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Purpose of work (graphite) 

• Evaluate graphite foam and fiber structures 
for battery (cathode) current collectors 
− Develop baseline data to project energy, power, and 

thermal performance for different structures 
− Evaluate bonds formed of active cathode particles to 

graphite and to each other 
25

m
m

 

AR LQI 

Graphite foams Carbon-bonded 
carbon fiber (CBCF) 

Flexible 
graphite paper 

Al foil +binder 
+additive 
(traditional) 



32008 DOE BATT program review 

15µm 

Technical barriers (graphite) 

• Safety and long cycle life are major challenges for HEV and PHEV
batteries. 
− Overcoming these barriers will reduce petroleum use. 

• Potential advantages of foam (or fiber) graphite current collectors: 
− Thermal management (particularly foams) 
− Uniform conductivity and charge distribution 
− Robust thermal particle bonds within electrode, 

rather than bonds formed by compaction 
• No organic binders, no conductive additive 
• Less stress because not pressed            

− Corrosion resistance 

0.5mm 

1200-1700 W m-1 °K-1 

3800-6400 S/cm 
(5X to 10X values for Al) 
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Approach FY08 (graphite) 

• Electrode fabrication - a few examples, not trying to optimize 

• Questions 
− When is structure too thick? Too dense? Too clogged? 
− When is loading too high? Coating too thick?  Too resistive? 
− Does LiFePO4 become inactive? Poorly connected? 

Graphite structures (ORNL materials
commercial - collaborate with inventors) 
Graphite foams –two types AR and LQI 
(aromatic resin & low quinoline insoluble)   
Can tailor: •pore & window sizes, •surface 
areas, • densities, • conductivities 
Carbon bonded carbon fibers (CBCF) 
lower density, 3D-connected 10µm fibers 
Commercial graphite fiber paper 
(Toray) thinner flexible sheets 

Cathode coatings 
LiFePO4+ 2% C-coating (as example) 
Slurry infiltrated graphite. 
Bonded by heating at 700°C, no 
pressure & no added organic binder 

Adjust: •loading (by slurry conc.), 
•carbon source, •particle size, 

200µm200µm 



Approach FY08 (graphite)


• Evaluation


Battery tests Æ Energy-power 
Æ Cycle tolerant bonding 

Electron microscopy Æ bonds before/after cycling 
Æ advanced in-situ or in-electrolyte (wet) 

Thermal conductivity analysis 
High Temperature 

Materials Laboratory, 
EERE funded center. 

Projections of energy and power 
comparison with 18650 cells 

Modeling -- to optimize structures     
(graphite & coating & voids) Modified fabrication 

Ann Marie Sastry, Univ. of Michigan;  
ORNL finite element for foams 
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Accomplishments (graphite) 

1mm AR foam 

5mm LQI foam 

Cells are           
1-6mAh/cm2. 
Arrow shows 
1mAh/cm2 0% 
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1mm CBCF 
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1mm LQI foam 
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Cell: 
Li anode (Ni) 
LiPF6(EC+EMC) 

or (EC+DMC) 
Celgard 
LIFePO4-C, 
Al wire 

• Good cycling, so thermal bonds of LiFePO4 on graphite are robust. 
− Little loss of active material with >100 cycles. 
− Small increase of cell resistance. Lithium degradation also contributes. 
− Early results published, Proc. Electrochem. Soc. 
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1 mm graphite foam (~1.5mm pores)
5 mm graphite foam (~1.5mm pores)
5 mm graphite foam (~0.5mm pores)
1 mm CBCF 
5 mm CBCF 
5 mm CBCF fine LiFePO4 2x slurry 

defined at 2.8V 

Accomplishments (graphite) 

• Energy and power 
assessed 

• Power is best for 
− thin samples (1mm) 
− fibers structures 

• Max. energy 
varies as: 
− Wt% of LiFePO4 (15

58%) 
− LiFePO4 utilization 

(85-140 mAh/g) 
− Source of 2 wt% 

carbon 
• More concentrated 

slurries will further 
increase wt % 

Selected samples – illustrate trends 
for different supports and slurries 

K2 Energy 
Solutions 
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Accomplishments (graphite) 

• Compare cathodes with commercial technology 


For cathode + the current 
collector only 

K2 Energy 
Solutions18650 

Projected 
AR foam 

Projected 
LQI foam 

LiFePO4 wt. (g) 12 12 12 
LiFePO4 / C wt.ratio 3X current 4X current 
Current collector wt. (g) 1.5–2.6** Al foil 4.8 foam 9.4 foam 
Binder+additive (g) (1-3, est.) 0 0 
Energy (mWh/g) 250 – 310 270 210 
LiFePO4 coating (µm-thick) 50* 140* 
Heat transport  (W/°K) 0.035 – 0.062 0.19 0.75 
Foam pore diameter (µm) 500 1500 
Foam surface area (cm2) 1250 470 
Thermal cond. (W/m/°K) 235 50 180 

**For energy & power cells. *For 50% dense. 8 
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Accomplishments (graphite) 
• Improved slurry and coating processes 

− Slurry concentration increased 7-fold, still very fluid 
• Future samples will have higher energy density with single coat 

− LiFePO4 particle size reduced to 0.3-0.8µm by Spex milling with
0.3mm media. 
• Anticipate further reduction with 2-stage milling 

− Carbon precursors yielding graphitic carbon perform better than
those giving glassy carbon 
• Anticipate improvement with > 2 wt.% carbon 

1515
µµ mm



Future work and Tech Transfer (graphite)


•	 Characterize bonds with active material 
− Use electron microscopy and dual beam FIB 
− Extend electrical cycling beyond 100 cycles (need to add 

fresh Li and electrolyte) 
•	 Project energy and power densities 

− Compare to existing technology 
− Demonstrate performance with higher LiFePO4 loading 

•	 Advanced modeling 
− Identify directions where large improvement possible 

•	 Technology transfer opportunities 
−	 ORNL has IP position in graphite structures, motivation to 

develop battery application 

Milestones for FY08 
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Purpose of work (lithium anode)


•	 Understand interface instabilities at the 
lithium metal anode when cycled with a liquid 
or polymer electrolyte. 
−	 Current models for lithium dendrite initiation 


are inadequate.

