

MRCP Phase III Overview

Dave Ball and Neeraj Gupta, Battelle

Regional Carbon Sequestration Partnerships Initiative Review Meeting October 6-8, 2008, Pittsburgh, PA

MIDWEST REGIONAL CARBON SEQUESTRATION P A R T N E R S H I P

1

MRCSP Phase III Sites

Primary site

- **Host:** TAME, a joint venture of The Andersons and Marathon Petroleum
- Plant operational: February 2008.
- Injection start: FY2010
- Scale: 1 million tonnes of CO₂ over a four-year period
- Target: Mt. Simon at ~3300 ft.

Optional site

- Host: Duke Energy
- Plant operational: FY 2012
- Possible injection start: FY 2012
- **Scale:** Possible 2 million tonnes over four-year injection period
- Target: Mt. Simon at ~8000 ft.
 - Multiple injection zones and caprock layers

Location of TAME Site

Surface Infrastructure TAME Ethanol Plant Site

Meetings with public officials and the public have occurred over the past year or more in Greenville

Public Meeting in Greenville, August 13, 2008

Community leaders: Project appears good for community image. May help with jobs in the future. But we need to know it is safe.

- 1) What's in it for us?
- 2) Why do this test here in our community?
- 3) How can we assure that the CO₂ won't leak out? What happens if it does?
- 4) Will the CO₂ mobilize other things like methane, radon, etc.?
- 5) What happens if the CO₂ does get into drinking water supplies?
- 6) How do we know injection won't cause earthquakes here? How do we prevent that?
- 7) Who's going to pay if there is damage to the community now or in 50 years+
- 8) Seems like there is a lot of money to be made in carbon credits. Who gets that?
- 9) Lake NYOS. CO_2 can be deadly.
- 10)Why do we need CCS. Why not focus our effort on developing wind, solar, and nuclear.

Phase III Site - Conceptual Model

Conceptual Model

- Source = Ethanol Plant
- Land use = agricultural
- Geologic Setting = Ohio-Indiana Platform
- Storage Target = Mt. Simon SS (3300-3600 ft)
- Containment = Eau Claire Shale (2750-3300 ft)
- Injection rate = 282,000 metric tons CO2 per year
- Total injection = 1.1 million metric tons CO2 over 4 yrs

Battelle The Business of Innovation

Geology- Framework

- Structural location = Cincinnati Arch
- Basal Cambrian sands/Mt. Simon depth is the color grid –white where < 3,000'. The contours show the thickness (~300 ft at test site).

- Few deep wells near site.
- Not much oil and gas present present in area.

Geology and Permitting

Hypothetical subsurface stratigraphic column in central Darke County, Ohio

- Mt Simon ~300 ft thick arenite sandstone in area.
- Eau Claire shale ~500 ft of confining layer
- Ohio EPA has advised this will be a Class Inonhazardous permit
- NEPA Environmental Assessment is being prepared by DOE

Structural Setting - Faulting

- Most faults in northwestern Ohio associated with Precambrian basement rocks at depths over one kilometer below land surface.
- There are no existing seismic surveys in the area.
 Therefore, it is not clear if the faulting in northwestern Ohio extends into Darke County.
- A seismic survey is planned as the first field activity in site characterization

Seismic Activity in Ohio

 Seismic activity map of Ohio shows no events in Darke County despite its proximity to Anna Seismic zone

Battelle The Business of Innovation

Preliminary Reservoir Simulations

- Preliminary reservoir simulations for TAME site were completed based on data from Class I wells in western Ohio using STOMPCO₂
- Results suggest CO_2 extending ~2,000 ft for single vertical well

Note- these are preliminary simulations based on regional datasets. More specific modeling will be performed once more site characterization data is available from the test well.

Battelle

MRCSP MRCSP ADVIST REGIONAL PARTNERS HIP

Battelle

Preliminary Reservoir Simulations – CO₂ Spreading Radii

MRCSP MRCSP MDWEST REGONAL CAMPON HEADSTINATOR P A TT N E R S H I P 35

Battelle

The Business

Preliminary Reservoir Simulations Pressure Buildup at the Base of Injection Zone << likely Fracture Pressure

Preliminary Reservoir Simulations Ballelle Diffusive Flux into Lowest Caprock (<100 tonnes, <0.007%)

Preliminary Reservoir Simulations Battelle Pressure beneath Caprock Much Lower than Likely

Preliminary Reservoir Simulations - The Battelle Water Displaced at Model Boundary

MRCSP MIDWEST REGIONAL CAREON SEGUESTIANDA PARTNERSHIP

Preliminary Reservoir Simulations – Amount of Brine Displaced is a small Fraction of System Total

MRCSP MRKST REGONAL MOVEST REGONAL MARTNERS HIP

Battelle

The Business of Innovation

Risk Screening for the MRCSP Phase III TAME Site

- Preliminary risk screening completed for the MRCSP Phase III TAME site.
- Risk screening consisted of 2 main items:
 - Features, Events, and Processes (FEP) performance and safety screening to identify possible risk items.
 - Risk pathway analysis to identify leakage pathways and other risk mechanisms to receptors in the area.
- Conclusions
 - Few FEP items appear to significantly affect CO₂ storage for project.
 - No significant risk pathways are evident in the storage area. Some risk pathways need to be better defined through site characterization.
 - Not enough information is available to do a quantitative risk evaluation at this time
 - Due diligence necessary to characterize site, operate injection system and monitor injection.

