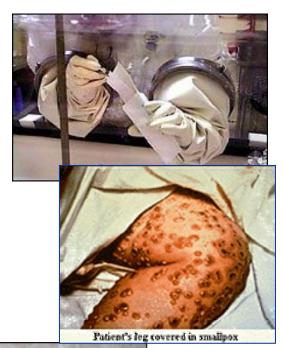
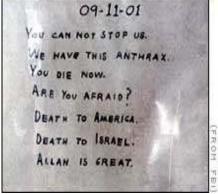


Balancing Security and Research at Biomedical and Bioscience Laboratories: The Security Risk and Threat Assessment

46th Annual Biological Safety Conference American Biological Safety Association Philadelphia, PA

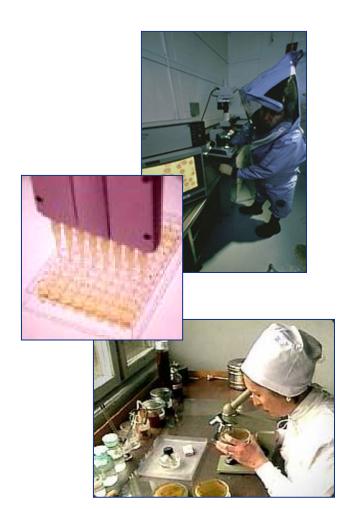
Reynolds M. Salerno, Ph.D. Sandia National Laboratories October 11, 2003


SAND No. 2003-3795P



Need to Secure Select Agents

- Biosecurity aims to mitigate the BW threat at the source
 - Prevent terrorists or proliferant states from acquiring select agents from government, commercial, or academic facilities
- Biosecurity systems should specifically protect against theft and diversion of select agents by applying a set of well-established security strategies
 - Define risk by evaluating probabilities and consequences
 - Protect defined assets against defined threats
 - Apply a graded protection approach
 - Integrate security technologies and procedures
 - Impact operations only to the level required
- Securing select agents is an important element of comprehensive BW nonproliferation programs
 - Cannot prevent BW terrorism or proliferation
 - Must be augmented by other national mechanisms



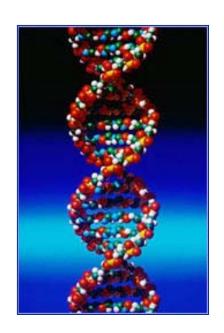
Challenges to Securing Select Agents


Dual-use characteristics

- Valuable for many legitimate, defensive, and peaceful commercial, medical, and research applications
- Nature of the material
 - Living and self-replicating organisms
 - Used in very small quantities
 - Cannot be reliably quantified
 - Exist in many different process streams in facilities
 - Contained biological samples are virtually undetectable
- Laboratory culture
 - Biological research communities not accustomed to operating in a security conscious environment

Biosecurity Cost-Benefit Considerations

- Bioscience facilities are not unique repositories
 - Most agents can be isolated from nature
 - Many similar collections of agents exist worldwide
- Relatively few agents can be easily grown, processed, weaponized, and successfully deployed while maintaining virulence/toxicity
 - Very few agents used as a weapon could cause mass human, animal, or plant casualties
 - Not all agents equally attractive to adversaries
- Need a methodology to make informed decisions about how to design an effective and efficient biosecurity system



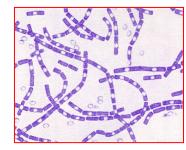
- Qualitative risk and threat assessment is the essential first step
 - Process should include scientists, technicians, managers, security professionals, and law enforcement (counterterrorism) experts
- Asset identification and prioritization
 - What are their attractiveness to an adversary and their consequences of diversion?
- Threat identification
 - Who are the adversaries, what are their capabilities?
- Risk prioritization of asset/threat scenarios
 - Evaluation of probabilities and consequences
- Management decision
 - Risks to protect against: security system design parameters
 - Risks to accept: incident response planning parameters

Asset Identification and Prioritization

Primary consequence

- Loss could lead to national security event (bioterrorism)
- Certain biological agents

- Loss could assist in achieving a primary consequence or access to a primary asset
- Certain information related to select agents



- Loss could affect operations
- Certain facilities, equipment, etc.

