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Abstract 
RVCQ3D (Rotor Viscous Code Quasi-3-D) is a rapid computer code for analysis of inviscid or viscous blade-to-blade 

flows in turbomachinery. It accounts for the quasi-three-dimensional effects of rotation, radius change, and stream surface 
thickness variation. The code has been heavily used at NASA Glenn and in U.S. industries and universities for a wide variety 
of problems including analysis of turbopump blades for the Space Shuttle main engine, analysis of roughness effects on fan 
blades, and the design of supersonic fan blades. The code runs quickly on most computers. This report serves as the user’s 
manual and documentation for the RVCQ3D code. The code and some aspects of the numerical method are described. Steps 
for code installation and execution are given. The grid, input, and output variables are described in detail. 

Introduction 
RVCQ3D (Rotor Viscous Code Quasi-3-D) is a rapid computer code for analysis of quasi-three-dimensional viscous flows 

in turbomachinery. RVCQ3D is applicable to most types of turbomachinery including compressors and turbines with axial, 
radial, or mixed flows. Several example solutions are shown in figures 1–4. The code solves the thin-layer Navier-Stokes equa­
tions on a blade-to-blade surface of revolution using an explicit finite-difference technique. Three turbulence models are avail­
able. Several schemes are used to accelerate convergence. The code is written in Fortran and runs quickly on most computers. 
Solution files are compatible with most CFD flow visualization packages. 

Reference 1 describes the mathematical formulation of the problem, and an explicit multigrid solution scheme that was 
used in previous versions of the code. The current release of the code uses an explicit multistage Runge-Kutta solution scheme 
based on the work of Jameson, Schmidt, and Turkel. A spatially-varying time step and implicit residual smoothing are used to 
accelerate convergence. Preconditioning is used to accelerate convergence for low speed flows. 

The problem is formulated by writing the Euler or Navier-Stokes equations on a surface of revolution in an (m,θ) coordi­
nate system (fig. 5.) The m-coordinate is the arc length along the surface, and the θ-coordinate is in the circumferential direc­
tion. The stream surface radius and thickness are assumed to be known functions of m, usually obtained from an axisymmetric 
throughflow analysis. Terms are included for rotation around the m-axis. 

The equations are mapped to a body-fitted (ε η) coordinate system using standard finite-difference techniques. All vis­, 
cous terms are dropped in the streamwise (x) direction using the thin shear layer approximation. Turbulence effects are mod­
eled using the Baldwin-Lomax, Cebeci-Smith, or Wilcox k-ω turbulence models. The equations are differenced using second­
order finite differences throughout. 
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n α1 α2 α3 α4 α5 λ * 

2 1.2 1. .95 

3  .6  .6  1.  1.5  

4 .25 .3333 .5 1. 2.8 

5 .25 .1667 .375 .5 1. 3.6 

* Table 1 - Runge-Kutta parameters α1
– α5  and maximum Courant number λ  for n-stage schemes. 

C-type grids are used to give good resolution of blade leading-edges and wakes (see figure 6.) Grid input is in standard 
PLOT3D xyz-file format, so any C-grid generator can be used. However, the GRAPE code developed by Reece Sorenson at 
NASA Ames Research Center has been modified for turbomachinery by the author, and works directly with RVCQ3D. 

An explicit multistage Runge-Kutta scheme is used to solve the difference equations by marching in time from an initial 
guess to a steady-state solution. The user may choose the number of stages in the scheme, but a four stage scheme is recom­
mended. A spatially-varying time step is used to accelerate the convergence rate, but the code may be run with a constant time 
step and second-order time accuracy by changing an input flag. The explicit scheme has a stability limit on the time step (a 
Courant number of about 2.8 for a four stage scheme.) Implicit residual smoothing is used to increase the allowable time step 
and thus increase the convergence rate. Preconditioning may also be used to accelerate convergence for low-speed (incom­
pressible) flows. 

RVCQ3D is written completely in Fortran and runs as a batch job on most PC’s, workstations, or mainframe computers. 
Namelist input data must be supplied to RVCQ3D as an ascii dataset. Typical viscous solutions take 1500-2000 iterations to 
converge and require a few minutes on a PC or workstation, depending on grid size and flow characteristics. Printed output 
consists of a residual history, spanwise profiles of blade-to-blade averaged quantities at the grid inlet and exit, and streamwise 
profiles of various quantities on the blade surfaces. No graphical output is provided, but the solution files can be read directly 
and plotted using the public domain CFD visualization codes PLOT3D and FAST, or the commercial codes ENSIGHT, 
FIELDVIE, and TECPOT. 

This documentation briefly describes how the RVCQ3D code works. Instructions for dimensioning, compiling, and run­
ning RVCQ3D are given for Silicon Graphics (SGI) workstations and Cray mainframes. The namelist input variables are 
described in detail. Finally, the structure of the output file is described. 

Four test cases are included: a subsonic turbine stator, a linear compressor cascade, a centrifugal impeller, and an annular 
compressor cascade (figs. 1–4.) These cases cover most of the input options available in the code. 

