gti

Electron-Charged Graphite-Based Hydrogen Storage Material

Chinbay Q. Fan Gas Technology Institute May 25, 2005

Project ID # STP 45

This presentation does not contain any proprietary or confidential information

Overview

Timeline

> 4 year project waiting for DOE contract

Budget

- > Total project funding
 - Needs DoE approval
- > Funding received in FY04: \$0
- > Funding for FY05 (?)

Barriers

- Cost: use inexpensive graphite
- Weight and volume: use high density graphite
- Efficiency: add electron charge to increase storage rate
- Durability: use electron charge to control cycles
- Refueling Time: use electron charge to increase fueling rate
- Codes and Standards
- System Life-Cycle Assessments

Partners

Superior Graphite Co. Chicago, Illinois

Objectives

- Develop a new concept with graphite-based materials to store hydrogen on-board vehicles and for applications
- Investigate and optimize low-cost natural flake graphite materials with modifications to increase storage
- Investigate electron charge device control to increase hydrogen storage to reach DOE 2010 targets (6 wt%)

Approach

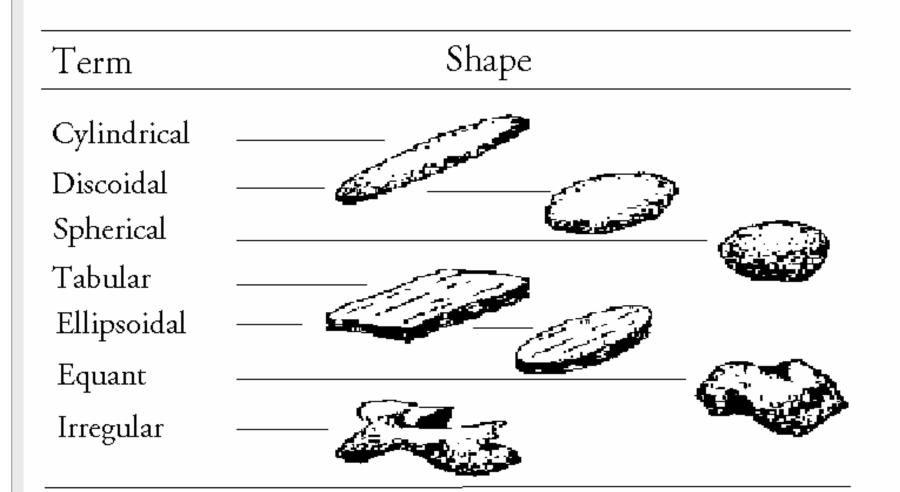
- Expansion of the graphite layers and generation of small particles to allow access for hydrogen adsorption
- 2. Metal intercalation to increase back-donated electron charges onto the carbon, so the hydrogen adsorption becomes combined physisorption and chemisorption.
- 3. Addition of electron charge to increase hydrogen adsorption
- 4. Study discharge control characteristics

4

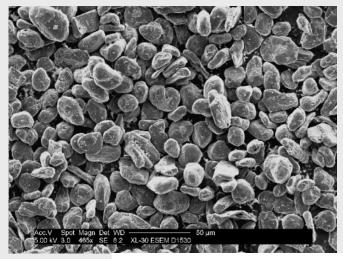
Several Methods to Donate Electrons

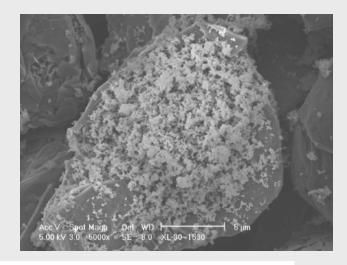
1. Electrochemical Methods

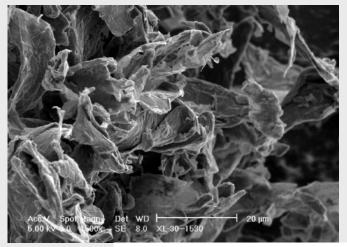
2. Metal Intercalation

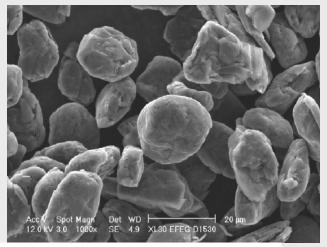

3. Electrostatic Charges

Advantages of Graphite as Substrate for Hydrogen Storage


- Graphite is inexpensive and stable
- Graphite is well-studied for metal intercalation in battery applications
- Exfoliated graphite particles have physical space for hydrogen, but after metal intercalation, also have chemical sites for hydrogen storage
- Graphite particles have various shapes for packing advantages in hydrogen storage reservoirs
- Graphite also subject to other proprietary modifications


Graphite Shapes Affect Hydrogen Storage



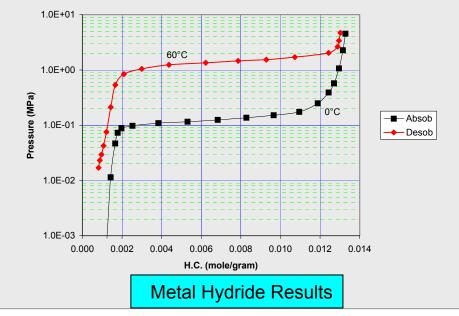

Superior Graphite Modifications

Graphite Particle Additions / Coatings

Graphite Particle Shape Modifications

Concept of Electron-charged Graphite Particles

- A proprietary method will be used to manipulate electron charges on the graphite particles to add electron donor sites for hydrogen storage
- Expanded graphite particles have increased space between graphite layers using metal intercalation and other methods that can hold the space open



GTI Facilities

Cahn TherMax 500 TGA

Superior Graphite Facilities

Peter R. Carney Technology Center Chicago, IL

BET Surface Area

Graphite Resiliency Test

gti.

Project Schedule/Work Plan

Year 1: Proof of Feasibility

- Task 1-1. Select materials and conduct graphite-processing steps
- Task 1-2. Test and evaluation cycle for hydrogen storage
- Task 1-3. Calculate and compare the theoretical charge sufficient for the 2015 DOE hydrogen storage target

Task 1-4. Project Management and Reporting

Year 1 Project Responsibilities

GTI

- GTI will work with Superior to select graphites, intercalation metals, and other additives
- GTI will assemble an electron charger device to make a storage test system
- GTI will test & evaluate samples and methods

Year 1 Project Responsibilities

Superior Graphite

- Superior will process and prepare various samples of the modified graphite with intercalated metals.
- Superior will analyze graphite properties after intercalation.
- Superior will provide analysis and guidance from their knowledge of graphite

Hydrogen Safety Concerns

Hydrogen Storage MaterialModerate Pressure Hydrogen

GTI is committed to provide a safe work environment for all employees and visitors. Moreover, it is committed to be in compliance with all federal, state and local safety regulations.

GTI Safety Procedures

- Limit testing to very small amount (10's grams solid, 1/10 m³ gas)
- > Apply JIS (Japan Industrial Standard) H 7201
- Always handle hydrogen storage materials in a inert gas purged glove box.
- The pressure of the test system should not exceed the moderate pressures
- Vented hoods with non-sparking vent blowers
- Combustion gas sensor alarms in lab

