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HPC into the Next
Millennium

Gary Smaby
CEO/Principal Analyst
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Supercomputing

4ÔWhat It Was AinÕt What It IsÕ

4Fifty Years of Evolution

4Mainstreaming HPC

42001 and Beyond

4Q & A

Game Plan

Conference on High Speed Computing - April 23, 1998
Salishan Lodge
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What Was a Supercomputer?

The worldÕs fastest computer
. . .at any given point in time.
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TodayÕs Supercomputer
A platform-independent

computational visualization tool
for the imagination . . . .

a time machine
for simulating natural phenomena.

SSSSMMMMAAAABBBBYYYY    GGGGRRRROOOOUUUUPPPP

Original Apps

4Calculate trajectories

(German V-2)

4Design weapons

4Crack codes
(Colossus)

(Manhattan Project)
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The Evolution of Supercomputing The Forties

1945

von Neumann
defines first
stored-program
computer . . .

Grace Hopper
discovers the
first computer
bug - a moth
stuck between
relays

1947

Semiconductor
revolution begins -
transistor soon
supplant vacuum
tube

1946

ENIAC -  first digital computer
fills 30x50 room, weighs 30
tons, 18,000 vacuum tubes,
1000 memory bits, 7500 ops

SSSSMMMMAAAABBBBYYYY    GGGGRRRROOOOUUUUPPPP

ÒComputers in

Popular Mechanics (1949)

the future may
weigh no more than 

one-and-a-half 
tons.Ó
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1958

Texas Instrument
builds first
integrated circuit

1957

Two start-ups form:
Digital Equipment
and
Control Data

First commercial
FORTRAN
program

Ñ

The Evolution of Supercomputing The Fifties

1959

L.R. Johnson coins the
term ÒarchitectureÓ to
describe the IBM 7030
ÒStretchÓ.

SSSSMMMMAAAABBBBYYYY    GGGGRRRROOOOUUUUPPPP

1964

Seymour bulds worldÕs
fastest ÒsuperÓ computer  -
CDC 6600 - 3X faster than
IBMÕs 1 MIPS Stretch

The Evolution of Supercomputing The Sixties

1969

UNIX is
developed by
Bell Labs on a
spare VAX

DigitalÕs PDP-1 is
cheap ($120,000)
and small (250 lbs.).

1960
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ÒBut what the hell
  is it good for?Ó

Anonymous IBM Engineer

Commenting on the computer chip (1968)

SSSSMMMMAAAABBBBYYYY    GGGGRRRROOOOUUUUPPPP

The Evolution of Supercomputing The Seventies

Seymour Cray leaves
Control Data to start
Cray Research. . .

1972 1976

Cray-1 debuts. . .
all R&D costs
recovered in first sale
to Los Alamos
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1982

Cray-XMP
deploys
parallelism to
double speed

1986

Thinking MachineÕs
16,000 CPU MPP
executes one gflops

The Evolution of Supercomputing: The Eighties

1985

CRAY-2 packs six
miles of wiring in
4Õ tall chassis. . .
Japanese enter
the fray. . .
minisupers debut

1981

IBM
introduces
the PC

SSSSMMMMAAAABBBBYYYY    GGGGRRRROOOOUUUUPPPP

Other People's Money

The Evolution of Supercomputing: The Eighties
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Collapse
of the

Evil Empire

The Evolution of Supercomputing The Eighties

SSSSMMMMAAAABBBBYYYY    GGGGRRRROOOOUUUUPPPP

To
Genes & Greens

From
Nukes & Spooks

The Evolution of Applications 
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From Nukes and Spooks . . .

SSSSMMMMAAAABBBBYYYY    GGGGRRRROOOOUUUUPPPP

From Nukes and Spooks . . .

Breakthrough text processing and visualization software to
amplify latent human capabilities for acquiring, understanding
and managing massive amounts of textual information   —
without prior knowledge of the docubase.

Emerging HPC Applications
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Competitive Intelligence

A systematic business
methodology for gathering
and analyzing information
about your competitors,

customers, suppliers, and
markets to further your own

company goals.

Emerging HPC Applications
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ForeKnowledgeTM

Self-organizing 
and Interactive
Web Content Maps
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Common KnowledgeTM

A self-organizing
knowledge
reservoir that
dynamically
receives and maps
intellectual
corporate assets
sent to it via email.