Preliminary FEP Screening

• Example of Preliminary screening of Subsurface FEP Items for Western Ohio

Description
CO2 Interactions
Effects of Pressurisation of reservoir on capro
Effects of Pressurization on reservoir fluids
Interaction with Hydrocarbons
Displacement of saline formation fluids
Mechanical Processes and conditions
Induced seismicity
Subsidence or uplift
Thermal effects on injection point
Water Chemistry
Interaction of CO2 with chemical barriers
Sorption and Desorption of CO2
Heavy metal release
Mineral phase
Gas Chemistry
Gas Stripping
Gas Hydrates
Biogeochemistry
Microbial Processes
Biomass Uptake of CO2
CO2 Transport
Advection of free CO2
Buoyancy-driven flow
Displacement of formation fluids
Dissolution in formation fluids
Water mediated transport
CO2 release processes
Co-migration of other gases
Explanation
Improbable due to site conditions
Item that needs to be addressed through site characterizat

tem requiring more testing at site and/or system monitoring tem likely to affect system safety or performance

	Description							
	Geology							
	Geographical Location							
	Natural Resources							
	Reservoir Type							
	Reservoir geometry							
	Reservoir exploitation							
	Cap rock or sealing formation							
	Additional Seals							
	Lithology							
	Unconformities							
	Heterogeneities							
	Faults and Fractures							
I	Undetected features							
	Vertical Geothermal Gradient							
	Formation Pressure							
	Stress and Mechanical Properties							
	Petrophysical Properties							
	Fluids							
	Fluid Properties							
	Hydrogerbong							
	Drilling and Completion							
	Drilling and Completion							
I	Formation Damage							
	Workovor							
	Monitoring wells							
	Well Records							
	Borehole Seals and Abandonments							
	Closure and Sealing of Boreholes							
Ì	Seal Failure							
	Blowouts							
I	Orphan wells							
	Soil Creep around Boreholes							
1								

Risk Pathway Analysis

• Risk pathways analysis for the site is planned

43

Wastewater Drilling at Edwardsport

 Extensive geologic data is being collected from the wastewater well being drilled as part of the IGCC construction. MRCSP is participating as part of regional characterization of the area.

Site Characterization

Preliminary Geologic Prognosis (before Drilling – subject to changes after Drilling)

Parameter	Description		
Geologic Setting	Illinois Basin		
Sed. Total Thickness	8,600		
Primary Target	Mt. Simon		
Lithology	Sandstone		
Target Depth Interval (ft)	7,500-8,600		
Total Thickness (ft)	1,100		
Avg. Porosity	0.1		
Avg. Perm. (mD)	10-200		
Formation Pressure (psi)	~3,525		
Formation Temp. (°F)	130		
Secondary Target	Knox Carbonates		

Data from wastewater well drilling is significantly improving our knowledge of geology in the basin

Photograph of rock core (Mt. Simon, 8095 ft) collected from wastewater w

Site Characterization

9/30/2008

 Detailed characterization through mud logs, extensive wireline, coring, drill-stem testing, and brine analysis.

08/21/2008

46

Edwardsport Site Characterization

 Example of wireline logging snapshot the Cambrian section that will be of interest for CO_2 storage and containment potential

Sandstone

Brine water chemistry/fluid sampling from Drill Stem Tests

• Sample depths range from ~4,300 – 8,800 ft

Sample Event	Date	Formation	Sampling Interval (ft)	No of Samples (including replicates)	Sample Container
1	6/12/2008	St Peter	4,346 - 4,423	4	50 ml Falcon Tubes
2	6/14/2008	Knox (Everton)	4,418 – 4,453	4	50 ml Falcon Tubes
3	7/25/2008	Oneote Dolomite	5,238 – 5,290	3	50 ml Falcon Tubes
4	7/29/2008	Potosi Dolomite	5,568 – 5,675	4	50 ml Falcon Tubes
5	9/2/2008	Mt. Simon	8,267 – 8,317	9	250 ml Plastic Bottles
6	9/30/2008	Mt. Simon	8,668 - 8,852	18	250 ml Plastic Bottles

- Concentrations of common brine quality parameters, major cations and major anions, and certain metals found in aluminosilicates (Si, Al, Fe, and Mn)
- Limited number of stable isotope measurements

Thank You

www.mrcsp.org