Fusion: Lighting a Star on Earth

PPPL Open House 2004

Professor Rob Goldston, Director DOE Princeton University Plasma Physics Laboratory

June 12, 2004

The Issue of Climate Change is Increasing Attention to Fusion Energy

Jerry Mahlman, former Director of the NOAA Geophysical Fluid Dynamics Laboratory

What Will We do When the World Runs Out of Gas ?

"Most likely, progress will lie in incremental advances on many simultaneous fronts, based on principles we already understand: controlled nuclear fusion, safe breeder reactors, better materials for manipulating electricity, more efficient fuel cells, better means of generating hydrogen, and so on. Developing these technologies will require a massive, focused commitment to scientific and technological research. This is a commitment we have not yet made. We urgently need to make it."

David Goodstein Vice Provost, California Institute of Technology Out of Gas, 2004, p. 115

Fusion can be a Very Attractive Domestic Energy Source

- Abundant fuel, available to all nations
 - Deuterium and lithium easily available for thousands of years
- Environmental advantages
 - No carbon emissions, short-lived radioactivity
- Can't blow up, resistant to terrorist attack
 - Less than a minute's worth of fuel in the chamber
- Low risk of nuclear materials proliferation
 - No fissile or fertile materials required
- Compact relative to solar, wind and biomass
 - Modest land usage
- Not subject to daily, seasonal or regional weather variation, no requirement for local CO₂ sequestration.
 - Not limited in its contribution by need for large-scale energy storage or extreme-distance transmission
- Cost of power estimated similar to coal, fission
- Can produce electricity and hydrogen
 - Complements other nearer-term energy sources

Comparison of Fission and Fusion Radioactivity After Shutdown

Plasma science also has impacts far beyond fusion energy – in computer chip processing, fuel efficiency, astrophysics...

Fusion Development is a Worldwide Activity

Dramatic Recent Advances in Fusion Science with Strong Connections to other Areas of Science and Technology

- Global Stability
 - What limits the pressure in plasmas?
 - Ideal understood, controlling resistive
 - Solar flares
- Wave-particle Interactions
 - How do hot particles and plasma waves interact?
 - Good understanding of linear regime
 - Magnetospheric heating
- Microturbulence & Transport
 - What causes plasma transport?
 - Well accepted model for ion transport
 - Accretion disks
- Plasma-material Interactions
 - How can high-temperature plasma and material surfaces co-exist?
 - Detached divertor regime discovered
 - Micro-electronics processing

Progress in Fusion has Outpaced Computer Speed

Progress is paced by the construction of new facilities.

ITER Provides an Opportunity to Light a Star on Earth

Fusion Science Benefits: Extends fusion science to larger size, burning (selfheated) plasmas – for very long pulses.

Technology Benefits: Fusion-relevant technologies. High duty-factor operation.

Today:15 MW for 1 second, gain < 1</th>ITER:500 MW for 10 minutes, gain > 10

ITER Negotiations:

Europe, Japan, Russia, US, China, South Korea

- Two sites are now on the table:
 - Japan: Rokkasho, northeast corner of the main island
 - France: Cadarache, near Aix-en-Provence
- The financial numbers add up:
 - The Host pays 48%
 - The primary non-Host pays 12%
 - US, China, South Korea, Russia each pay 10%
- The key issues for resolution are:
 - Siting how do we have a win/win?
 - Management of a major international construction project
 - Risk allocation

The Estimated Development Cost for Fusion Energy is Essentially Unchanged since 1980

Cumulative Funding

The pace of fusion energy development is set by funding.

The Value of Fusion-Produced Energy is 12,000x Greater than the Development Cost

Total value = \$296T at \$0.02 per kWhr thermal (\$FY2002)

The National Academy Endorses both ITER and a Strong Domestic Fusion Program

"A strategically balanced U.S. fusion program should be developed that includes U.S. participation in ITER, a strong domestic fusion science and technology portfolio, an integrated theory and simulation program, and support for plasma science. As the ITER project develops, a substantial augmentation in fusion science program funding will be required in addition to the direct financial commitment to ITER construction."