SSSSMMMMAAAABBBBYYYY    GGGGRRRROOOOUUUUPPPP

“You can
see alot by
watching.”

Competitive Intelligence

Yogi Berra

Emerging HPC Applications
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Market Scale
1997 - $2.18B

Other 4%

Fujitsu 4%

NEC 5%

HP/Convex 11%
IBM 16%

Digital 11%

SGI/ Cray 43%

Sun 6%

Scientific/Engineering/Technical HPC Market Size - Worldwide

SSSSMMMMAAAABBBBYYYY    GGGGRRRROOOOUUUUPPPP

The Evolution of Supercomputing

Predictions: 2001 and Beyond

1) The Ants Prevail
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Economies of Scale

Merced Chip (P7)
Debuts in 1999 at 600 Mhz

SPECfp95 > 100 
8 Instructions @ Cycle
Scales 1Ghz to 4Ghz

Design/Fab Cost >$2.5B
Cost to Produce ~$100

Intel Market Cap ~$125B

SSSSMMMMAAAABBBBYYYY    GGGGRRRROOOOUUUUPPPP

The Evolution of Supercomputing

Predictions: 2001 and Beyond

2) Cray Makes Like Harley
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The Evolution of Supercomputing: Today

Emergence of
IntelÕs off-the-shelf
Pentium and IA-64
processors

CrayÕs Origin2000
scalable system stacks
processors like LEGO
blocks to achieve
increased performance

Sandia links 9072 Intel
Pentium Pro chips to
top one teraflops

SSSSMMMMAAAABBBBYYYY    GGGGRRRROOOOUUUUPPPP

The Evolution of Supercomputing

Predictions: 2001 and Beyond

3) Apps Rule



A
lg

or
ith

m
s

A
rchitecture

Language

237

Gary Smaby

SSSSMMMMAAAABBBBYYYY    GGGGRRRROOOOUUUUPPPP

Hot HPC Apps

4Model new drugs

4Design exotic securities

4Map the human genome

4Create Hollywood special effects

4Web-based knowledge management

4Designing stuff (cars, airplanes,golf clubs)

SSSSMMMMAAAABBBBYYYY    GGGGRRRROOOOUUUUPPPP

The Evolution of Supercomputing

Predictions: 2001 and Beyond

4) Money Still Talks

ÒThe real limitations come from money, not physics.Ó
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The Evolution of Supercomputing

“We don’t have too far to go (with
circuit technology) until we get to
the size of biological molecules . . .
I think we’ll be coming face-to-face
with the life force.”

Seymour Cray  (5/30/96)

PETAFLOP COMPUTING?

SSSSMMMMAAAABBBBYYYY    GGGGRRRROOOOUUUUPPPP

The Evolution of Supercomputing

2001 and Beyond

ÒThe future   
isnÕt what it used to be.Ó

Arthur C. Clarke
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Q & A
or write me at 
gary@smaby.com
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Conference Presentation by William Trimmer
The Other Side of Computing by William Trimmer Belle Mead Research, Inc.

Phone 908 359 0012, Fax 908 359 2094 58 Riverview, Belle Mead, NJ 08502 USA
Web trimmer.net, Email W.Trimmer@IEEE.org

Abstract

Computation takes us to a world of its own. An intangible world where incantations create, modify,
destroy, and build castles in the sky. In this world huge power can be generated, information neatly
trimmed for a purpose, and couriers sent to other castles at nearly the speed of light.

What computation and software can not do is interact with the real world. Interaction with the tangible
takes forces and photons and electromagnetic fields and sensors.

Information and computational ability is intriguing and of great utility, but it can not tie
your shoe, or fry an egg.

The original ingenious and intelligent computing systems were mechanical, things such as clocks that
chimed and displayed dancing figures on the hour. Moving electrons in micro computers are now
doing a superb job of providing the intelligence. Complex calculations and decisions are inexpensive.
It is now the mechanical devices needed to interface electronics to the world that are expensive.

But things are about to change. This talk discusses the proliferation of micro mechanical devices. A
complete gear syste
m, or a motor, or a chemical sensor can be made that is 1/1000 the size and cost of a CPU or memory
chip. A revolution in our ability to interface computing power to the real world is about to begin.