Non-Dimensionalization 
The grid xyz-file may be input in any arbitrary units of length. The input parameters to RVCQ3D and the output solution 

file are strictly nondimensional, with the exception of lengths which must be input in the same units as the grid. 
All quantities are nondimensionalized by an arbitrary reference stagnation state defined by total density ρ0 and total sonic 

2
velocity c0 . A reference viscosity µ0 is defined by the stagnation temperature T 0 = c0 ⁄ (γR) . Standard conditions are often 
used for the reference state, but any self-consistent state may be used as long as the units of length are consistent with the grid 
units. The reference state is not necessarily the inlet state. 

For input and output, pressures and temperatures are nondimensionalized by P0 and T0. Within the code, pressures are 
2usually nondimensionalized by ρ0c0 = γ P0

. 
Four input parameters must be properly nondimensionalized: renr, om, prat, and tw (See “RVCQ3D Input”, pp. 7.) 
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Numerical Method 

Multistage Runge-Kutta Scheme 
Multistage schemes were developed by Jameson, Schmidt, and Turkel (11) as a simplification of classical Runge-Kutta 

integration schemes for ODE’s. The simplification reduces the required storage, but also reduces the time-accuracy of the 
schemes, usually to second order. The following discussion of these schemes should give some guidance in choosing parame­
ters for running the code. 

The kth-stage of an n-stage scheme may be written as: 

k 0 0 
q = q – αk ∆t RI + RV )( k 

0
where q is an array of five conservation variables (See “Solution Q-File”, pp. 14.), k is current the stage, q is the previous 

k
time step, αk 

are the multistage coefficients discussed below, ∆t is the time step, RIk 
is the inviscid part of the residual, and 

0 0
RV is the viscous part of the residual including the artificial dissipation. Note that RI is evaluated at every stage k, but  RV 
is evaluated only at the initial stage for computational efficiency. 

** 
The maximum stable Courant number λ for an n-stage scheme can be shown to be λ = n 1 – . The actual stability limit 

αn 1 – 
depends on the choice of αk 

. For consistency αn 
must equal 1, and for second-order time accuracy must equal 1/2. 

* 
The values of αk 

used in the code and the theoretical maximum Courant number λ are set by a data statement in subroutine 
setup and are given in table 1. 

The number of stages is set with the variable nstg. Using nstg = 4 is recommended, although Jameson et. al. tend to 
favor 5 stages. 

A spatially-varying ∆t is used to accelerate the convergence of the code. Setting ivdt = 1 causes the Courant number to 
be set to a constant (input variable cfl) everywhere on the grid, and to be recalculated every icrnt iterations. This option is 
highly recommended. Set icrnt to a moderate number, e.g. 10, so that the time step is recalculated occasionally. The time step 
is recalculated when the code is restarted and may cause jumps in the residual if icrnt is too big. 

Implicit residual smoothing (described later) may be used to increase the maximum Courant number by a factor of two to 
three, thereby increasing the convergence rate as well. 

Artificial Viscosity 
The code uses second-order central differences throughout and requires an artificial viscosity term to prevent odd-even 

decoupling. A fourth-difference artificial viscosity term is used for this purpose. This term is third-order accurate in space and 
thus does not affect the formal second-order accuracy of the scheme. The input variable avisc4 scales the fourth-difference 
artificial viscosity, and should be set between 0.25 and 2. A good starting value is avisc4 = 1.0 . If the solution is wiggly, 
increase avisc4 by 0.5. If it is smooth, try reducing avisc4 by 0.5. Larger values of avisc4 may improve convergence some­
what, but the magnitude of avisc4 has little effect on predicted losses or efficiency. 

The code also uses a second-difference artificial viscosity term for shock capturing. The term is multiplied by a second 
difference of the pressure that is designed to detect shocks. Note that the second-difference artificial viscosity is first-order in 
space, so that the solution reduces to first-order accurate near shocks. Two other switches developed by Jameson (11) are used 
to reduce overshoots around shocks. The input variable avisc2 scales the second difference artificial viscosity, and should be 
set between 0. and 2. Use 0. for purely subsonic flows, and start with 1. for flows with shocks. If shocks are wiggly, increase 
avisc2 by 0.5. If they are smeared out, try decreasing avisc2 by 0.5. Shocks will be smeared over four or five cells regardless of 
the value of avisc2. The magnitude of avisc2 also has little effect on predicted loss or efficiency. 

Eigenvalue scaling described in (2) is used to scale the artificial viscosity terms in each grid direction. This greatly 
improves the robustness of the code. The artificial viscosity is also reduced linearly by grid index near walls to reduce its effect 
on the physical viscous terms. Input variable jedge is the index where the linear reduction begins. 