− Investigate roughening with pristine lithium 


surface formed by vacuum evaporation.
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Technical barriers (lithium anode) 

•	 PHEV and HEV applications requires batteries with 
higher energy densities 
− Lithium metal 3.8Ah/g,  carbons 0.37Ah/g

− Lithium metal anodes give maximum cell voltage


•	 Technical Barrier – lithium roughening leads to 
rapid degradation, impacting safety and cycle life
performance 
−	 Loss of active material, decrease capacity, increase of 

cell resistance 
− Possible shorting if lithium dendrites form and propagate 

through polymer or liquid electrolyte 
− Finely divided lithium (mossy lithium) is chemically 

reactive, but electrochemically inactive 
•	 Solution will enable next generation battery and

petroleum savings for transportation 

2008 DOE BATT program review 13 
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Approach FY08 (lithium anode) 
• Approached has changed. 
• Initial approach 

− Study dendrite initiation on very smooth                        
and clean Li 
• Emphasize current density, time,

surface features 
• New approach – recognize effect of SEI 

− Study growth and ‘breakdown’ of SEI layer at Li – electrolyte 
interface 
• Use very smooth surfaces. replace when roughened 
• Incorporate surface coatings and barrier layers 
• Use electrochemical & quartz crystal microbalance tests 
• SEM observation of surface and fracture edge after aging 

• Complements Alan West’s program 
• Collaboration with High Temperature Materials Laboratory for

developing in-situ SEM and STEM techniques 

100 µm 

tilted 

Cell details: WE=Li film on Ni, CE=Li ribbon or film; RE=Li on Ni wire 
LiPF6(EC+EMC) or (EC+DMC); no separator - 0.5mm gap;  Teflon 
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Accomplishments (lithium anode) 
• Abandoned investigation focused on initiation and growth 

of dendrites 
− Inconclusive results of current density, time to initiation, 

surface feature investigation 
− Form and location of dendrites varied 
− Deposition and also Li removal initiated at spots on surface 

200x 

100µm 

2000x 

10µm 20x 1mm 

100µm 

200x 
Li 

deposition 

Li 
removal 

Li deposition at grain boundaries 



Accomplishments (lithium anode) 

•	 Progress characterizing SEI: its formation, breakdown, recovery 
− Resistance continues to increase, becomes non-ohmic. 
− ‘Breakdown’ associated with dendrites.  Samples retired. 

-3 CV Li film vs Li ref electrode 
2SEI formation on Li film 
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Accomplishments (lithium anode) 
• Quartz crystal microbalance and direct observation to evaluate SEI

layer formation kinetics 
− Resistance may increase due to density,

composition, or thickness 
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Accomplishments (lithium anode) 

•	 ‘Breakdown’ of resistive SEI barrier occurs instantly when 
higher current applied 

•	 After ‘breakdown’ resistive SEI recovers rapidly. 

Chronopotentiometry Li film with SEI	 Impedance of Li film with SEI 
0 
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Accomplishments (lithium anode) 
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• Passivating layers and protective barrier films added.  So 
far, these do not impede SEI formation.  Why? 
− Carbonate film formed by CO2 treatment following deposition 
− Lipon film formed by sputter deposition onto fresh Li film 

• ‘Lipon’ is: a glassy solid electrolyte, electronic insulator, 
stable with lithium. (Invented at ORNL; commercial) 

After 60 cycles with 
conventional organic 
electrolyte. Adv. Mat. 
2007, by PHL Notten 
et.al. 



Future work and Tech Transfer (lithium)


•	 Evaluate the SEI formation for Li in contact with an organic 
electrolyte. 
− Model for lithium roughening based on SEI breakdown 
− Resolve effect of Lipon barrier on SEI 

•	 New techniques for lithium and SEI study 
− Load lock to XPS, FTIR 
− Dual beam FIB 
− In-situ or ‘wet’ study by electron microscopy 

(collaboration with HTML staff) 
•	 Initiate collaboration with teams designing new electrolytes 

Milestones for FY08 
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Summary (graphite and lithium anode projects) 
• Potential – enable the next generation Li-based batteries 
• Graphite current collectors for thermal management and 

improved safety 
− Initial results of LiFePO4 on graphite cathodes promising 
− Projections Æ competitive energy density & good thermal transport 
− Graphite foams/fiber materials from ORNL are commercial 

• Lithium metal anodes for much higher energy density. 
− Insight into roughening of interface, by shifting focus to SEI 

formation and breakdown and effect of Lipon barrier, rather than
dendritic growth 

• Apply resources of ORNL’s High Temperature Materials 
Laboratory, in particular electron imaging, to both projects 

• FY08 
− Investigate thermal bonds of cathode particles coating graphite 
− Use models and experiments to project performance of optimized

cathode coating and graphite structure 
− Determine impact of SEI formation on roughening of lithium 