Computation is to micro mechanical devices as Yin is to Yang. One is soft and intangible, the other
active and tangible. The real promise is in their combination.
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Prelude

There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy. [Ref 1]

Alessandro Volta, an Italian Physicist (1745 to 1827), experimented with dissimilar metals in aqueous
solutions, and found a weak source of current. Andre Marie Ampere, a French Physicist (1775 to
1836), passed currents through wires and discovered the relationship between currents and magnetic
fields. Imagine now, if you can, these gentlemen walking through your house. What wonders we take
for granted. Did their genius prepare them to comprehend the computer on your desk?

The world of science and engineering is still unfolding wonders. One recent development is the ability
to make micro mechanical devices. Motors the diameter of a human hair and sensors the size of a grain
of salt are enabling inexpensive systems that can interact with our world on a new scale.

Surprisingly, the time scale from conception to utilization has been collapsing. Nikola Tesla and
Thomas Alva Edison developed practical electric motors in the 1880’s, about a hundred years after
Volta and Ampere’s work. The micro comb drive motor was described in 1989, and is currently being
used in automobiles as an airbag sensor. This micro development took less than a dozen years from
conception to full scale implementation.

There are several reasons for the rapid advances of micro devices (also called MicroElectroMechanical
Systems, MEMS, micromechanics, Micro System Technologies, mst, and Micro Machines). One,
manufacturers of these micro devices are using well established technologies. The electronics industry
provides sophisticated process chambers for making micro comb drive motors and a host of other
micromachined devices. The machine tool industry has developed micro Electro Discharge Machining,
EDM, techniques and single point diamond machining tools that can fabricate minuscule mechanical
devices. The plating and molding communities have enabled LIGA and other replication processes that
can replicate extremely fine structures. Two, there are a number of people skilled in these base
technologies who are looking for new challenges. And three, established companies and the investment
community recognize the potential of new technologies. The micro technologies are exploding forth
using a well established infrastructure.

Volta and Ampere worked quietly in their labs. Edison worked with a small group of researchers.
Currently I estimate there are 10,000 people working on micro-mechanical projects. Much of this
current effort is developing products.

While there are more things in the universe that one can imagine, we can push the boundaries. Your
help exploring the applications and engineering and science of micro devices is welcome.
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Introduction

Micromechanics is an extremely broad field, a field that will touch most aspects of our
grandchildren’s lives. This field encompasses all of the current technologies -- only it is concerned
with a smaller dimensional scale. And micromechanics promises applications in all disciplines.
Richard Feynman well conveyed the excitement of our new discipline:

“I imagine experimental physicists must often look with envy at men like Kamerlingh Onnes, who
discovered a field like low temperature, which seems to be bottomless, and in which one can go down
and down. Such a man is then a leader and has some temporary monopoly in a scientific adventure.
Percy Bridgman, in designing a way to obtain high pressures, opened up another new field and was
able to move into it and lead us all along. The development of ever higher vacuum was a continuing
development of the same kind.

“I would like to describe a field, in which little has been done, but in which an enormous amount can
be done in principle. This field is not quite the same as the others in that it will not tell us much of
fundamental physics (in the sense of, “what are the strange particles?” but it is more like solid-state
physics in the sense that it might tell us much of great interest about the strange phenomena that occur
in complex situations. Furthermore, a point that is most important is that it would have an enormous
number of technical applications.

“What I want to talk about is the problem of manipulating and controlling things on a small scale.”
[Ref2]

Below is discussed the earlier perceptions that hindered the development of small mechanisms, our
current field and needs, and a look at our future.

The Genesis

Perhaps things normally start small, and grow. Man’s habitats have grown from houses, to buildings,
to skyscrapers. Our ability to travel has increased from a few miles on foot, to horses, to trains, and
now we can encircle the world in a few days. Individually we work to make large accomplishments in
hopes of enormous success. We are enthralled with the big and sign)ficant and substantial.

The insignificant, insubstantial, and minuscule is usually beneath our concern.
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And yet.

A dozen years ago, I was trying to persuade a machinist to build a very small structure. He listened
patiently for awhile and then said, “Why do you want something small, a toy? I can make you
something that is big and good.” In his mind, most people’s minds, small things were cheap and no
more than a toy. When H. A. Rowland (1848 to 1901, professor of physics at the Johns Hopkins
University, Baltimore) went to make very small and accurate grooves for diffraction gratings, he used
large machines and buried them in even larger vaults for thermal stability. Ten years ago an eminent
colleague at Bell Laboratories looked me in the eye, and said, “Your micro things will never amount to
anything. Large objects will always do a better job at a lower cost. “ This was very strongly the feeling
at this time.

