

Silicon sensors procurement and quality assurance WBS 1.1.1

Regina Demina Kansas State University Frank Lehner University of Zurich

> Dir Rev of Run I I b Aua 12-15, 2002

Outline

- Silicon sensor for Run IIb
- Radiation environment and silicon sensor specs
- Procurement strategy
- Quality assurance
- Irradiation studies and plans
- Conclusions

Silicon sensors for DØ IIb

- Main challenge for silicon sensors radiation
 - Depletion voltage (F)
 - ◆ Leakage current (F) → noise
- Doses comparable to LHC use their R&D

• NB: Uncertainty in **F** estimate- conservative approach

Depletion voltage

Specification on breakdown voltage derived based on depletion voltage evolution

Dir Rev of Run I I b Aua 12-15, 2002

Signal to noise ratio

Noise contributions:

- •Capacitive load: 450+43C(pF)
- •Al strip resistance + analogue cables (L0)
- •Shot noise I_{leak}=I₀+**aF**Ad (**a**=3E-17A/cm)
- •Thermal noise in R_{bias}

Goal: S/N> 10 Possible if T<-10°C for L0 and L1 T<-5°C for L2 – L5 Important to test I_{leak} after irradiation on prototype sensors and on test structures during production

Radiation test results

- Sensors of LO-type geometry from 4 vendors (ELMA, HPK, ST, Micron) irradiated by 8 GeV proton beam – Fermilab booster area
- 10Mrad = 1.8 E14 1MeV n/cm² = 22 fb⁻¹ at r=1.8cm

Based on preliminary irradiation studies we expect our sensors to survive >22 fb⁻¹

Dir Rev of Run IIb Aua 12-15, 2002

bias (V)

Silicon sensors (LO, L1)

- single sided n+p
 - robust, simple, # of dead channels <1%</p>
- pitch: 25 & 29 mm, every 2nd strip read out
 - improve single hit resolution
- integrated AC coupling and polysilicon bias resistor
 - both features work well after irradiation
- guard ring structure design for necessary radiation resistance:
 - either multi-guard ring structure
 - or single guard ring design with peripheral nwell (Hamamatsu development)
- overhanging metal on readout strips
 - significantly reduced risk of HV breakdown

Silicon sensors (L2-5)

- wafer:
 - 6"-wafer, n-type silicon, crystal orientation <100>
 - thickness 320±20mm
 - wafer warp less than 50mm
- depletion voltage: full depletion (FDV)<300V</p>
- Ieakage currents:
 - <100nA/cm2 at FDV and RT</p>
 - ⋆ total <16mA at 350V</p>
 - junction breakdown > 350V
- implant width 8mm with 2-3mm Al-overhang on R/O strips
- coupling capacitance > 10pF/cm
- interstrip capacitance <1.2pF/cm</p>
- Polysilicon resistor 0.8±0.3 MW
- bad strips: <1%</p>

Silicon sensor procurement strategy

Sensor design is essentially complete (FNAL, U Zurich, Moscow, KSU) Prototypes ordered for all sensor types

L0 and L1 sensors •critical for radiation → Qualify two vendors - HPK and ELMA •prototypes received from ELMA, •undergoing tests •2 L1 sensors used in full module prototype •Choose vendor after irradiation of L1 ELMA and HPK sensors

L2-L5 sensors

large sensors, large quantity, more straight forward design \rightarrow benefit from 6" technology One vendor – HPK

- •Cost and schedule drivers
- •Very conservative design, experienced vendor \rightarrow low to moderate risk

Silicon sensor quality assurance program (QA)

- **QA** measurements
 - Key tests
 - leakage currents, depletion voltage and visual inspections
 - 100% on all prototypes and L0,L1 production, 10% on L2 production
 - Sensor subset tests
 - Leakage current stability over time, AC- and DC-scans, Rpoly
 - 100% on all prototypes, 10% on all production
 - Sensor diagnostic tests
 - detailed evaluation of sensors (e.g. interstrip C, R)
 - routinely done on small sample and on sensors missing specs to provide detailed feedback to vendor
 - Mechanical tests (on OGP at FNAL)
 - sensor thickness, warp and cut dimensions/accuracy
 - Irradiation tests on small subset of prototypes and test structures.

Probing sites:

- KSU setup complete, work on L0 and L1 prototypes underway
- SUNY at Stony Brook setup in progress
- CINVESTAV in Mexico setup in progress
- Fermilab receiving, distributing, equipment exists
- Two back up sites U of Zurich and Moscow State
- Equipment
 - Vibration-free table
 - R61 Alessi probe station
 - Keithley 237 ammeter/voltage source
 - HP4284 LCR meter GPIB interface
 - Dark box (not shown)
 - Guard box
 - Lab view based software

QA schedule and manpower

- BOE experience with Run 2b prototypes, Run 2a and CMS sensors
- ~1 technician FTE/institution for 3 years, 3 tasks – setup, maintenance, probing
- Manpower for QA is identified at all sites

Irradiation at KSU JRM

Goals:

- Irradiation of prototype sensors to ensure sound technology and vendor choice
- Irradiation of test structures during production to ensure high quality of delivered sensors
- Possibly do a joint study of the "CDF" effect

Facility: James R Macdonald lab at KSU

- ♦ 5-15 MeV proton beam
- Beam swept by electrostatic deflector for uniform irradiation
- can vary intensity to receive up to 1 Mrad/hour

Dir Rev of Run IIb Aua 12-15, 2002

Preliminary results from JRM

4 ELMA LO prototype sensors – 3 oxygenated, 1 non-oxygenated irradiated to 1.8E14 n/cm² Preliminary results from JRM agree with earlier tests. Sensors are expected to last >20fb⁻¹

Conclusions

- Use simple design, established technology, experienced vendors
- Sensor design is essentially complete
- Orders placed for all prototypes
- First LO and L1 prototypes received and are tested
- Irradiation facility setup is essentially complete
- Based on irradiation tests at Fermilab and at KSU sensors are expected to survive >20fb⁻¹ of luminosity
- QA procedures are defined, one QA site setup is complete, two others in progress
- Manpower for QA and irradiation is estimated using prior experience, personnel is identified
- Silicon sensor schedule risk is low to moderate