For computational efficiency the artificial viscosity is usually calculated only at the first stage of the Runge-Kutta scheme. 
This works well for most problems, but for difficult problems the robustness of the scheme can be improved by updating the 
artificial viscosity more often. This is done by setting ndis = 2 with nstg = 4 or 5. Then for nstg = 4 the artificial viscos­
ity is calculated at stages 1 and 2. For nstg = 5 the artificial viscosity is calculated at stages 1, 3, and 5. In RVCQ3D the 
physical viscous terms are calculated at the same time as the artificial viscosity. Thus, setting ndis = 2 increases the CPU 
time per stage significantly, but it is so reliable that it is usually the preferred scheme. 
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Implicit Residual Smoothing 
Implicit residual smoothing was introduced by Lerat in France and popularized by Jameson in the U.S. as a means of 

increasing the stability limit and convergence rate of explicit schemes. The idea is simple: run the multistage scheme at a high, 
unstable Courant number, but maintain stability by smoothing the residual occasionally using an implicit filter. The scheme 
can be written as follows: 

(1 – )(1 – )R = Rεξδξξ εηδηη 

where εε and εη are constant smoothing coefficients in the body-fitted coordinate directions ε and η indicated in figure 6. 
Here δ is a second-difference operator, R is the smoothed residual, and R is the unsmoothed residual. 

It can be shown that if the scheme converges implicit residual smoothing does not change the solution. Linear stability 
theory shows that the scheme can be made unconditionally stable if εi is big enough, but also shows that the effects of the arti­
ficial viscosity are diminished as the Courant number is increased. In practice the best strategy seems to be to double or triple 
the Courant number of the unsmoothed scheme. If the residual is smoothed after every stage, the theoretical 1-D values of εi 
needed for stability are given by: 

1 λεi ≥ ---    2 
1– 

4  * λ 
* 

where λ is the Courant limit of the unsmoothed scheme (given in table 1,) and λ is the larger operating Courant number. For 
example, to run a four-stage scheme at a Courant number λ = 5.6 , the smoothing coefficient should be: 

1 5.6 2 
1–εi ≥ --- ------- = 0.75

4 2.8 

A single variable eps = ε is input to RVCQ3D. The 1-D limit given above usually gives a reasonable estimate for ε , but 
the code will converge best when ε is minimized. Values of εε and εη are evaluated at each grid point within the code by scal­
ing eps using the same Eigenvalue scaling coefficients used for the artificial dissipation. This has proven to be quite robust. 

In older versions of RVCQ3D the residual smoothing coefficients were set as constants in each direction. The Eigenvalue 
scaling described above almost always works better, but constant smoothing coefficients can be set using input variables epi 
and epj. 

Implicit residual smoothing involves a scalar tridiagonal inversion for each variable along each grid line in each direction. 
It adds about 20 percent to the cpu time when applied after each stage. Smoothing can be done after every other stage to reduce 
cpu time (about 7 percent,) but eps must be increased (approximately doubled.) This option is not recommended. 

Recommended Numerical Parameters 
Table 2 lists recommended parameters for three numerical schemes, in order of the author’s preference. For each scheme 

avisc2 = 1.0 , avisc4 = 0.5 , and irs = 1 . 

Preconditioning 
Density-based schemes like RVCQ3D solve the continuity equation by driving the density residual to zero. For low speed 

(nearly incompressible) flows the density residual is naturally near zero, and the schemes fail to converge. Preconditioning, 
described in references (8) and (9) improves the convergence rate in two ways. First, it replaces the q-variables 

, , ,q = [ρ ρu, ρv e] with variables that are better-behaved at low speeds W = [ p, ρu, ρv h] , where p is the pressure and h is 
the total enthalpy. Second it multiplies the equations by a matrix designed to equalize the wave speeds of each equation. The 
preconditioning matrix has the local flow velocity in the denominator and must be limited when the velocity becomes small. 
The preconditioning operator is designed so that it has no effect on the steady-state solution. 

Preconditioning works extremely well for the Euler equations and less well for the Navier-Stokes equations. It will allow 
solutions for very low Mach number flows to converge when they would not converge otherwise. 

Turbulence Models 
Three turbulence models are available in RVCQ3D, the Baldwin-Lomax and Cebeci-Smith algebraic models, and the Wil­

cox two-equation k-ω models. All three models include transition models and surface roughness effects. 
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nstg ndis cfl eps comments 

4 2 5.6 0.75–1.00 good overall scheme 

5 2 7.0 1.25–1.50 slow per stage, fast convergence 

2 1 2.5 1.35–1.60 fast per stage, slow convergence 

Table 2 - Recommended numerical parameters for three Runge–Kutta schemes. For each scheme avisc2 = 1.0 , 
avisc4 = 0.5 , and irs = 1 . 

Baldwin-Lomax and Cebeci-Smith Turbulence Models 
The Baldwin-Lomax model is accessed by setting input variable ilt = 2 . The model is implemented as described in the 

original reference (3), except that two constants have been changed to CCp = 1.216 and = 0.646 . The length scale CKleb 
for the Baldwin-Lomax model is correlated to the maximum of a function f = y ω D , where y is the distance from the wall, 
ω is the magnitude of the vorticity, and D is the Van Driest damping function. In some cases that maximum is not well­

behaved, so RVCQ3D limits the search to the grid line at j-index jedge away from the body. Input variable jedge should be 
chosen slightly larger than the largest extent of the boundary layer. Solutions are usually insensitive to values of jedge. 

