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ABSTRACT

This report develops a theoretical description of the hydrodynamic relationship based
on a power-law representation between the air flow and applied pressure for laminar
flow in short pipes. It is found that short pipes can be described with a simple power
law dependence on pressure, but that the exponent of the power law is itself a function
of pressure. The entry length of the flow is derived based on a formulation for short,
sharp-edged pipes. The theoretical formulation is compared to measured data. A
dimensionless quantity, , is defined to account for the power law behavior and mapsS
simply to the flow exponent. The S number can be used to infer many of the charac-
teristics of the flow and may prove useful in the inverse problem of determining flow
geometry from fluid properties and the measured pressure and flow.
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This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Office of Buildings and Community
Systems Building Systems Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.



2

INTRODUCTION

When applying physical laws to complex situations, laws with different scaling
properties may come into play simultaneously. The analysis of these situations is
often made easier by using power law descriptions of the phenomena. The dimension-
less numbers and exponents associated with such a description can be used to extract
the essential characteristics of the system of interest.

The system studied herein is the flow of an incompressible, viscous fluid through a
short pipe in response to a pressure difference. There are two distinct loss mechan-
isms in operation: the energy required to accelerate the fluid from rest and the energy
required to overcome the viscous losses associated with laminar flow.

There are three types of problems to consider: flow prediction, viscometry, and
systems characterization. In flow prediction the pipe characteristics and fluid proper-
ties are known and the flow vs. pressure response is desired. In viscometry the flow
vs. pressure response and pipe characteristics are known and the fluid properties are
desired. In system characterization the fluid properties and flow vs. pressure response
are known and the pipe characteristics are desired.

Power laws are often used as an empirical relationship for physical phenomena,
when all that is known is that there is a smooth monotonic relationship between to
measurable variables. Power laws are often used in to describe turbulent flow situa-
tions (e.g., pipe-network1 or skin-resistance2 solutions ). In general power-law
approaches to the solution of laminar flow problems are not used. This report can be
used to help bridge the gap in formalism between laminar and turbulent flow by pro-
viding a rigorous power-law treatment of laminar flow.

One area in which laminar flow has been treated using a power-law approach is
that of building physics. The techniques for measuring the air leakage of building
envelopes3-5 all treat the flow as a power-law function of the applied pressure. Justif-
ication for such treatment has been empirical, but as shown herein, a power-law for-
mulation is a good description of the physical phenomena.

BACKGROUND

Regardless of the flow regime it may be possible to cast the mean velocity
(hereafter referred to as the velocity) as a power law in the pressure drop:

nP∆∝v (1)

If the power law were absolute, the exponent would be constant and completely
independent of the applied pressure. If, however, the exponent is slowly-varying in
pressure, the power law can be used in an approximate form where both the exponent
and coefficient are slowly-varying functions of pressure.

The exponent is only a good descriptor if it does not vary too much. A good cri-
terion for determining the usefulness of the power law description is

<< 1
�
�
�_____dn

d∆P
δP

�
�
�

(2)

P∆Pδwhere is the range of pressure of interest around .
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If this criterion is met then the power law is a reasonable description. Regardless
of the true functional relationship between the pressure and velocity, the following
expression can be used to define the local exponent:

n ≡
v

∆P____
d∆P
dv_____ (3)

Laminar Entry Flow

The problem of laminar flow in short pipes has been investigated for over a cen-
have elected to treat it by linearizing the Navier-Stokes equa-6-8tury. Several authors

tion and all have come up with an equation of the following form:

2
2

∆P =
d

32 µ l v________ + m /1 2ρv (4)

The first term can be recognized as the Hagen-Poiseuille equation for (fully-developed)
laminar flow. As described in detail in the references, the second term results from
acceleration of the fluid into its exit profile and the excess viscous losses resulting
therefrom.

The factor m can be calculated from the linearized theory and has also been meas-
ured. For pipes long enough for the exit profile to be parabolic, the parameter m can
be treated as a constant; and the literature contains a range of values for it,

14.2<m<61.2 , which depend on the details of the linearization. The estimate of m=2.28
by Langharr8 will be used herein as being most representative.

Inherent in the derivation of Eq. 4 are assumptions regarding the inlet flow and
outlet flow conditions. As Prandtl and Tietjens9 among others have pointed out,
these assumptions can become suspect when pipe length become shorter than the entry
length. Schiller7 introduced a correction to m for very short pipes with bell-mouthed
inlets. A correction in the opposite sense, however, is required to account for flow
contraction due to separation at (a sharp-edged) inlet.