National Research Council, Burning Plasma Report, 2003

President Bush on Fusion (2/6/03)

DOE Science 20-Year Strategic Plan Defines the U.S. Strategy for Fusion Energy Sciences

DOE Science 20-Year Strategic Plan Defines the U.S. Strategy for Fusion Energy Sciences

		2007	2009	2011	2013	2015	2017	2019	2021	2023	2025	
The S	cience				1918							
Burning	g Plasma Do	emonstrati	ion	• In N (Y bu re	nitiate experiments on the lational Ignition Facility NIF) to study ignition and urn propagation in IFE- devant fuel pellets (2012)		Comple to detern confiner range re producia	te ITER experiments nine plasma nent in parameter quired for an energy- 1g plasma (2017)	 Complete experimen science of ignition an needed to design opt Inertial Fusion Energ Complete experimen the impact of the fus stability of energy-pro 	ts on NIF to advance th d burn propagation imized fuel pellets for ar y plant (2020) ts on ITER to determin ion process on the oducing plasmas (2020)	e Achieve high fusion pow for long durations on ITI to define engineering requirements for fusion power plants (2025)	
Fundam	entals of P	lasma Beh	Avior • Achieve a tokamak ITER pla	heory, Meas a fundamental unde transport and stabil asma experiments (Computati surement extanding of livy in pre- 2009)	 Major aspects in experiments with high accur Determine the inertial fusion experiments nu inertial fusion (2015) 	relevant to burning pla prior to full operation racy and are understoo physics limits that cor energy drivers in futur eded to resolve the sci- energy and high-energ	sma behavior observed of ITER are predicted d (2015) strain the use of e key integrated entific issues for y density physics	 Deliver a complet simulation of a po plasma, validated results, that enabl fusion power plan 	e integrated ower-producing with ITER es the design of tas (2020)	Fusion Simulati Project	
Plasma	 Evaluate the ability of stellarator configuratio temperature plasma (2 Achieve long-duration, high-pressure, well-confined in a spherical torus sufficient to design and build fus power-producing Next-Step Spherical Torus (2008) Demonstrate use of active plasma controls and self-g plasma current to achieve high-pressure/well-confine steady-state operation for ITER (2008) Evaluate the feasibility/attractivence including heavy ion beams, dense p for fusion approaches involving high 					Resolve key s confinement attractive cor	 Determine the potential of one or more of the promising plasma configurations (for example a spherical torus) for use as a component test facility or a fusion power source (2020) Resolve key scientific issues and determine the confinement characteristics of a range of attractive confinement configurations (2015) 					
Materials, Components, and Technologies • Start production of superconducting wire needed for ITER magnets (2006) • Start production of superconducting wire needed for ITER magnets (2006) • Start production of superconducting wire needed for ITER magnets (2006) • Start production of superconducting wire needed for ITER magnets (2006) • Start production of superconducting wire needed for ITER magnets (2006) • Start production of superconducting • Start production of supe							Complete first phase of testing in ITER blanket technologies needed in power- producing fusion plants capable of extra high-temperature heat from burning pl and having a self-sufficient fuel cycle (2 Complete first round of testi component test facility to val the performance of chamber technologies needed for a po producing fusion plant. (202					
Future Facilities** TTER: ITER is an international collaboration to build the first fusion science experiment capable of producing a self-sustaining fusion reaction, called a "burning plasma." Next-Step Spherical Torus (NSST) Experiment: The NSST will be designed to test the spherical torus, an innovative concept for magnetically confining a fusion reaction.						Fusion Energy Contingency: If ITER construction and operation goes forward as planned, additional facilities to develop and test power plant components and materials will be needed to complete the process of making fusion energy a viable commercial energy resource by mid-century. Integrated Beam Experiment (IBX): The IBX will be an intermediate-scale experiment to understand how to generate and transmit the focused, high- energy ion beam needed to power an IFE reaction.						