The Cebeci-Smith model is accessed by setting input variable ilt = 3
*
. The model is implemented like the Baldwin­

dLomax model except that the length scale is found by integrating δ f y = δ ue , as described in (4). Here the upper bound of ∫ 0 
the integral is usually found automatically since f → 0 as y δ → . However, cases with free-stream vorticity can have a finite 
f outside the boundary layer, so input variable jedge is used to bound the integral in RVCQ3D. The Cebeci-Smith model is very 
reliable for turbine heat transfer problems, but is not recommended for transonic compressors which tend to produce free­
stream vorticity behind the bow shock. 

Transition is predicted in both models at the location where µ ⁄ µ > cmutm , where cmutm is an input variable usu­turb lam 
ally set to 14, as recommended in (3). The model is crude, but often works surprisingly well for moderate Reynolds numbers 
and free-stream turbulence. 

Roughness effects are included in both models using the Cebeci-Chang roughness model (5). The model modifies the tur­
bulent length scale based on the equivalent sand-grain roughness height in turbulent wall units hrough. Input variable hrough 

,can be estimated using hrough ≈ 10 000 × ⁄ chord , where is the RMS roughness height. If hrough < 4.6 , the hRMS hRMS 
surface is hydraulically smooth and roughness effects are not modeled. 

Wilcox k-ω Turbulence Model 
The Wilcox k-ω is accessed by setting input variable ilt = 4 or 5 . The model is described in (6), and implemented as 

described in (7) using a first-order upwind ADI scheme. Two versions of the model are included, a baseline model ( ilt = 4) 
and a low Reynolds number model ( ilt = 5) . The baseline model gives a fully-turbulent solution, and, unlike k-ε models, it is 
valid all the way to the wall. The low Reynolds number model includes transition effects. 

Three input parameters effect the k-ω model, the surface roughness hrough as described above, the free-stream turbulence 
level tintens (in percent), and the free-stream turbulence length scale tlength. Solutions are generally insensitive to tlength 
except for the location of transition. 
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Compiling and Running RVCQ3D 
RVCQ3D is supplied as a unix script which generates the source and include files and compiles them. The format of the 

script file is shown below. 

#! /bin/csh -f

cat > RVCQ3D.f << ‘/eof’

#RVCQ3D source code goes here

‘/eof’

#----------------------------------------------------­

cat > sec.f << ‘/eof’

#replacement for Cray-specific timing routine here

‘/eof’

#----------------------------------------------------­

cat > csca << /eof

#scalar common block goes here

eof

#-----------------------------------------------------

#other common blocks follow

#----------------------------------------------------­

cat > param << /eof

#code dimensioning parameters go here


 parameter (id=385,jd=64

/eof

#-----------------------------------------------------


#compiler commands with options go here

/bin/rm...


On a unix platform, edit the script and go to the bottom. Change the parameter statements to values greater than or equal 
to the size of the grid to be run. (See Parameter Statements below.) Comment, uncomment, or add compilation commands 
appropriate for the computer to be used. (See below for compilation commands for SGI and Cray computers.) Save the script, 
set execute permission, and execute it. 

On a PC, manually strip out, save, and compile the files between the cat and /eof commands. 

Parameter Statements 
RVCQ3D uses a parameter statement to make redimensioning simple. The parameter statement and labeled common 

blocks are inserted during compilation using Fortran include statements. A typical parameter statement is shown above. Actual 
parameter values may be different in the distribution code. RVCQ3D checks the user input against the dimensioning parame­
ters and stops with a fatal error message if the code is not dimensioned properly. 

For a C-grid dimensioned (m n) , the dimension parameters must have id ≥ m and jd ≥ n 1 + . The j-direction requires , 
an extra line of storage for a dummy grid line used in RVCQ3D to implement the periodic boundary conditions. 

Thirty-six variables are stored at each grid point. Thus the computer memory required to run RVCQ3D is
36 × id × ( jd 1 + )  words for arrays, plus about 200K words for the executable code. 

Compiling RVCQ3D on Silicon Graphics Workstations (IRIX) 
The following commands can be used to compile RVCQ3D on various SGI workstations: 

#SGI R8000,R10000 CPU

f77 -O3 -mips4 -WK,-o=0,-so=2,-ro=0 -OPT:round=3:IEEE_arith=3 \

-lfastm -o RVCQ3D RVCQ3D.f noncray.f

strip RVCQ3D


#SGI R4000 CPU (Indigo 2)

f77 -O2 -sopt -mips2 -lfpe -o RVCQ3D RVCQ3D.f

strip RVCQ3D
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Compiling RVCQ3D on Cray Research Computers (UNICOS) 
The following command will compile RVCQ3D on a Cray C-90 with autotasking and full optimization: 

f90 -O3 -o RVCQ3D RVCQ3D.f


Running RVCQ3D 
The executable program is run as a standard unix process: 

RVCQ3D < std_input > std_output &


Standard Input, Output, and Binary Files 
An ascii input file for RVCQ3D is read from Fortran unit 5 (standard input.) Printed output from RVCQ3D is written to 

Fortran unit 6 (standard output.) Binary files linked to Fortran units 1-3 may be used in the execution of RVCQ3D, depending 
on input options. The units are used as follows: 

fort.1input grid file, required. See “Grid XYZ-File”, pp. 14. 
fort.2 input solution file, read if iresti 1= . See “Solution Q-File” pp. 14. 
fort.3 output solution file, written if resto . See “Solution Q-File” pp. 14. 1= 
fort.7 input k-ω turbulence file, read if  and .iresti 1= ilt ≥ 4 
fort.8 output k-ω turbulence file, written if  and .resto 1= ilt ≥ 4 

All files are treated as unformatted binary files. They are not explicitly opened in the code. Files are usually linked to file 
names before running RVCQ3D, 

ln input.grid.file fort.1

ln input.solution.file fort.2

ln output.solution.file fort.3

etc.


