

Graphite/Carbon-Carbon Composite Target R&D

Neutrino Factory and Muon Collider Collaboration Targetry R&D Meeting

Dec. 15, 2000

Brookhaven National Laboratory

Tandem Library, Bldg 901A

John Haines

R&D Will Address Two Key Issues for Graphite Targets

- Thermal Shock
 - Results from August 2000 WNR tests
 - Instrumentation for AGS tests
 - Test plan
- Sublimation
 - Test chamber
 - Test plan

Thermal Shock Resistance of Graphites and C-C Composites Is Excellent

Figure of Merit (FOM) = (density * specific heat * strength) / (thermal

expansion coefficient * Young's modulus)

In this application carbon-based materials are even better since the heating/volume in carbon << heating/volume in W

Comparison of Thermal Shock Conditions

		Proposed	Proposed	Neotrino	Neotrino
	WNR	AGS	AGS	Factory	Factory
	Tests	Tests	Tests	1 MW	4 MW
Proton energy (GeV)	0.8	24	24	16	16
Protons per pulse	2.8E+13	1.5E+13	1.5E+13	2.5E+13	1.0E+14
Gaussian Beam Sigma (mm)	10	1	3	3	3
Peak energy density (MJ/m^3)	3.1	350	75	11	44
Peak microstrain	16	835	-	-	-
Peak Stress (MPa)	0.13	7.5	-	-	-

ATJ Graphite Strains Were Measured for Single Pulse Tests at LANSCE/WNR

SNS Experimental Facilities

Oak Ridge

Optical strain sensor technique was validated on simple graphite rod test

- WNR proton beam (σ ~ 10 mm radius) centered at r = 4.9 mm on 8.0 mm radius ATJ graphite rod
- Deflection at 12 ms amplified by 10⁴

Optical Strain Gages Can Be Used in This Severe Environment

- Strain gauges based on miniaturized Fabry-Perot interferometer concept
 - Gauge length of a few millimeters
- Gauge is mounted on surface of interest
- Broadband light source centered at 860 nm wavelength reflects from two surfaces and two reflected signals analyzed by white light interferometry to produce two phase-related signals
- Interference fringes and calibration tracked by phase relationships of signals
 Fiso Technologies' Fiber Optic

Measured Strained Data Agrees With

Predictions

Energy Deposition in ATJ Graphite Rod 1.5 x 10¹³, 25 GeV protons, s=1 mm

Axisymmetric Simulation of Graphite Rod Energy Deposited in 40 ns

Von Mises Stress at Element Near Location of Maximum Energy Deposition

MISES E: 25 IP: 1 ELSET ERO [x10⁶] 0.000E+00 4.000E-03 8.00 0.000E+00 7.467E+06 6.00 Mises stress [Pa] 4.00 2.00 0.00 4.00 2.00 2.50 3.00 3.50 0.00 0.50 1.00 1.50 [x10⁻³] Time

Maximum stress < 10 MPa

SNS Experimental Facilities

XMIN

XMAX

YMIN

YMAX

Axial Displacement of 5 Equally Spaced Nodes Along Surface.

The longitudinal wave speed (uniform bar) is $c=(E/\rho)^{1/2} = 2356$ m/s. The time for a wave to traverse the rod length is $(0.3073 \text{ m})/(2356 \text{ m/s}) = 130 \,\mu\text{s}$, or 7666 hz. For the wave to reflect and traverse the length again, the frequency is 3833 hz

Thermal Shock Tests Should Be Conducted at Low Temperature

- Survival at room temperature ensures survival at high temperature
 - Strength and thermal shock resistance of graphite and C-C composites increases with temperature (very large increase in specific heat)
- Targets can be instrumented at low temperatures
 - Strains can be measured and models benchmarked
- High temperature tests are significantly more difficult
 - Vacuum chamber with heated samples in beam line

Graphite Becomes Stronger at Temperatures Up To ~ 2600 °C

Temperature Rise Is Much Smaller with Graphite at Operating Temperature

Thermal Shock Test Plans

- Conduct tests with a graphite rod and a carbon-carbon rod
 - Graphite: 15 mm diameter, 0.3 m long
 - Carbon-carbon composite: As close to graphite size as possible within cost and schedule constraints
- Install eight optical strain sensors on each rod
 - Two at the front (180° apart), two in the back (180° apart) and four in the middle (90° apart)
 - All sensors oriented axially (radius of curvature too small for circumferential mounting)
- Install rods inside a simple secondary container
- Use 40 m long fiber optic cables
- Will someone measure beam profile?

Use of He Atmosphere Is Proposed to Inhibit Carbon Sublimation

- Presence of helium reduces graphite sublimation
- Heat transport is still mainly by radiation
 - Conduction/convection heat transfer through helium is relatively insignificant
- Net erosion of graphite is limited by convection/diffusion of carbon from hot graphite to cooled vessel
- Tests required to validate approach and obtain quantitative data

Carbon Sublimation Test Plan

- Modify existing chamber for tests Dec '00- Jan 10 '01
- Fabricate heater/specimens Dec '00- Jan 10 '01
- Perform tests Jan 10 April 9 '01
- Issue report April 23 '01

ATJ Graphite	Vacuum	2000 K
	vacuum	2300 K
	1 atm He	2000 K
	i aun ne	2300 K
C-C Composite	Vacuum	2000 K
	vacuum	2300 K
	1 atm Ho	2000 K
	i atti i ie	2300 K

