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The Issue of Climate Change is Increasing
Attention to Fusion Energy

Jerry Mahiman, former Director of the NOAA
Geophysical Fluid Dynamics Laboratory



What Will We do When
the World Runs Out of Gas ?

“Most likely, progress will lie in incremental
advances on many simultaneous fronts, based
on principles we already understand: controlled
nuclear fusion, safe breeder reactors, better
materials for manipulating electricity, more
efficient fuel cells, better means of generating
hydrogen, and so on. Developing these
technologies will require a massive, focused
commitment to scientific and technological
research. This is a commitment we have not yet
made. We urgently need to make it.”

David Goodstein
Vice Provost, California Institute of Technology

Out of Gas, 2004, p. 115
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Fusion can be a Very Attractive
Domestic Energy Source

Abundant fuel, available to all nations
- Deuterium and lithium easily available for thousands of years
Environmental advantages
— No carbon emissions, short-lived radioactivity
Can’t blow up, resistant to terrorist attack
— Less than a minute’s worth of fuel in the chamber
Low risk of nuclear materials proliferation
— No fissile or fertile materials required
Compact relative to solar, wind and biomass
- Modest land usage

Not subject to daily, seasonal or regional weather variation,
no requirement for local CO, sequestration.

- Not limited in its contribution by need for large-scale energy
storage or extreme-distance transmission

Cost of power estimated similar to coal, fission

Can produce electricity and hydrogen
- Complements other nearer-term energy sources
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Plasma Confinement
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Plasma science also has impacts far beyond fusion energy —
in computer chip processing, fuel efficiency, astrophysics...



Fusion Development is a Worldwide Activity
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Dramatic Recent Advances in Fusion Science
with Strong Connections to other Areas of
Science and Technology

Global Stability
— What limits the pressure in plasmas?

- Ideal understood, controlling resistive
e Solar flares

Wave-particle Interactions

— How do hot particles and plasma
waves interact?

- Good understanding of linear regime
e Magnetospheric heating

Microturbulence & Transport
- What causes plasma transport?

- Well accepted model for ion transport
e Accretion disks

Plasma-material Interactions

- How can high-temperature plasma and
material surfaces co-exist?

- Detached divertor regime discovered
e Micro-electronics processing




Progress in Fusion has Outpaced Computer Speed
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Progress is paced by the construction of new facilities.



ITER Provides an Opportunity to
Light a Star on Earth

Fusion Science Benefits:
Extends fusion science to
larger size, burning (self-
heated) plasmas - for very
long pulses.

Technology Benefits:
Fusion-relevant
technologies.

High duty-factor operation.

Today:
ITER:

15 MW for 1 second, gain < 1
500 MW for 10 minutes, gain > 10 %

PRINCETON PLASMA
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ITER Negotiations:
Europe, Japan, Russia, US, China, South Korea

e Two sites are now on the table:
— Japan: Rokkasho, northeast corner of the main island
- France: Cadarache, near Aix-en-Provence
e The financial numbers add up:
- The Host pays 48%
— The primary non-Host pays 12%
- US, China, South Korea, Russia
each pay 10%
e The key issues for resolution are:
- Siting - how do we have a win/win?
- Management of a major international
construction project
— Risk allocation
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The Estimated Development Cost for Fusion
Energy is Essentially Unchanged since 1980
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The pace of fusion energy development is set by funding.



The Value of Fusion-Produced Energy
iIs 12,000x Greater than the Development Cost
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The National Academy Endorses both ITER
and a Strong Domestic Fusion Program

BURNING PLISHA

BRINGING A STAR
TO EARTH

“A strategically balanced U.S. fusion
program should be developed that
includes U.S. participation in ITER, a
strong domestic fusion science and
technology portfolio, an integrated
theory and simulation program, and
support for plasma science. As the ITER
project develops, a substantial
augmentation in fusion science program
funding will be required in addition to
the direct financial commitment to ITER
construction.”

National Research Council,
Burning Plasma Report, 2003



President Bush on Fusion (2/6/03)




DOE Science 20-Year Strategic Plan
Defines the U.S. Strategy for Fusion Energy Sciences

Strategic Timeline—Fusion Energy Sciences™
2015 2017 2019 2021 2023 2025
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DOE Science 20-Year Strategic Plan
Defines the U.S. Strategy for Fusion Energy Sciences

Strategic Timeline—Fusion Energy Sciences™

The Science

2015

2017

2019 2021 2023

Burning Plasma Demonstration

* Initiate experiments on the
National Ignition Facility
(NIF) to study ignirion and
burn propagation in IFE-
relevant fuel pellers (2012)
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Complete experiments on NIF to advance the
science of ignition and bum propagation
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Inerrial Fusion Energy plant (2020)
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capable of producing a self-sustaining fusion reaction, called a “burning plasma,”
Next-Step Spherical Torus (NSST)
Experiment: The NSST will be designes
to test the spherical torus, an innovative
concept for magnerically confining a
fusion reaction.