Even Feynman responded with good natured jesting to critics of small machines. In his famous talk
There’s Plenty of Room at the Bottom, given at the American Physical Society meeting in 1959 he
says “What would be the utility of such machines? Who knows? Of course, a small automobile would
only be useful for the mites to drive around in, and I suppose our Christian interests don’t go that far.”
[Ref 3] And in his 1983 talk, Infinitesimal Machinery, at the Jet Propulsion Laboratory he says, “I also
talked in the 1960 lecture about small machinery and was able to suggest no particular use for the
small machines. You will see there has been no progress in that respect. “ [Ref 4]

Originally, the ingenious and intelligent systems were mechanical, things such as clocks that chimed
and displayed dancing figures on the hour. Electronics is now doing a superb job of providing this
intelligence. Complex calculations and decisions have now become inexpensive. Presently, it is the
mechanical devices required to interface electronics to the world that are expensive. Fortunately the
new micromechanical devices integrate well with electronics: one providing the intelligence and one
providing the hands.

Electronics has led much of the recent development of micromechanical devices by providing many of
the tools and techniques, making the rapid advances possible. This partnership is to great advantage.

Surprisingly, mechanical systems can now be smaller and less expensive than electrical systems.

There is an increasing breadth of microfabrication techniques enriching our capabilities. Examples
include LIGA, EDM, precision machining, plating, and molding. To ignore the wide range of
fabrication techniques available is to limit oneself.

Yet how did things insignificant in size gain a purpose?

Perhaps Johann Gutenberg gave an indication of the usefulness of small mechanical devices.
Gutenberg means good mountain, and indeed, in 1456 he set in motion a mountain of small
mechanical devices (individual movable type) for the good of mankind. One interesting aspect of his
work is the interchangeability - a few standardized units are made that can be combined to meet most
needs. This concept may be useful for our micro devices.
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Ideas, excellent ideas, often seem to gain a life of their own. Like grass growing through the pavement,
they seem to search for fertile minds and the correct opportunities. Often key ideas are invented in
several different places. For example, Pi Sheng of China made movable type of Chinese characters
from clay in 1040. And Korea molded metal type in sand in 1361. Gutenberg was just one of several
who expressed the idea of moveable type. If you have a good idea, I encourage you to develop it now;
there is a high probability others share your idea.

Until recently, minute mechanical systems have developed at a stately pace. For years the watch
makers’ art has represented the limits of our micro excursion. And the practitioners ofthe watch
industry have succeeded admirably. For example, the motor in a wrist watch has high efficiency, runs
for years (even after being dropped), and costs less than a cup of coffee. Yet, when I was talking with a
gentleman who had designed many of the watches we wear, he said, “I have spent my life trying to
make smaller mechanisms, and when you show me something really smaller, I do not know what to do
with it.” This was a common response to motors the diameter of a human hair.

The Present

The rapid race to more clever micro machines has just begun.

The earlier disdain for the small and insignificant is gone. Now there is a growing excitement about the
micro.

Gone are my fears that the micro field would grow on ‘isn’t that neat’ and then die when no purpose
was found. Enough people now recognize the importance of micro science and engineering and
product development to ensure the field.

Things insignificant in size do have a grand purpose.

Yet it is difficult to realize the breadth of this field of micro mechanical devices.

Most advances represent a specific technology. The Scanning Tunneling Microscope for example,
gives us the ability to detect and perhaps manipulate atoms. High temperature superconductors hold
the promise of efficient power transmission and novel electronic

circuits. The diesel engine gives us a source of mechanical power. Each of these is an important
advance of a single thing.

The field we are contemplating here today is vast beyond our normal concerns. It is the science and
engineering and development and commercialization of a whole new realm of human enterprise.

I defy you to think of a large scale, macro discipline in science or engineering that does not have a
small scale, micro equivalent. Your challenge, should you decide to accept it, is helping to image the
macro into the micro.
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The Future

What will the field of micro mechanical devices be like in a thousand years?

The first thing to do after such a question is to recover from the shock of being asked.

Yet, it is useful to ponder the potential.

To stir the debate, several predictions are given below.

One, micromechanical devices will become omnipresent. They will fill the niches of our lives. Can
you find fundamental limitations that will keep microdevices from becoming inexpensive and readily
available? If not, why not their proliferation?