Yersinia pestis

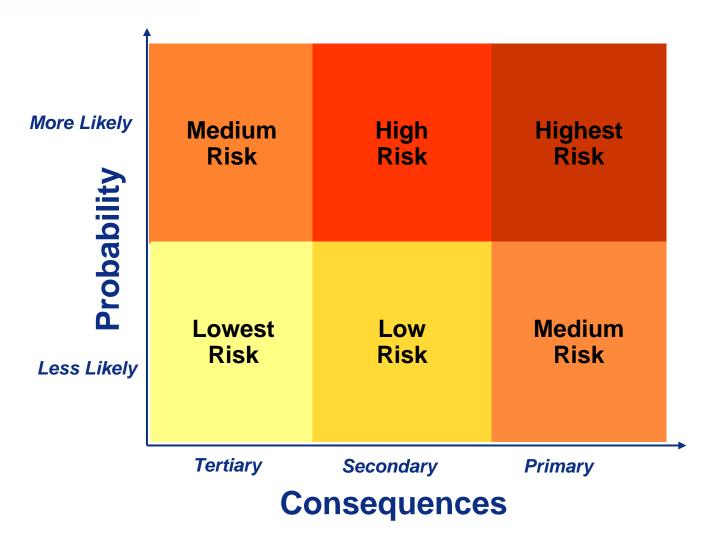
Bacillus anthracis

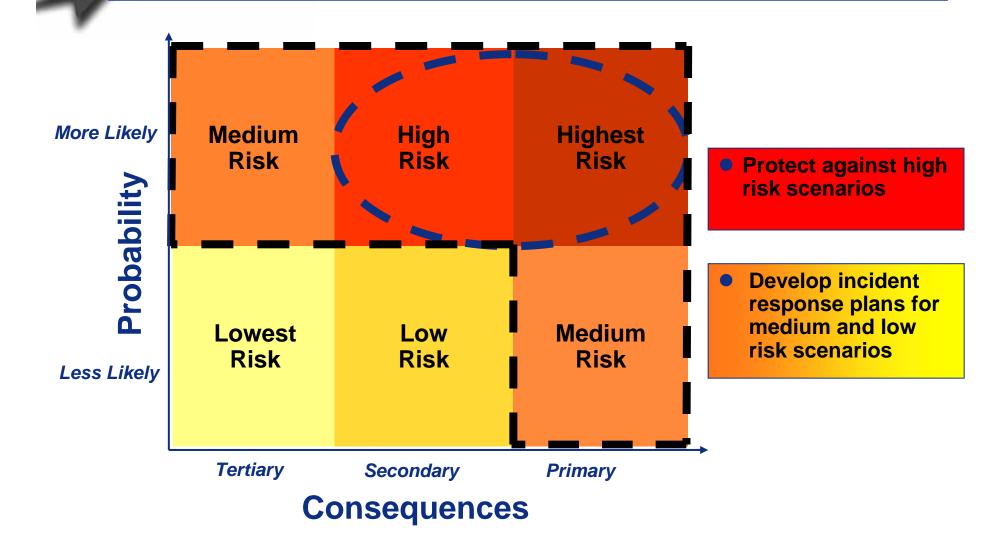
Fermentation vessel

Threat Identification

- Adversary categories
 - Insider with authorized access
 - Invited outsider(s) visitor
 - Outsider(s) with limited access and system knowledge
 - Outsider(s) with no access but has general knowledge
 - Outsider(s) with no access and no general knowledge
 - Collusion between an insider and an outsider
- How will the adversaries perpetrate the event?
 - Alone or in a group?
 - Armed or unarmed?
 - Covert or overt?

Asset/Threat Scenario Development


- What will the adversaries aim to do?
 - Steal, destroy, disperse agents
 - Steal, destroy information
 - Steal, destroy equipment
 - Destroy operational systems
 - Destroy/deface facility
 - Injure, kill people
 - Etc.
- Develop reasonable scenarios based on defined assets and threats



Risk Prioritization

Management Risk Decision

Generic Biosecurity Design Parameters

- Highest risk scenarios
 - Insider, visitor, or outsider with limited access attempting to steal select agents covertly
- High risk scenarios
 - Insider, visitor, or outsider with limited access attempting to steal select agent-related information covertly
- Medium risk scenarios
 - Small outsider groups that would aim to destroy or deface the facility
- Terrorist commando assault unlikely
 - Agents available elsewhere
 - Overt attack using force would signal authorities to take medical countermeasures

Generic Biosecurity Protection Principles

- Personnel Reliability
- Physical Security
- Information Technology Security
- Material Control and Accountability
- Material Transfer Security
- Program Management

Typically excludes substantial perimeter systems and armed guard forces

Personnel Reliability

- Allow access only to those individuals who have
 - Legitimate need to handle select agents
 - Appropriate training in biosafety, containment, and security procedures
 - Been registered with CDC/APHIS
- Conduct background investigations on individuals who handle, use, or transfer select agents
- Establish visitor interaction procedures
 - Screening, badging, and escorting
- Report suspicious activity

Physical Security

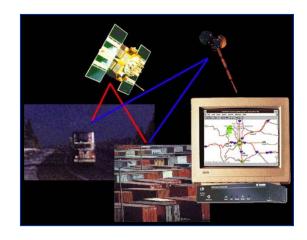
- Implement systems to deter, detect, and respond to unauthorized attempts to gain access to select agents
- Establish graded protection areas with
 - Intrusion detection
 - Access controls and transaction recording
 - Alarm assessment capabilities
 - Physical barriers and delay systems
 - Law enforcement response capabilities

Material Control and Accountability

- Develop systems to document
 - What materials exist in a certain facility
 - Where they are located
 - Who is responsible for them
 - Who has access to them
- Avoid trying to apply quantitative materialbalance inventory accounting principles

Material Transfer Security

- Document, account for, and control select agents when they are moving between protected areas within a facility
- Receive authorization and monitor external transfers between registered facilities before, during, and after transport



Information Technology Security

- Control access to sensitive information related to select agents
- Establish policies and implement technologies for handling, using, and storing paper-based, telephonic, photographic, and electronic media



Program Management

- Provide policy oversight and implementation of the biosecurity program
- Maintain documentation of
 - Security plan
 - Incident response plan
 - Security training program
 - Self-assessment and auditing program

Summary

- Necessary to take steps to reduce the likelihood that select agents could be stolen from bioscience facilities
- Critical that these steps are designed specifically for biological materials and research so that the resulting system will balance science and security concerns

Contact Information

Reynolds M. Salerno, Ph.D.

Principal Member of the Technical Staff
Sandia National Laboratories
PO Box 5800, MS 1373
Albuquerque, NM 87185
Tel. 505-844-8971
email: rmsaler@sandia.gov

www.biosecurity.sandia.gov