Binary grid files can be used immediately on the same type of computer on which they were generated. Files generated on 
an SGI machine can be read into PLOT3D using the read /unformatted option. Files generated on a Cray can be converted to 
SGI format in one of two ways: 

1. By using the itrans command at NASA Ames to convert the files to SGI binary. Files converted using itrans can be read 
into PLOT3D using the read /binary option <default>. 

itrans file.xyz file.SGI.xyz


2. By assigning the files as 32 bit ieee binary files on the Cray before execution. The lower precision does not affect the 
accuracy of RVCQ3D. Files written on a Cray while assigned as ieee binary can be used directly on an SGI machine and can 
be read into PLOT3D using the read /unformatted option. 

assign -F f77 -N ieee fort.1

assign -F f77 -N ieee fort.2

etc.


RVCQ3D Input 
Defaults are given in angle brackets, <Default=value> or <default.> If no default is given, the value MUST be input. 

Title 

ititle	 An alphanumeric string of 80 characters or less printed to the output. The character string must be enclosed 
in single quotes. The following Fortran input statement is used to read ititle:

 read *,ititle
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&nam1 - Grid Size Parameters 

m	 Grid size in i- (streamwise) direction. Must agree with m read from the grid file. The code must be dimen­
sioned with id ≥ m . 

n	 Grid size in j- (blade-to-blade) direction. Must agree with n read from the grid file. The code must be dimen­
sioned with jd ≥ n 1 + to allow for a dummy grid line added internally to implement the periodic boundary 
conditions. 

mtl i-index of lower trailing-edge point on a C-grid. Mtl is printed at the end of the GRAPE output. Mtl can be 1 
for a blade that extends to the exit of the grid. 

mil i-index of the last periodic point on the outer boundary. Also acts as the lower point on the inlet boundary. 
Mil is printed at the end of the GRAPE output. 

ich Cascade/flat plate analysis flag. 

= 0 Cascade analysis on a C-grid <default.> 

= 1 Flat plate analysis on an H-grid. Simple geometry only used for testing turbulence models. 

&nam2 - Algorithm Parameters 

nstg	 Number of stages for the Runge-Kutta scheme, usually 4, but can be 2-5. <4> 

ndis	 Number of evaluations of the artificial and physical dissipation terms during the Runge-Kutta scheme. Gen­
erally 1, but larger values improve the robustness of the algorithm. See “Artificial Viscosity”, pp. 3. <1> 

If ndis = 2 and nstg = 4 the dissipative terms are updated after stages 1 and 2. 

If ndis = 2 and nstg = 5 the dissipative terms are updated after stages 1, 3, and 5. 

avisc2 Second-order artificial dissipation coefficient. Typically 0.0 - 2.0. Use 0.0 for purely subsonic flow or 1.0 
for flows with shocks. <1.0.> 

avisc4 Fourth-order artificial dissipation coefficient. Typically 0.25 - 1.5. Start at 1.0 and reduce avisc4 to 0.5 if 
possible. <0.5.> 

irs Implicit residual smoothing flag. Usually = 1. (See “Implicit Residual Smoothing”, pp. 4.) 

= 0 No residual smoothing 

= 1 Implicit smoothing after every Runge-Kutta stage <default.> 

= 2 Implicit smoothing after every other stage. eps must be increased (roughly x 2) for this option to work. 

eps Overall implicit smoothing coefficient based on the 1-D stability limit (See “Implicit Residual Smoothing”, 
pp. 4.) RVCQ3D will calculate the 1-D limit if eps is defaulted. 

epi, epj Implicit smoothing coefficient multipliers for the i, and j directions. (See “Implicit Residual Smoothing”, 
pp. 4.) Rarely used. <1.> 

ivdt Variable time step flag. 

= 0 Spatially constant time step. 

= 1 Spatially variable time step. <default, highly recommended> 

cfl Courant number, typically 5.6 (see “Multistage Runge-Kutta Scheme” pp. 3.) If ivtstp = 0 , cfl is the maxi­

mum Courant number, usually located somewhere near the leading edge at the blade surface. If ivtstp = 1 , 
the Courant number will equal cfl everywhere. <5.> 

ipc Preconditioning flag, (see “Preconditioning” pp. 4.) 

= 0 No preconditioning. <default> 
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= 1 Preconditioning using the Merkel, Choi, Turkel scheme. Should give a substantial speedup for low Mach 
numbers < 0.3. 

