw
width M and again at a later stage with maw width
M �� then M � � �M�

We wish to bound the number of times a center
path may cross a given edge� We �rst show that suc�
cessive center path points have some ordering along
an edge�

Lemma � Suppose a horn intersects an edge E with
center path point P�� and again at a later stage with
center path point P�� If the horn intersect E at a later
stage with center point P� between P� and P�� then it
self terminates as in Item ��
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Figure �� Here we show two consecutive reversals�
their horns �darkly shaded�� and the inverse horn be�
tween them �lightly and very darkly shaded�� The
inverse horn terminates with negative width� where
the two horns overlap �very darkly shaded��

Proof� This proof illustrates a general technique we
use often� We show that a center path must be long�
so that a maw is wide� Hence either the center path is
far away from some feature or the maw contains that
feature�

Consider the horn fromP� �whether or not P� really
is the �rst point of a horn�� Let d be the distance from
P� to P�� LetM� be the maw width at P�� where from
Lemma � M� � d� Let M� be the maw width at P��
From Lemma � we have M� � �M�� Hence M� � �d�
and if P� has distance to P� less than d� then the maw
at P� contains P� and the horn terminates as in Item
��

We may use this lemma to analyze the number of
intersections a center path may have on an edge if all
points of intersection lie on one side of the �rst center
path point�
Hop� The center path between two center path

points Pj and Pj�� on an edge E� together with the
portion ofE between Pj and Pj��� forms the boundary
of a compact set in the plane� We call this set a hop�

Theorem � Suppose a horn intersects an edge E with
center path point P�� Consider the line L containing
E� Then the horn may intersect E at most p times on
one side of P� before intersecting L on the other side
of P��

Proof� By Lemma �� P�� P�� � � � are consecutive along
E� and hence the corresponding hops have disjoint in�
teriors� Each hop contains at least one vertex of the
input in its interior �else the horn crosses an edge twice
consecutively� a contradiction� and hence there can be
at most p such hops�

We now consider the case that all of the points of
a center path on E do not lie on the same side of

the �rst point� For this to happen� there needs to be
a reversal� Intuitively� a reversal is two consecutive
hops that travel in opposite directions�
Reversal� A reversal is the center path of a horn

from a point P on edge E to a point P� on L �or E�
to a point P� on E� where P� and P� are on opposite
sides of P � and L is the line through E� Also� the
center path must not cross E at any point other than
P� between P and P� �otherwise we may �nd a shorter
reversal instead�� See Figure �� Just as for a hop� we
say that a reversal contains the input vertices in the
region bounded by the center path from P to P� and
E�

Lemma � The vertices contained in two reversals of
a center path are not identical� unless the horn termi�
nates as in Item ��

Proof� The proof lies in the observation that if hops
contain the same vertices and are oriented in the
same direction� then they grow closer together as their
stages increase� This holds true for two hops for the
same Steiner path but di
erent starting stages� and
also for two hops for di
erent Steiner paths �used in
the next subsection��

We de�ne an inverse horn as the region between the
hops of two such horns� and its maw width is the dis�
tance between the two horns� See Figure �� The rate
of decrease of the inverse horn width can be bounded
below in the same way that the rate of increase of the
width of a maw can be bounded below� Hence the
proof reduces to showing that the center path of the
inverse horn is long� so that the outer reversal must
contain the starting center path vertex of the inner
reversal�

Theorem � A horn may intersect a given edge at
most O�p� times�

Proof� Because of reversals� hops are not necessarily
disjoint� However� hops are partially ordered by con�
tainment� Hence there are at most �p unique input
vertex sets contained in hops� We enumerate the hops
by charging the vertex sets for hops� Using a care�
ful charging scheme� Lemma �� and Theorem �� each
vertex set gets charged at most four times�

��� Bounding the collection of paths

We now consider all of the horns in a given itera�
tion� and how they interact� We seek a bound on the
number of times these horns may collectively cross a
given edge� We consider two horns with hops oriented



Figure �� A collection of horns may merge� The horns
for the next iteration are darkly shaded� and Steiner
paths are dashed�

in the same direction with respect to E� In the fol�
lowing two lemmas we show that two horns cannot
each have two consecutive hops containing the same
triangle vertices�

Lemma � Suppose a horn H has two consecutive
hops M and M� �not a reversal�� and another horn
H� has two consecutive hops M � and M �

�� such that M
and M � contain the same input vertex set� and sim�
ilarly M� and M �

� contain the same input vertex set�
If neither H nor H � self terminates on M�M ��M� or
M �

� as in Item �� then M� and M �
� intersect as in Item

��

Lemma � Suppose a horn H has a reversal R� and
another horn H� has a reversal R� with hops that con�
tain the same vertex sets as those of R� If neither
horn terminates on R or R� as in Item �� then the
two reversals intersect as in Item ��

Theorem � The collection of horns may intersect a
given edge O�mi � p� times�

Proof� The proof is very similar to the proof of The�
orem �� and relies on on Theorem �� Lemma � and
Lemma ��

��� Introducing Steiner paths for the col�
lection

The algorithm for constructing the Steiner paths
is iterative� If no horn terminated by Item � then
we could construct the Steiner paths and no more it�
erations would be required� However� if a horn ter�
minates because of Item � then its last Steiner point
may induce a path in the next iteration� We have
shown above that each iteration will produce only