The experiments and theory used in refs 6-8, assumed a square inlet profile with
no flow separation. For such a case, the corrections such as Schiller’s are needed, but
is often difficult to keep separation from occurring especially outside a well-
controlled laboratory situation. In this report we shall assume m need not be corrected
and is a constant even for very short pipes.

POWER-LAW EXPONENT AS A CHARACTERISTIC

Equation 4 can be solved to yield the mean velocity as a function of the applied
pressure:

√� ����4

2 2 2
v =

m ρ d

32 µ l_______
�
�
�

1+
512µ l

m ρ d ∆P__________ − 1
�
�
�

(5.1)

or, equivalently,
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2 2 2

2√� ����Q =
m

8π ν l______
�
�
�

1+
64π µ l

m ρ A ∆P__________ − 1
�
�
� (5.2)

To recast Eq. 5 in terms of a power law we must be able to find the power law
exponent using Eq. 3:

2 2

4 − /1 2

�
�
�

�
�
�__________m ρ d ∆P

512µ l
1+

�
�
�

1 +
�
�
	

n = /1 2 (6)

Eq. 2 can be evaluated to show that the exponent is slowly varying enough to be a
useful concept:

�
�
�

∆P
d∆P
dn_____ �

�
�

= n (1−n ) (2n −1) < 0.1 (7)

A pipe is characterized by its geometry (i.e., length, diameter, and perhaps the
shape of the entry), but the system (of the pipe and the fluid) is more complex. The
flow exponent as defined in Eq. 6 is a characteristic of the system. Comparison of its
definition with expression for the mean velocity allows us to use the exponent in place
of the pressure (or the velocity) to express many of the quantities of interest:

The mean (volumetric) flow can be found by eliminating the pressure from Eqs. 5
and 6.

Q =
m

8π ν l______
n − /1 2

1−n_____ (8)

The standard Reynolds number (i.e., based on diameter and fluid velocity) can simi-
larly be calculated:

Re =
m d
32 l____

n − /1 2

1−n_____ (9)

The discharge coefficient is often used to describe the actual flow in terms of the
equivalent perfect nozzle.

d

− /1 2

�
�
�_____2∆P

ρ�
�
�

C ≡ v (10)

This expression can also be rewritten in terms of the exponent:

√���dC =
m n
1−n_____ (11)

From this expression it is clear that the value of m may have to change slightly for
very short pipes (i.e., ) to reflect the shape of the inlet./1 2→n

λ≡(d ⁄ l)(∆P ⁄ /1 2ρv2The friction factor, (defined as ) relates the shear at the walls to
energy loss in the fluid.

λ = m
l
d__

1−n
n____ (12)

The friction factor is often used in the study of turbulence, because it is independent of
the flow; in the laminar regime, however, it is not.
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Entry Length

The concept of entry length is often used to determine if the flow has reached its
steady-state behavior. For lengths less than the entry length the flow is said to be
developing, for lengths greater than the entry length the flow is developed (because the
exit profile is parabolic) and for pipe length much greater than the entry length the
flow is said to be fully developed because entry effects can be ignored.

One common approach to defining the entry length is as that length at which the
profile becomes (approximately) parabolic, leading to an entry length of . An61⁄eRd
examination of Eq. 4, however, suggests a slightly different value; namely, we choose
the entry length such that the the frictional losses due to laminar flow of a pipe of
length equal to the entry length is equal to the entry loss (i.e., the two terms in Eq. 4
are equal). Thus,

el ≡ m
64
Re___ d (13)

This definition leads to a somewhat smaller value for the entry length than the conven-
tional definition and it can be expressed in terms of the exponent as follows:

e

l

l__ =
2n −1
1−n______ (14)

Thus the exponent and the length of the pipe relative to its entry length are uniquely
related. As can be seen from the right-hand axis of Fig. 1, the entry length is quite
sensitive to the exponent near the limits of its range.

Comparison with Measured Data

To determine whether our power-law formulation is justified, we can use measured
has measured the flow characteristics of pipes of different dimensions10data. Kreith

(e.g., ) Figure 1 contains a plot of the original data overlaid with the52.71<d⁄l<54.0
theoretical curve. The measured data relates the exponent to the dimensionless length
of the pipe.

e

__l
l

___m
64

=___l ⁄d
Re (15)

The left axis is the data as presented in the source; the right axis is the dimensionless
length from Eqs. 14 and 15. The last two curves demonstrate that the data agrees with
the theory for all reasonable values of m and that this dataset cannot be used to refine
the value of m.