Simulation of Microwave Reflection From Plasma Turbulence

Z. Lin, GTC simulation

G.J. Kramer, E. Valeo, R. Nazikian, Full Wave simulation

S. Klasky, I. Zatz, Visualization

Advanced Plasma Diagnostics in Action

Collaboration with UC Davis at TEXTOR in Germany

DOE Science 20-Year Strategic Plan Defines the U.S. Strategy for Fusion Energy Sciences

		St	rategic	Time	eline—I	Fusion	Energ	gy Sci	ences*	k	
			2009	2011	2013	2015	2017	2019	2021	2023	2025
The Se	cience				A Street Party	a l'ant-si				Service Service	
Burning	g Plasma De	emonstrati	on	• In Ni (N bu rel	itiate experiments on the ational Ignition Facility IIF) to study ignition and irn propagation in IFE- levant fuel pellets (2012)		Complete to deter confine range re product	ete ITER experiments mine plasma ment in parameter equired for an energy- ing plasma (2017)	 Complete experimer science of ignition as needed to design op Inertial Fusion Energ Complete experimer the impact of the fus stability of energy-pu 	nts on NIF to advance the nd burn propagation timized fuel pellets for an gy plant (2020) tos on TFER to determine tion process on the roducing plasmas (2020)	 Achieve high fusion pov for long durations on II to define engineering requirements for fusion power plants (2025)
Fundam	entals of Pl	lasma Beh	avior • Achieve tokamak ITER pl	a fundamental unde transport and stabil asma experiments (2	rstanding of ity in pre- 2009)	 Major aspects in experiments with high accu Determine the inertial fusion experiments no inertial fusion (2015) 	relevant to burning pl s prior to full operation tracy and are understo physics limits that co energy drivers in futur eeded to resolve the sc energy and high-energ	asma behavior observed n of ITER are predicted od (2015) nstrain the use of re key integrated ientific issues for gy density physics	 Deliver a comple simulation of a p plasma, validated results, that enab fusion power plan 	te integrated ower-producing with ITER les the design of nts (2020)	
Plasma	Confinemen Toka	NSTX maks	NCSX Achieve long-duration, h in a spherical torus suffic power-producing Next-S Demonstrate use of activ plasma current to achiev steady-state operation fo • Evaluate including for fusion	 Evaluate the abilist stellarator config temperature plass igh-pressure, well-con- tient to design and bui- tep Spherical Torus (2 e plasma controls and e high-pressure/well-cc ITER (2008) the feasibility/attracti the heavy ion beams, de a approaches involvin 	ity of the compact uration to confine a high- ma (2012) fined plasmas ld fusion- 008) self-generated onfined veness of potential drivers, ense plasma beams, and laser g high-energy density (2009	• Resolve key : confinement attractive con	Next Advar Fac characteristics of a thinement configura	Step nced cility determine the range of tions (2015)	Determine the pr promising plasm: a spherical torus) facility or a fusion	otential of one or more a configurations (for ex for use as a componen a power source (2020)	of the ample t test
Materia	ls, Compon	ents, and Start production of wire needed for ITE	Technologie superconducting R magnets (2006)	\$	Deliver to ITER for testing the blanket test modules needed to demonstrate the feasibility of extracting high- temperature heat from burning plasmas and for a self-sufficient fuel cycle (2013)			C	ompon T Faci	• Complete f blanket tec producing and having est lity	irst phase of testing in ITER (nologies needed in power- usion plants capable of extrac- rature heat from hurning plan- consulticient fuel cycle (20 Complete first round of testing component test facility to valid he performance of chamber performance of chamber ordoucing fusion plant (2025)
Future *These strategic **For more deta Facilities for t	Facilities milestones are illustr il on these facilities a the Future of Science:	TTER: ITE capable of p ative and depend ou nd the overall prior A Twenty-Year Out	R is an international colla roducing a self-sustaining n funds made availab itization process, see <i>look</i> .	boration to build the f fusion reaction, called Next-Step SpJ Experiment: to test the sph concept for m: fusion reaction le through the Fed the companion do	The fusion science experiment a "burning plasma." herical Torus (NSST) The NSST will be designer erical torus, an innovative agnetically confining a h. eral budget process. cument,	Fusion Energy additional facili complete the p	Contingency: If I ties to develop and r rocess of making fus Integrate experimer energy ior	IFER construction an test power plant com ion energy a viable co d Beam Experiment nt to understand how n beam needed to po	d operation goes forw ponents and materials mmercial energy rese (IBX): The IBX wil to generate and tran wer an IFE reaction.	ard as planned, s will be needed to ource by mid-century. I be an intermediate-sc smit the focused, high-	ale

PPPL is Engaged in Fusion Plasma Science across a Breadth of Configurations

Advanced Tokamak Active instability control and driven steady-state. Spherical Torus High plasma pressure at low magnetic field.