O�n�mi � p�� Steiner path points� where mi is the
number of horns in iteration i� We show below that
at each iteration we reduce the number of horns by
at least a factor of ���� so the sum of the mi is �m�
Furthermore� since the mi are bounded above by a ge�
ometric series� there is only a logarithmic number of
iterations in terms of m�

Theorem � The number of horns in the next itera�
tion is at most ��� times the number of horns in the
current iteration� That is� mi�� � �mi���

Proof� The proof of this theorem is a matter of speci�
fying exactly which paths we create when horns inter�
sect� We may consider a horn H as a root of a subtree�
whose children are the like�oriented horns that termi�
nate on H as in Item �� The children are divided into
left and right sides� depending on where they intersect
H� �There are also the oppositely oriented horns that
terminate on the center or boundary path of H� but
such horns will not contribute to the next iteration��

In any tree� there is a node N whose children are all
leaves� We may recursively remove the subtree at N
by adding a tree�like Steiner path for each non�empty
side of N� The �root� vertex of such a Steiner path lies
on the boundary path of the corresponding horn� and
gives rise to a horn in the next iteration� See Figure ��
As a heuristic� it is sometimes worthwhile to continue
a Steiner path along the boundary path to the parent
of N� and sometimes worthwhile to introduce no path
on a side with one child� If there is one child on each
side� then we remove a subtree of size three and add
two root vertices� In all other cases� the ratio of the
size of the removed subtree to the number of added
root vertices is at least �� Hence mi�� � �mi���

Note that the root of the entire tree terminates by a
di
erent criteria� and admits a Steiner path that does
not give rise to a horn in the next iteration� Thus
subtrees of size one need not be accounted for�

Theorem � At most O�nm�np logm� Steiner points
are added�

� Triangulating the non�conformal tri�
angles

We now have a non�conformal triangulation in
which some triangles have Steiner points on their
edges� We now show how to triangulate these trian�
gles� taking advantage of the special geometry of the
Steiner points in order to ensure that all angles are at
most �����
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Figure �� How to triangulate a triangle with Steiner
points on its boundary�

��� Fixing small angle triangles

We introduce the Steiner path edge AB when the
angle between the triangle edges containingA and B is
less than ���� We say such edges are drawn� The other
Steiner path edges are forever ignored� and also some
drawn edges may be erased later� We have bounds on
the angle that Steiner path edges make with triangle
edges�

Lemma 	 The angles at the intersection of a drawn
Steiner path edge and a triangle edge are between ���
and �����

We can swap vertices of drawn Steiner path edges
so that they do not cross� and still maintain the above
angle bounds�

Lemma �
 Steiner path edges may be redrawn so
that no two cross� while maintaining the angle bounds
of Lemma ��

We retain only the drawn edges that are far from
UV � We erase all Steiner path edges AB where both
� UV A � ��� and � V UB � ���� Since the edges do
not cross� there will be an edge AB �closest� to UV
that is not erased� Any edge with a vertex on AU or
BV will be erased� and any edge with a vertex on AW
or BW will be drawn�

What remains is a the non�conformal trape�
zoid ABV U� and conformal triangles and trapezoids
bounded by drawn edges� UW� and VW� According
to Lemma � and Lemma ��� the triangles and trape�
zoids have largest angle no more than ����� Hence
the conformal trapezoids may be triangulated with an
arbitrary diagonal and achieve largest angle no more
than �����

We now triangulated region ABV U� We introduce
a vertex C in the interior of the triangle� We place
C so that � UV C � � V UC � ���� We triangulate by

introducing an edge from C to each of the Steiner and
triangle vertices in region ABV U � See Figure ��

It may be that B � V or A � U � Also there may
not be a drawn edge AB� so that the region degener�
ates to �WV U � The construction needs no modi�ca�
tions for these cases�

Lemma �� The triangulation of region ABV U has
no angle larger than �����

��� Fixing all�large angle triangles

It remains to consider triangles with every angle
larger than ���� Using a construction almost iden�
tical to that of Section ���� we may triangulate with
no angle larger than ���� �see Figure ��� It is pos�
sible to use the fact that the angle at W is large to
directly bound the largest angle in the region WAB�
For region ABV U � the proof of Lemma �� holds with
slightly di
erent angle bounds in various places� but
with the same overall bound of �����

� Conclusions

There is a tradeo
 between the cone angle of the
horns and the number of times that a triangle edge is
crossed� We state our cone angle to be ���� If the
cone angle is �� we conjecture that the techniques of
Section � can be used to obtain triangles with largest
angle at most ��������� On a more general note� we
have the following problems�

What is the relationship between the largest angle
permitted in a triangulation and the number of Steiner
points necessary to achieve that bound� How does this
depend on the type of input �e�g� convex polygon�
simple polygon� polygon with holes� PSLG��

The cardinality of our PSLG triangulations is
within a logv factor of worst case optimal� Is there
an algorithm that is within a constant factor of worst
case optimal� A more interesting open problem is the
existence of an algorithm that generates triangulations
of PSLGs or polygons with cardinality within a factor
of optimal for the given input�
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