“These ic mil are illustrative and d on funds made available through |he Federal budget process.

“*For more d.mnl on these facilities and the mnll prioritization p see the comp doc s

Facilities for the Future of Science: A Twenty-Year Outlook.

Fusion Energy Contingency: If ITER construction and operation goes forward as planned,

additional facilities o develop and rest power plant components and marerials will be needed ro

complete the process of making fusion energy a viable commercial energy resource by mid-century.
Integrated Beam E (IBX): The IBX will be an intermediate-scale
experiment to understand how to generate and transmit the focused, high-
energy ion beam needed to power an IFE reaction.




Z. Lin, GTC simulation

G.J. Kramer, E. Valeo, R. Nazikian, Full Wave simulation

S. Klasky, |. Zatz, Visualization




Advanced Plasma Diagnostics in Action
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DOE Science 20-Year Strategic Plan
Defines the U.S. Strategy for Fusion Energy Sciences

Strategic Timeline—Fusion Energy Sciences™
2015

The Science

2017 2019 2021 2023
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Fusion Energy Contingency: If ITER construction and operation goes forward as planned,
additional facilities o develop and rest power plant components and marerials will be needed ro
complete the process of making fusion energy a viable commercial energy resource by mid-century.
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PPPL is Engaged in Fusion Plasma
Science across a Breadth of Configurations

Advanced Tokamak Spherical Torus Compact Stellarator
Active instability control High plasma pressure at Passive stability and
and driven steady-state. low magnetic field. steady-state operation.




PPPL is Developing Plasma Control Techniques
through Off-Site Tokamak Research

: , - Ion Cyclotron
Electron Cyclotron Launcher at JET
Launcher at DIII-D '

Lower Hybrid
Launcher at C-MOD
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National Spherical Torus Experiment
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Very Steep Pressure Gradients are
Observed near Edge of Plasma in H-mode
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Field Utilization
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A Major Challenge for Tokamaks & ST’s:
Sustained Operation

[ 1o [MA] g e e s i

Most of the plasma
current must be
supplied through
the self-sustained
bootstrap current,
while operating well
above the no-wall
beta limit.

Can be tested in
ITER in conditions
relevant to tokamak ”
and ST. ' r —~="" Bootstrap
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Compact Stellarators Offer a
Different Twist on Plasma Confinement

Goals:

o Steady-state, disruption-free
high g plasma operation,
without current or rotation drive
for stable, steady operation at

National high power and high gain.

Compact e Low R/a for high power / size.

Stellarator
Experiment

Through 3-dimensional Shaping:

e Massively parallel computing to
maximize stability, buildability
and quasi-symmetry / transport

e Quasi-axisymmetry builds on
tokamak data base.

Auburn U., Columbia U., LLNL, NYU, ORNL, PPPL, SNL-A, U. Texas, UCSD, U. Wisconsin

Australia, Austria, Japan, Germany, Russia, Spain, Switzerland, Ukraine



NCSX Manufacturing Accomplishments
Successful Prototypes of Key Components

Modular Coil Wi_nding Fo_rm Vacuum Vessel Prototype
Energy Industries of _OhIO Major Tool and Machine
Independence, Ohio Indianapolis, Indiana

Office of .
rJ Science Procurements later this summer. %

U.S. DEPARTMENT OF ENERGY
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NCSX Design is Coming Together Nicely:
A Joint PPPL-ORNL Effort
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NCSX Coil Facility Installed
INn TFTR Test Cell
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Science
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Fusion Research has Multiple Spillover Benefits

Plasma Processing of Chips and Circuits
e Plasmas are used to etch features on modern
computer chips.
Coatings and Films
e Plasmas provide hardened surfaces and
corrosion resistance.
Plasma Electronics
e Fusion scientists are working to improve plasmas
for wide-screen TV.
Clean and Efficient Engines
e Plasmatron fuel reformer for higher efficiency
and cleaner exhaust.
Waste Processing
e Plasmas can be used to destroy toxic waste.
Superconducting Sytems
e Superconducting magnets for MRI and energy transmission.
Scientific Advances
e Most of the visible universe is plasma. Fusion science contributes
to understanding near-Earth space, the sun, and the galaxies.




Fusion Research Contributes to
an Educated Workforce

54 Universities Nationwide Participate in Fusion Research
e 50 Ph.D. Students are produced each year
e Many continue in fusion research, but others contribute
to many other fields of science and technology

Each of the major
fusion groups also
has a strong
educational
outreach program.
These programs
reach K-12
students, their
teachers and
undergraduate
students.
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Fusion is an Important
Part of the Nation’s Energy Future

Fusion can be a very attractive domestic energy source.

Fusion can be developed on a reasonable time scale,
at a reasonable cost.

Only the Federal Government can make the investment.
Progress has been dramatic, but it is paced by funding.
Princeton has a very exciting program in fusion research

and in the science of plasmas.

Enjoy your visit with us today!