Clayton Teague of the National Institute of Standards and Technology in the U.S. gave an interesting
presentation [Ref 5] on Feynman’s tiny hands. Feynman proposed small hands manufacturing smaller
hands, which in turn manufacture even smaller hands. This ever smaller procession of tiny hands can
then be used to manufacture large numbers of useful micro devices. In this talk, Clayton Teague also
discussed John von Neumann’s conjecture on the self replication of complex systems. [Ref 6] At what
point can our micro devices start to self replicate themselves? A self replicating micro system needs
careful consideration.

Two, unless there is a need for something to be large, it will be small. There are many reasons for this.
Material costs are less for small systems. The systems use less space, and small systems can perform
functions more rapidly. Because of the small size and low cost, multiple systems can be used for one
function, increasing the robustness and reliability. Because of their size, these microsystems can be
dispersed; instead of the large devices used now, many micro devices can be used to give a finer
“rained sensing and manipulation of our world. Very few things need to be large. But hopefully in the
year 3000, dinner will still be large.

Three, the worlds of the micro (millimeter to micron) and the nano (micron to Angstrom), electronics,
and genetic engineering will evolve into closely interrelated fields. Already micro devices are helping
to image and handle molecules, and nano technology is making small tubes and balls that hold the
promise of mechanical structures.

Conclusion

As micro electronics has made possible much of the micro mechanical revolution, so now micro
mechanical devices will extend the reach of electronics, and carry electronics into new places.

Micro computers & computation are to micro mechanical sensors & actuators as Yin is to Yang. One is
soft and intangible, the other active and tangible. The real promise is in their combination.

Please join us in this great adventure.

William Trimmer
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Crystalline
Computation

Norman Margolus
BU CCS, MIT AI Lab

Plan of the talk

• Fundamental Constraints computers will imitate physics

• Crystalline Algorithms:  what changes?

• Near Term:  3D bit-mapped computations

• Conclusions

• Uniform Crystal:  general purpose, practical, scalable
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Fundamental physical constraints

• Locality: no
information can travel
faster than light

• Invertibility: no
information is ever
erased from the world

• QM: the laws of
physics act differently
at small scales

? 0

0110

+ ...

Fundamental physical constraints

Handled in hardware:
• Locality: use fast/short

wires  (gets harder)

• Invertibility: throw away
info as heat  (~ density)

• QM: space and time
averaging  (stats get bad) 1960   1980   2000   2020   YEAR

atom

cell

SIZE Generic solutions get
worse as size of smallest
circuit features shrinks.
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Fundamental physical constraints

Incorporate
constraints:

• Locality: mesh arch-
itecture    (--> no wires)

• Invertibility: reversible
logic        (--> no  heat )

• QM: exploit digital
character (--> no  stats )

The computer’s structure and
operation become more like mic ro
physics as circuit features shrink.

1960   1980   2000   2020   YEAR

atom

cell

SIZE

Why a simple uniform crystal?

• Practical: easier to design,
build, test and control

• Scalable: just make more -- as
asymptotically good as anything

• Fast: high processing density
and fast cycle time

• Fair: doesn’t try to favor any
class of (classical) computations
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Why a simple uniform crystal?

Why not a ...
• Coherent quantum computer:

too much overhead for
general purpose computing

• Amorphous computer: we
gain computing power from
predictability

Crystalline algorithms
SPACE:

• The computer designer just
provides a large-scale digital
spatial medium: a 3D FPGA

• Assigning which positions will
perform which operations is
much like building hardware

• Traditional architectural ideas
for mapping computation into
space remain interesting
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Crystalline algorithms

REVERSIBLE  FUNCTIONS:

   We can avoid the need to throw away information by
“uncomputing” partial results.

F

Q
0
0
0
0

A
?
?
?
?

copy
0

F

Q
0
0
0
0

A
A

-1

Crystalline algorithms

MACROSCOPIC  SCALING:

Large scale combinatorial computations become practical.



A
lg

or
ith

m
s

A
rchitecture

Language

254

Session 9

Crystalline computers today

• Mainstream make
crystalline look hard

Possible today:

• Terabits/sec/chip for
large-scale meshes

• Virtual processor
SIMD using
embedded DRAM

2K x 2K
addr -->

block #1
--> data (2K bits)

2K x 2K
addr -->

block #2
--> data (2K bits)

2K x 2K
addr -->

block #25
--> data (2K bits)

...