= 2 Solves the equations using the preconditioning variable set, but sets the preconditioning matrix to the 
identity matrix. Used to debug the preconditioning routines. 

pck Constant limiter (Turkel’s parameter k) for preconditioning. The denominator in the preconditioning matrix 

is limited to be > , where is a reference velocity set by refm. Pck is typically 0.1 - 0.3, but pck q' ref 
2× q' ref 

larger values may be necessary for stability. <0.15> 

refm Reference relative Mach number used to find described above. Should be approximately the largest q' ref 

Mach number expected in the flow. If the code blows up, try increasing refm by 0.1. Convergence is mildly 
sensitive to refm and pck, so try to keep these values as small as possible. <amle> 

&nam3 - Boundary Condition & Code Control 

itmax	 Number of iterations, typically 500-1000 per run, but 1000-3000 may be needed for a converged solution. 

iresti	 Read input restart file flag. Restart files are in PLOT3D format in the relative frame. 

= 1 Read restart file from unit 2. 

else No action taken. <default> 

iresto	 Write output restart file flag. 

= 1 Write restart file to unit 3. <default> 

else No action taken. 

ibcin	 Inlet boundary condition flag. In all cases P0 and T 0 are fixed at the inlet. For subsonic flow a Riemann 

invariant is extrapolated from the interior to determine the meridional velocity u. Ibcin determines how vθ is


determined.


= 1 The θ-velocity component is held constant at the initial value based on amle and alle. <default>


= 2 Supersonic inflow - all quantities are fixed at the inlet.


= 3 The flow angle α is held constant at the initial value based on amle and alle. This option may not be

well-posed for transonic compressors, where the inflow angle may be set by unique incidence.


ibcex	 Exit boundary condition flag. Three conservation variables are extrapolated to the exit. Ibcex determines 
how the exit pressure p is determined. 

= 1 The exit pressure is held constant at prat. Good for subsonic outflow. <default> 

= 2 Supersonic outflow. P is extrapolated to the boundary. 

= 3 The average exit pressure is held constant at p = prat , but p may vary blade-to-blade. Based on char­
acteristic boundary conditions developed by Giles. Especially good for transonic turbines with shocks leav­
ing the trailing edge. 

ires Iteration increment for writing residuals in the output file. Typically 10. If the code is blowing up, set
ires = 1 to print the size and location of the maximum residual at each iteration 

icrnt Iteration increment for updating the time step. Typically 50. If icrnt is very large, the residual history may be 
discontinuous where ∆t is recalculated, especially at restarts. <50> 

ixrm Flag for additional output of blade coordinates and radius. 

= 0 No output <default.> 

= 1 x, y, and r are printed in the output file. 
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mioe	 Mass flow output flag for residual history. For transonic fans the inflow may respond slowly to a change in 
back pressure, so the inlet mass flow can be monitored for convergence (mioe = 1). For turbines the inflow 
may choke quickly so the outflow can be monitored (mioe = 2). In general the mass flow error is a good mea­
sure of convergence and accuracy and should converge to a fraction of a percent (e. g., < 0.003, mioe = 3). 

= 1 Inlet mass flow history is written. 

= 2 Exit mass flow history is written. 

= 3 Mass flow error 1 – ṁout ⁄ m  is written. <default> ˙ in 

&nam4 - Flow Parameters 
Since the user may not know the inlet whirl or exit pressure at the boundaries of an arbitrary grid, it is assumed that the 

absolute Mach number amle and flow angle alle are known at the leading edge, and relative flow angle bete is known at the 
trailing edge. In other words, initial conditions are input in terms of the blade leading edge and trailing edge velocity triangles. 
An analytic solution of the 1-D continuity equation is used to determine the inlet conditions. At the inlet, either the θ-velocity 
component v or the flow angle α is held fixed at the initial value. For subsonic inflow the m-velocity component and mass flow 
change as the solution develops in response to the exit pressure ratio prat. 

p0in	 ⁄ at the inlet. Usually <1.0>, but can be varied to simulate a downstream blade row in a multi­P0 in P0 ref


stage environment.


⁄ at the inlet. Usually <1.0>, but can be varied to simulate a downstream blade row in a multi­t0in	 T 0 in T 0 ref 

stage environment. 

prat	 Ratio of the hub exit static pressure to the reference total pressure, prat = .phub exit ⁄ P0 ref 

amle Nominal Mach number at the leading edge. Used for initial conditions. Note that the inlet Mach number will 
change with the solution for subsonic inflow. 

alle Absolute flow angle at the leading edge in degrees. <Default = 0. for axial inflow.> 

bete Relative flow angle at the trailing edge in degrees. Can be measured directly from a grid. Used for initial 
conditions only. <0.> 

g Ratio of specific heats. <γ = 1.4 for air> 

&nam5 - Viscous Parameters 

ilt	 Inviscid, Laminar, or Turbulent analysis, with turbulence model options. 

= 0 Inviscid Euler solution. The remaining viscous parameters are not used if ilt=0. 

= 1 Laminar. Viscous terms are calculated, but the turbulent viscosity is zero. 

= 2 Turbulent using the Baldwin-Lomax turbulence model (3). <default> 

= 3 Turbulent using the Cebeci-Smith turbulence model (4). This model works well for turbine heat transfer 
but may overpredict losses for transonic compressors.


