GMI Modeling of Aerosols: Comparisons with Surface and Satellite Observations

Xiaohong Liu, J.E. Penner, H. Phillip University of Michigan

Thanks to GMI core team: Susan Strahan, Bigyani Das, Chris Readinger, Jose Rodriguez

1. Introduction

- Large uncertainties in current estimations of the aerosol clirect & indirect effects on climate (IPCC, 2001) due to
 aerosol burdens and lifetimes predicted
 aerosol size distributions assumed/predicted
 Hydroscopic, optical properties, mixing states
 ...
 Aerosol model comparisons (e.g., AEROCOM)
 emission-as-is
 prescribed sources. However, different meteorology,
 - schemes (scavenging, convection, chemistry...)

2. The GMI Aerosol Model

 The global Modeling Initiative (GMI) model, a modular CTM model incorporating different components and inputs, driven by 3 meteo. data: DAO, CCM3, GISS

horizontal resolution: 5° x 4°

vertical resolution:

DAO -- 46 levels, top at 0.1 hPa
CCM3 -- 52 levels, top at ~0.006 hPa
GISS -- 23 levels, top at ~0.016 hPa

Adding aerosol module

prognostic variables: DMS, SO₂, sulfate, H₂O₂, biomass burning OM/BC, fossil fuel OM/BC, natural OM, mineral dust 4 bins & sea salt 4 bins (0.05-0.6, 0.6-1.2, 1.2-2.5, 2.5-10 um radius)

- gas and aqueous phase sulfate production from SO₂ with OH, H₂O₂, O₃. OH, HO₂, O₃, NO₃ from Michigan.
- Large-scale stratiform and convective cloud fraction parameterized from Sundqvist et al. (1989) and Xu and Krueger (1991). Cloud water content parameterized from Hack (1998)
- Dry deposition (Zhang et al., 2001), gravitational settling (Seinfeld and Pandis, 1997).

 Wet deposition (Giorgi and Chameides, 1986; Balkanski et al., 1993) with in-cloud scavenging efficiency: BC/OM=0.4, SO4=1, dust=1, sea salt=1
 Hydroscopic growth: Gerber (1991)

Emissions

- DMS: Kettle et al., (1999), 26.1 Tg S yr⁻¹
- Fossil fuel SO₂: IPCC-specified 2000 (Nakicenovic et al., 2000), 69 Tg S yr⁻¹
- Volcanic SO₂: Andres and Kasgnoc (1998), 4.8 Tg S yr¹
- BC: Fossil fuel and biomass burning (Penner et al., 1993; Liousse et al., 1996)
- <u>OM</u>: Fossil fuel and biomass burning (Penner et al., 1993; Liousse et al., 1996); Natural OM: 9% of terpene emissions from Guenther et al. (1995)
- Mineral dust: Ginoux et al. (1997)
- Sea salt: Gong et al. (1997)

Annual and zonal mean DMS (pptv)

Annual and zonal mean SO2 (pptv)

Zonal mean SO4 in Jan. (ug/m3)

Vertically integrated annual mean SO4 (mg/m2)

Vertically integrated annual mean BC (mg/m2)

Vertically integrated annual mean dust (mg/m2)

Vertically integrated annual mean sea salt (mg/m2)

<u>Sulfate</u>

	DAO	CCM3	GISS	Others
SO ₂ oxidation (TgS/yr)	68.6	63.0	65.5	44.7-74.7
by gas phase (%)	30	27	28	
by aqueous phase (%)	70	73	72	
Dry deposition (TgS/yr)	3.4	4.9	3.7	3.9-18.0
Wet deposition (TgS/yr)	65.2	58.0	61.8	34.6-61.0
Burden (TgS)	0.85	0.79	0.65	0.53-1.05
Lifetime (days)	4.5	4.6	3.6	3.9-5.8

<u>OM</u>

	DAO	CCM3	GISS	Others
Sources (Tg/yr)	111	111	111	
Dry deposition (Tg/yr)	11.4	17.7	15.7	
Wet deposition (Tg/yr)	99.7	93.4	95.5	
Burden (Tg)	1.43	1.64	1.49	0.95-1.8
Lifetime (days)	4.7	5.4	4.9	3.9-6.4

<u>BC</u>

	DAO	CCM3	GISS	Others
Sources (Tg/yr)	13.5	13.5	13.5	
Dry deposition (Tg/yr)	1.6	2.4	2.1	
Wet deposition (Tg/yr)	11.8	11.1	11.4	
Burden (Tg)	0.18	0.19	0.18	0.13-0.29
Lifetime (days)	4.8	5.1	4.9	3.9-8.4

<u>Dust</u>

	DAO	CCM3	GISS	Others
Sources (Tg/yr)	1684	1684	1684	
Dry deposition (Tg/yr)	866	986	941	
Wet deposition (Tg/yr)	816	695	741	
Burden (Tg)	23.2	16.8	17.8	8.0-35.9
Lifetime (days)	5.0	3.6	3.9	2.3-7.1

<u>Sea Salt</u>

	DAO	CCM3	GISS	Others
Sources (Tg/yr)	3768	3768	3768	
Dry deposition (Tg/yr)	2715	2918	2864	
Wet deposition (Tg/yr)	1048	845	900	
Burden (Tg)	3.4	4.9	3.6	7.3-12
Lifetime (days)	0.33	0.48	0.35	0.6-1.0

Comparison of modeled BC with observations at surface

Comparison of modeled SO₄ with observations at surface

Comparison of modeled dust with observations at surface

Comparison of modeled sea salt with observations at surface

Compare modeled aerosol optical depth with satellite observations (MISR, MODIS, AVHRR, POLDER)

Calculate modeled aerosol optical depth from monthly aerosol concentrations predicted
meteorological data at every 6-hr (T, P, qv)
Aerosol scattering coefficients (Ke) calculated from Mie theory. RH-dependent Ke for SO₄ and sea salt.

Aerosol optical depth (in January) DAO CCM3 90 90 70 70 50 50 30 30 10 10 -10 -10 -30 -30 -50 -50 -70 -70 -96 -180 -150 -120 -90 -90 -180 -150 -120 -60 -30 δ 03 06 09 120 150 180 -90 -60 -30 63 09 120 150 180 b 60' longitude longitude 90 GISS MISR 70 60 50 30 30 10 -10 -30 30 -50 6 -70 -90 -180 -150 -120 -90 o o longitude -120 -60 60 120 -60 -30 03 06 09 120 150 180 -180 Q longitude 0.01 0.04 0.1 0.4 0.8 0.02 0.06 0.2 0.6 1.1

Aerosol optical depth (in July)

Conclusions

- Different distribution patterns of aerosols associated with 3 met fields
- Aerosol burdens are within 40% for 3 met fields
- Aerosol simulations generally reflect changes of observations, however, improvements are needed for emissions, scavenging...

Annual and zonal mean BC (ug/m3)