One chip, with 50ns row
of 50Kbits/row = 1 Tbit/

Crystalline computers today

Immediate applications:
• 3D bitmap-based approach

to “virtual reality”

• 2D/3D image segmentation,
manipulation and rendering

• physics simulations

• cryptography

• levelized logic simulation
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Conclusions

• Algorithms and computers will become
more physics-like

• Crystalline computers will be the best
possible general purpose computers

• Some of the power of crystalline
computations can be harnessed today
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Quantum Computing

E. Knill

� Quantum computing is inevitable.

� Applications of quantum computers.

� What are quantum computers?

� The power of quantum algorithms.

� Requirements for quantum computing.

� Quantum noise control.

� Proposed quantum computing devices.

� Prospects.

Moore’s Law

1M
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 per chip
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Moore'sLaw Trend Line ?

Moore[27], Montemerlo&al.[26]

LOS ALAMOS
National Laboratory
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Behind the Wall?

Lloyd 1996

LOS ALAMOS
National Laboratory

2

Quantum Computer Applications

� Long distance quantum cryptography.

� Number theory algorithms: Factoring, discrete
logarithm. Shor 1994[31, 34]

� Accelerated combinatorial searching. Grover 1995[12, 13]

� Code breaking: Public key cryptography, DES.

� Physics simulations.
Feynman 1984[10], Lloyd 1996[22], Wiesner 1996[37], Zalka 1996[39]

LOS ALAMOS
National Laboratory

3
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Specifying a Model of Computation

� State space.

� Manipulating states.

� Initial state.

� Read out.

� Quantum computing is an extension of classical
computing.

LOS ALAMOS
National Laboratory

4

State Space

Classical

Quantum

1 bit

0; 1

�j0i+ �j1i

n bits

000 : : : ; 100 : : : ;

010 : : : ; 110 : : : ;

001 : : : ; : : :

�000:::

j000 : : :i +

�100:::

j100 : : :i +

�010:::

j010 : : :i +

�110:::

j110 : : :i +

�001:::

j001 : : :i + : : :

LOS ALAMOS
National Laboratory

5
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Processing Information

Classical b1

b2

b3
b1� b2 ^ b3

b2� :b2

b3� b1 ^ :b2

011 111 101 101

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

90
YQuantum q1

q2

q3

�
1 �1

1 1

�
q1

0
BB@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1
CCA

q1q2

0
BB@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1
CCA

q1q3

j000i
+

j000i

j100i
+

j000i

j110i
+

j000i

j111i

LOS ALAMOS
National Laboratory
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Initial State

prepared state

Classical b1 0

b2 0

b3 0

Quantum 90
Y

j000i

8>>><
>>>:

9>>>=
>>>;

q1

q2

q3

0

0

0

LOS ALAMOS
National Laboratory
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Readout

Classical b1

b2

b3

1

0

1

Quantum

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���

���
���
���q1

q2

q3

+
j000i

j111i

��
1 0

0 0

�
;

�
0 0

0 1

��

Prob. :5 :5

Res.
q1 0 1

q2; q3 j00i j11i

LOS ALAMOS
National Laboratory
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Power of QC y: State Space?

Classical states

Probability distributions

Quantum states

� Exponential dimension in terms of physical resources.

� No feasible classical simulation for > 40 qubits?

y Quantum Computing.

LOS ALAMOS
National Laboratory

9
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Power of QC y: Entanglement?

� For quantum communication.

+
j0ij0i+ j1ij1i

y Quantum Computing.

LOS ALAMOS
National Laboratory

10

Power of QC y: Interference effects?

180
Z+X

180
Z+X

180
Z+X

j000i+ j010i+

j101i+ j111i

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

j000i+ j101i

�
1 1

1 �1

�
y Quantum Computing.

LOS ALAMOS
National Laboratory

11
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Power of QC y: Quantum Parallelism?

j000ij0i

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

180
Z+X

180
Z+X

180
Z+X

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

j0ij0i
+

j1ij0i
+

j2ij0i
+

j3ij0i
+

j4ij0i
+

j5ij0i
+

j6ij0i
+

j7ij0i

in binary

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

f

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

j0ijf(0)i
+

j1ijf(1)i
+

j2ijf(2)i
+

j3ijf(3)i
+

j4ijf(4)i
+

j5ijf(5)i
+

j6ijf(6)i
+

j7ijf(7)i

?

y Quantum Computing.