= 4 Fully turbulent using the baseline Wilcox k-ω turbulence model (6, 7).


= 5 Turbulent with transition using the low Reynolds number Wilcox k-ω turbulence model (6, 7).


jedge	 The last j-index searched for the blade turbulent length scale. For the Baldwin-Lomax turbulence model 
(ilt 2 = ) , jedge should be a grid line slightly bigger than the largest expected blade boundary layer. For the 

Cebeci-Smith turbulence model (ilt = 3) , jedge should be a grid line slightly bigger than half the largest 
expected blade boundary layer. <10> 

NOTE:	 Jedge is also used to turn off the artificial viscosity in viscous layers. The artificial viscosity is multiplied by 
a linear function of j-index that goes from 1 at j=jedge to 1/jedge at the wall. This improve viscous loss pre­
dictions. Jedge is set to 1 internally for inviscid flow. 
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renr	 Reynolds number per unit length based on reference conditions, renr = ρ0c0 ⁄ µ . Must have units of 0 

[1 ⁄ grid units] . Generally much larger that a conventional “free-stream” Reynolds number. For example, for 
standard conditions and a grid with units of [ft], 

= 0.0765 lb ⁄ ft3ρ0 m 

c0 = 1116.7 ft/sec 

7 – µ = 3.99×10 lb f sec ⁄ ft2 = 1.285×10
5 – 

lb ⁄ ft sec0	 m 

˙ 
renr = 0.0765 × 1116.7 ⁄ 1.285×10

5 – 

6 
= 6.65×10 ⁄ ft 

prnr	 Prandtl number. <0.7 for air> 

tw	 Normalized wall temperature, tw = ⁄ .T wall T 0 ref 

= 0 Adiabatic wall boundary conditions are used. 

= 1 T wall = .T 0 ref 

else T wall = tw . 

vispwr	  Exponent for laminar viscosity power law. <default = 0.667 for air> 

T T  0 ref )
vispwr⁄µ µ = ( ⁄0 

cmutm	 Value of µ ⁄ µ at which transition is assumed to occur. Baldwin and Lomax recommend 14. Can be turb lam 

increased to move transition downstream or vice-versa. If cmutm = 0, the flow is fully turbulent. <14.> 

hrough	 Surface roughness height in turbulent wall units h
+ 

. Implemented in both the Baldwin-Lomax model (ilt=2) 

and the Cebeci-Smith model (ilt=3) using the Cebeci-Chang roughness model. hrough ≤ 4 gives a hydrau-
lically-smooth surface. 

tintens	 Freestream turbulence intensity as a decimal. Determines the inlet value of k for the k-ωmodel. Can be set 
very small, but a value of zero will give a laminar solution. <0.01> 

tlength	 Turbulent length scale, tlength = k ⁄ ω in the same units as the grid. Tlength is used to determine the inlet 
value of ω. Tlength usually has little effect on the solution, except for transition location. It may be necessary 
to vary tlength over several orders of magnitude to find the value that moves the transition point. Wilcox rec­
ommends a length scale of 0.01 to 0.001 of δ for predicting transition. For cascades this is the order of 

4 – 
1×10 × pitch , or 0.1 × grid spacing at the wall. Choosing tlength such that the Reynolds number based on 
tlength ~ 1 seems to give reasonable results, so the default for tlength is <1/renr>. 

NOTE:	 RVCQ3D.300 used the freestream turbulent viscosity tmuin as the input parameter instead of tlength. A  
length scale seemed to be a more useful parameter in the 3-D SWIFT code, and RVCQ3D was changed for 
compatibility. The freestream turbulent viscosity is printed in the output for reference. Choosing tlength 
such that the freestream turbulent viscosity is about 0.1 usually gives good results. 

&nam6 - Blade Row Data 

omega	 Normalized blade row rotational speed, ⁄ where Ω is the wheel speed in radians per second, and Ω c0 ref 

is the reference speed of sound. Omega. has dimensions of [1/grid units]. Omega is positive in the pos­c0 ref 

itive θ-direction, and tends to be negative for most GRC geometries. <0.> 
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nblade	 Number of blades, nblade ≥ 1 . <1> 

If nblade = 1 , the problem is treated as a linear cascade with radius = 1 and stream surface thickness = 1. 

If nmn > 1 , the problem is treated as an annular cascade with pitch = 2π r ⁄ nblade . 

NOTE:	 Since grids are generated independently using the GRAPE code, it is possible that the pitch determined from 
the grid will not match the pitch determined from nblade. In that case RVCQ3D prints a warning in the out­
put file, and rescales the θ -coordinates of the grid to give the correct pitch. 

nmn	 Number of stream surface input points, 1 ≤ nmn ≤ 50 , <1>. 

If nmn = 1 , the problem is treated as a linear cascade with radius = 1 and stream surface thickness = 1. The 
input may be defaulted, but three blank lines MUST be included at the bottom of dataset as place holders for 
the stream surface input. 

If nmn > 1  the stream surface input is read, as described below. 

Stream Surface Input 
The stream surface coordinates are input as m-coordinates srsp, radii rmsp, and stream surface thicknesses besp (fig. 5.) 