Compact Stellarator Passive stability and steady-state operation.

Understanding that spans configurations is the deepest. Combine U.S. innovation with ITER for practical fusion.

PPPL is Developing Plasma Control Techniques through Off-Site Tokamak Research

Electron Cyclotron Launcher at DIII-D

Ion Cyclotron Launcher at JET

Lower Hybrid Launcher at C-MOD

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL **PSI SNL** UC Davis UC Irvine **UCLA** UCSD **U Maryland U New Mexico U** Rochester **U** Washington U Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U U Tokyo loffe Inst TRINITI **KBSI KAIST** ENEA, Frascati CEA, Cadarache **IPP**, Garching IPP, Jülich **U** Quebec

Collaboration is Central to NSTX Science and Management

Very Steep Pressure Gradients are Observed near Edge of Plasma in H-mode

10 pm

out ->

β_T ~ 38% Achieved: Goal is 40%

The next stage on NSTX is to demonstrate sustained operation.

A Major Challenge for Tokamaks & ST's: Sustained Operation

Most of the plasma current *must* be supplied through the self-sustained bootstrap current, while operating well above the no-wall beta limit.

Can be tested in ITER in conditions relevant to tokamak and ST.

Compact Stellarators Offer a Different Twist on Plasma Confinement

Goals:

- Steady-state, disruption-free high β plasma operation, without current or rotation drive for stable, steady operation at high power and high gain.
- Low R/a for high power / size.

Through 3-dimensional Shaping:

- Massively parallel computing to maximize stability, buildability and quasi-symmetry / transport
- Quasi-axisymmetry builds on tokamak data base.

Auburn U., Columbia U., LLNL, NYU, ORNL, PPPL, SNL-A, U. Texas, UCSD, U. Wisconsin Australia, Austria, Japan, Germany, Russia, Spain, Switzerland, Ukraine

NCSX Manufacturing Accomplishments

Successful Prototypes of Key Components

Modular Coil Winding Form Energy Industries of Ohio Independence, Ohio

Vacuum Vessel Prototype Major Tool and Machine Indianapolis, Indiana

Procurements later this summer.

NCSX Design is Coming Together Nicely: A Joint PPPL-ORNL Effort

NCSX Coil Facility Installed in TFTR Test Cell

Fusion Research has Multiple Spillover Benefits

- Plasma Processing of Chips and Circuits
 - Plasmas are used to etch features on modern computer chips.
- Coatings and Films
 - Plasmas provide hardened surfaces and corrosion resistance.
- Plasma Electronics
 - Fusion scientists are working to improve plasmas for wide-screen TV.
- Clean and Efficient Engines
 - Plasmatron fuel reformer for higher efficiency and cleaner exhaust.
- Waste Processing
 - Plasmas can be used to destroy toxic waste.
- Superconducting Sytems
 - Superconducting magnets for MRI and energy transmission.
- Scientific Advances
 - Most of the visible universe is plasma. Fusion science contributes to understanding near-Earth space, the sun, and the galaxies.

Fusion Research Contributes to an Educated Workforce

- 54 Universities Nationwide Participate in Fusion Research
 - 50 Ph.D. Students are produced each year
 - Many continue in fusion research, but others contribute to many other fields of science and technology
- Each of the major fusion groups also has a strong educational outreach program. These programs reach K-12 students, their teachers and undergraduate students.

Fusion is an Important Part of the Nation's Energy Future

- Fusion can be a very attractive domestic energy source.
- Fusion can be developed on a reasonable time scale, at a reasonable cost.
- Only the Federal Government can make the investment.
- Progress has been dramatic, but it is paced by funding.
- Princeton has a very exciting program in fusion research and in the science of plasmas.

Enjoy your visit with us today!