LOS ALAMOS
National Laboratory
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Period Determination

� f is periodic with period p if for all k, f(k + p) = f(k).

Example:

f(3k) = 1; f(3k + 1) = 0; f(3k + 2) = 0

k 2 f0; : : : ; 63g

� Problem: Determine the unknown period of a periodic
function.

Fourier transform

period = 3 peaks at � k 64=3

LOS ALAMOS
National Laboratory

13
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Quantum Fourier Transform

F :

NX
n=0

�njni !

NX
k=0

 X
n

e
2�nki=N

�n

!
jki

� Example: amplitudes

1 j0i
+
0 j1i

+
1 j2i

+
0 j3i

+
1 j4i

+
0 j5i

+
1 j6i

+
0 j7i

!

1 j0i
+
0 j1i

+
0 j2i

+
0 j3i

+
1 j4i

+
0 j5i

+
0 j6i

+
0 j7i

LOS ALAMOS
National Laboratory

14

Network for the QFT y

180
Z+X

Z
45

Z
22.5

Z
45

90
Z

90
Z

90
Z Z

45

180
Z+X

Z
67.5

180
Z+X

Z
78.75

180
Z+X

q4

q3

q2

q1

q1

q2

q3

q4

q4: most significant bit. q1: least significant bit.

y Quantum Fourier Transform.

LOS ALAMOS
National Laboratory
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Pseudo Code for the QFT y

FOURIER(paq)
Input: A quantum register paq with d qubits. The most significant
qubit has index d� 1.
Output: The amplitudes of paq are Fourier transformed over Z

2d .
The most significant bit in the output has index 0, i.e. the ordering
is reversed.

d length (paq)

!  ei2�=2
d

for i = d� 1 to i = 0

for j = d� 1 to j = i+ 1

if pajq then R
!2

d�i�1+j(paiq)

end
H(paiq)

end

y Quantum Fourier Transform.

LOS ALAMOS
National Laboratory

16

Quantum Factoring

� Factor N , where 2n�1 < N � 2n:

a 2 f2; : : : ; N � 1g

j0ij0i !
P

2
2n
�1

k=0
jkij0i

P
2
2n
�1

k=0
jkijak(N)i

P
k jkp+ ri

P
k:k�lN=p�kjki � lN=p

hNumber theoryi
Success

Failure

Random choice

Prep. and Hadamard

Quantum parallel exp.

Measure/project reg. 2

p =
orderN(a)

Fourier transform Measure

Shor 1994[31, 34]

LOS ALAMOS
National Laboratory

17
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Requirements for Quantum Computing

� State space:

Controlled system space.
Scalability.

� State preparation:

Fiducial pure initial state.
Initial states on demand.

� State control:

Single system unitary
rotations.
Conditional dynamics.
Complete set of gates.

� Readout:

Reliable projective
measurement or reliable
expectations of system
observables.

� Noise:

No memory errors or high
parallelism.
Error per operation <
threshold.

DiVincenzo&Loss 1997[9], Knill&Laflamme 1996[19], Preskill 1997[28]

LOS ALAMOS
National Laboratory

18

Noise in Quantum Computing

Memory: Most superpositions are fragile.

� Control vs. environment: Strong interactions for
control, but weak interactions with environment.

90
X Operations: Gates are inherently “analogue”

and hence inaccurate.

� Error space: Continuity of possible errors.

LOS ALAMOS
National Laboratory

19
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Quantum Error Correction

� Discretize errors.

� Errors are local and independent.

�j0i+ �j1i

Add ancillas

Encode Decode
and
restore

Remove ancillas

�j0i+ �j1i

Shor 1995[32], Steane 1995[35]

LOS ALAMOS
National Laboratory

20

The Accuracy Threshold Theorem

Theorem 1. If the error amplitude per gate (including “no-op”) is
less than a threshold, then it is possible to quantum compute and
communicate arbitrarily accurately.

log( computational error )

0

log( gate error )

0

Overhead = 1

Threshold error

Overhead = 125

Overhead = 5

(artist’s rendition)

Overhead = 25

Shor 1996[33]
Knill&al. 1996[20], Aharonov&Ben-Or 1996[1], Kitaev 1996[17], Preskill 1997[28]

LOS ALAMOS
National Laboratory

21
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Proposed Quantum Computers