Rmsp and besp have first-order effects on the flow solution and should be picked carefully. For a crude model use the mid-span 
radius for rmsp and the blade height for besp. At NASA Glenn, solutions from Katsanis’ axisymmetric throughflow code 
MERIDL that gives a detailed stream tube shape, or a blade design from Crouse’s compressor design code on a conical section 
are often used. Information about endwall boundary layer blockage can be subtracted from besp if known. 

The coordinates must be in the same units as the grid coordinates. They are spline fit to the grid, so they must be smooth 
and monotonically increasing. Points are extrapolated if srsp does not span the m-coordinates of the grid. The coordinates are 
read using an unformatted ascii read, e.g.: 

read(5,*)(srsp(i),i=1,nmn)

read(5,*)(rmsp(i),i=1,nmn)

read(5,*)(besp(i),i=1,nmn)


srsp	 m-coordinates where the radius and stream-surface height are specified. MUST be monotonically increas­
ing. 

rmsp	 r-coordinates of the stream-surface at points srsp. The magnitude of rmsp enters directly into the flow equa­
tions in terms like r dθ × , and has a first-order effect on the flow solution. 

besp	 Stream-surface thickness. The magnitude of besp is unimportant - only its m-derivative effects the solution. 
Besp does effect the printed mass flow so it is usually set to 1. at the inlet and scaled from there. 
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RVCQ3D Output 
Printed output from RVCQ3D is written to Fortran unit 6 (standard output.) The output is divided into several sections. 

The sections are commonly separated using an editor and plotted using any x-y plotting package that can read ascii column 
data. The output includes the following information: 

1.	 The input variables are echoed back for reference, and any comments or warnings regarding the input are given. 

2.	 A table of θ averaged – flow variables is given at the inlet and exit. Both absolute and relative quantities are given. 
These variables are either based on the initial guess or on a restart file, depending on how the code is started. 

3.	 A convergence history gives maximum and RMS residuals of density, mass flow error, and exit flow properties P0 exit 
versus iteration. and T 0 exit 

4.	 A table of θ averaged – flow variables at the inlet and exit is repeated for the new solution. An approximate energy­
averaging scheme is used. It gives a local representation of the average flow, not a mixed-out average. 

+
5.	 Blade surface distributions of various quantities are given versus m. Values of y for the first grid point are given to 

+
check the grid spacing for the turbulence model. y should always be < 10, and should be < 2–3 for good prediction of 
losses. Maximum values of µT are given to identify transition points. With the Baldwin-Lomax and Cebeci-Smith 
models transition occurs where µT jumps abruptly from 0 to µT > cmutm . With the k-ω model transition occurs more 
gradually but should be obvious as a rapid growth of µT . 
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Appendix - File Descriptions 

Grid XYZ-File 
Grids are stored using standard PLOT3D xyz-file structure. Grids can be read with the following Fortran code: 

c 
 read grid coordinates

 read(1)m,n

 read(1)((x(i,j),i=1,m),j=1,n)),


 & ((y(i,j),i=1,m),j=1,n))


Solution Q-File 
Solution files are stored in standard PLOT3D q-file structure. Solution files can be read with the following Fortran code: 

c 	 read q-file

 read(2)m,n

 read(2)emir,abir,renr,time

 read(2)(((qq(k,i,j),i=1,m),j=1,n),k=1,4)


c 	 additional geometry data and residual history

 read(2)mtl,mil,ires,nres,nmn,g,omega,yscl

 read(2)((resd(nr,l),nr=1,nres),l=1,5


c 	 further data for Dan Tweedt’s post-processing codes

 read(2)((qq(k,i,n),i=1,m),k=1,4)

 read(2)cfl,dtmin,idum,idum

 read(2)(srsp(l),l=1,nmn)

 read(2)(rmsp(l),l=1,nmn)

 read(2)(besp(l),l=1,nmn)


The q-variables are given in the rotating frame of reference: 

q = [ρ ρu, ρv′, e], 

1 
e = ρ

C T + ---ρ(u2 + v′2) 
v 2  

Solution k-ω File 
The k-ω files are also stored in standard PLOT3D q-file structure for convenience. Solution files can be read with the fol­

lowing Fortran code
 read(7)m,n

 read(7)emir,abir,renr,float(iter)

 read(7)((wk(1,i,j),i=1,m),j=1,n),


 & ((wk(2,i,j),i=1,m),j=1,n),

 & ((tmu( i,j),i=1,m),j=1,n),

 & ((re( i,j),i=1,m),j=1,n)


 where 

, ,wk = [k ω µ ]turb, Returb 
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Figure 1 − Mach contours for a turbine vane. Figure 2 − Mach contours for a compressor rotor. 

Figure 3 − Mach contours for a centrifugal impeller rotor. 
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Figure 4 — Computed and measured contours of relative Mach number for a transonic compressor rotor. 
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Figure 5 — Quasi-three-dimensional stream surface for a transonic compressor rotor. 
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Figure 6 — Top: Computational grid for a transonic compressor rotor. 
Bottom: Body-fitted coordinate system and index convention. 
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