� Photonic QC1: Photons and nonlinear optics.
Milburn 1988[24], Yamamoto&al. 1988[38]

� Ion trap: Ions in a linear trap, coupling via center of mass mode,
control with lasers. Cirac&Zoller 1995[5]

� Cavity QED2: Photons in cavities and flying or trapped atoms.
Turchette&al. 1995[36]

� Superconducting Josephson junctions: Superconducting
domains, flux or cooper pairs. Bocko&al. 1997[2], Shnirman&al. 1997[30]

� Quantum dots: Trapped electrons in semiconductor nano-dots.
Loss&DiVincenzo 1997[23]

� NMR3: Nuclear spins in molecules.
Gershenfeld&Chuang 1996[11], Cory&al. 1996[6]

� Solid state NMR3: Implanted nuclear spins in silicon at low
temperature, coupling via electrons.

Kane 1997[15], Privman&al. 1997[29]

� Others: Optical lattices, crystal NMR3, : : :

1 Quantum Computing. 2 Quantum Electro-Dynamics. 3 Nuclear Magnetic Resonance.

LOS ALAMOS
National Laboratory

22

Implemented Quantum Gates I

� Cavity QED: Conditional phase shift between
photons coupled via an atom-cavity system.

Turchette&al. 1995[36]

Cs atoms
Pump beam

� Ion traps: Conditional dynamics on two bits
consisting of one ion and one phonon in a Paul trap.

Monroe&al. 1995[25]

LOS ALAMOS
National Laboratory

23
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Requirements for QC y: Ion Traps I

� Initial state, control and readout: Confirmed by
experiments using an ion and a phonon.

� Time per operation: & 1�s, depending on phonon
frequency.

� Robustness:

Achievable: R � operations=error . 1000?
Currently: R � 10.
Little parallelism.

y Quantum Computing.

LOS ALAMOS
National Laboratory

24

Requirements for QC: Ion Traps II

� State space and scalability: Single traps are limited to
10 : : : 80 ions in practice.

Elliptical trap: Linear traps:

QC ready, in ground state. Crystals, not in ground state

NIST

King&al 1998[16]

� In theory, parallel, coupled ion traps are possible.

LOS ALAMOS
National Laboratory

25



A
lg

or
ith

m
s

A
rchitecture

Language

270

Session 9

Implemented Quantum Gates II

� Liquid state NMR:

Two bit algorithms (Pseudo-pure state, EPR, Grover,
Deutsch-Josza) in chloroform and cystosine.

Knill&al. 1997[18], Chuang&al. 1997[3], 1998[4], Jones&Mosca 1998[14]

Three bit algorithms (Toffoli gate, GHZ, quantum error
correction) in trichloroethylene and alanine.

Laflamme&al. 1997[21], Cory&al. 1997[8], 1998 [7]

C13 C13

H

Trichloroethylene

LOS ALAMOS
National Laboratory
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Requirements for QC: Liquid State NMR

� Initial state, control and readout:

Experimentally, up to three bits.
Exponential loss of signal for state preparation.

� Time per operation: & 10ms.

� Robustness:

Achievable: R & 100?
Currently: R � 20.
But threshold theorem does not apply.

� State space and scalability:

State space is scalable, but state preparation is not.
Limited to . 10 bits (. 100 for physics simulation?).

LOS ALAMOS
National Laboratory
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Requirements for QC: Solid State NMR

Silicon based quantum computer.
(Theoretical proposal, experiments in progress.)

Si

Barrier

e-

P+

A-
gate

J-
gate

A-
gate

J-
gate

P+ e-

A
o

Bz

RFB~200

� Initial state, control and readout: Possible in theory.

� Time per operation: & 2�s.

� Robustness: R� 1000?

� State space and scalability: Few limitations.
Kane 1997[15]

LOS ALAMOS
National Laboratory

28

Quantum Computing Scenarios

� Minimal utilization:

Device-level quantum control and error-correction.
Long distance quantum cryptography.

+ Anticipated utilization: “Quantum coprocessors” for

“Number theory” calculations.
Accelerated combinatorial searching.

++ Maximal utilization:

Most computing and communication is fully
quantum.

LOS ALAMOS
National Laboratory

29



A
lg

or
ith

m
s

A
rchitecture

Language

272

Session 9

Quantum Computing [E. Knill, http: / /www. c3 . lam . gov/ ~knill]
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