The measurements were made for square inlet capillary tubes, rather than the bell-
mouthed inlets assumed in refs. 6-8. Our theoretical curve gives reasonable agreement
to within the precision of the data. It is especially important to note that there is good
agreement for low exponent values in short pipes, suggesting that m may be taken as
constant. A more detailed experimental investigation, however, could determine the
value of m and its dependence on length more precisely.
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S NUMBER

When the length of the pipe is equal to its entry length (i.e., the pressure drops
due to the two terms of Eq. 4 are equal), the pressure drop is equal to a critical value:

c 2

2 2 2_________512π µ l

m ρ A
P ≡ (16)

At pressures above this value the losses will be principally from the entry and at pres-
sures below this the losses will be principally by steady-state viscous friction.

This critical pressure value suggests that there is a non-dimensionalization of the
pressure appropriate for short pipes. We define S number as follows:

c

____∆P
P

S ≡ (17)

Using this definition, the fluid flow, exponent, and entry length can be expressed
in terms of the S number.

√������ �
�

1+8S − 1�
�______8π ν l

m
Q = (18)

− /1 2

�
�

�
�

1+8S�
�

1 +�
�

n = /1 2 (19)

√� �����e

l

l__ =
2

1+8S −1__________ (20)

Although Eq. 8 defines the flow in terms of the power-law exponent, it is not a
power law. Our definitions of the flow exponent and S number can be used to refor-
mulate Eq. 4 as a power law.

nφ S_______16π ν l
m

Q = (21)

φwhere the power-law factor, , is defined as follows:

φ ≡ (2⁄n ) (1−n ) (2n−1)n 1−n 2n−1 (22)

This factor varies between one and two as a function of exponent.

Eq. 21 is not a true power law because both the exponent, , and the coefficient,n
φspecifically , have a pressure dependence, albeit small. As shown by Eq. 7, however,

it is locally a power-law and may be treated as such within a restricted range of pres-
sures.

The power-law factor is an artifact of the equation of interest not being a true
power law. When the S number is near unity, the power-law factor is also unity and
is slowly-varying. As the S number deviates significantly from unity, begins toφ
slowly increase and approaches the limit for either laminar or inertial flow.

The S number, which is a non-dimensionalized pressure, is a good indicator of the
shortness of the pipe. For large values of S the pipe is very short and can be charac-
terized as an orifice in the limit. At small values of S the pipe is very long and is
well-described by viscous flow equations. Fig. 2 shows the S-number dependence of
the (dimensionless) length, discharge coefficient, and power-law factor.
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DISCUSSION

The fundamental equation, Eq. 4, was derived in ref. 6-8 assuming a flat inlet pro-
file and a parabolic exit profile. The parameter m could then be modified for pipes
too short to establish fully-developed laminar flow. Kreith’s data, however, fits the
model using a constant m, when ostensibly the pipe was too short. Even in the limit
of zero length (i.e., an orifice) our expression for the discharge coefficient (Eq. 11)
yields a quite reasonable value (0.66) compared to that for a sharp-edged circular ori-
fice (0.60). This formulation has also allowed a definition of entry length (Eq. 13)
that is clearer and more directly tied to the physics than others.

The ability of our constant-m model to work well for very short, sharp-edged pipes
is largely fortuitous. The energy loss caused by acceleration of the fluid at the
(entrance) contraction happens to approximate the extra energy required to produce the
parabolic profile for a longer pipe. Thus, the formulation of this report can be used
for all flow lengths provided that very short pipes have sharp-edged inlets.

System Characterization

When the S number is small (i.e., the pipe is long), formulations such as Eq. 4
may prove the most straightforward to use as in the case of viscometry. When S is
very large, inertial forces dominate and the system can be treated as an orifice. For
non-extreme values of S the power-law formulation may provide more insight into the
problem. Such is especially the case when the problem is to characterize the pipe
geometry based on measured system performance (i.e. pressure and flow).

The local exponent, n, of the power-law characterizes the pipe. The exponent is
uniquely related to the dimensionless length (Eq. 14) and similarly to the dimension-
less pressure (Eq. 19) and discharge coefficient (Eq. 11). If one wished to know the
properties of the leak (as in building physics), a measurement of the exponent and
coefficient of the power law would be sufficient. In this inverse problem the flow data
can be collected over a narrow range of pressures and fitted to a power law:

nP∆K=Q (23)

The S number can be found directly from the exponent:

2
_______(1−n )n

(n− /1 2)
__1
8

S = (24)

From Eqs. 8, 16, 22, 23 the area and length of the pipe can be solved for uniquely,
using the intermediates Pc and :φ

A = K P
φ

2mρ_______n− /1 2

c
√� ����

(25.1)

n
c_______m K P

16πφν
l = (25.2)

Having solved for the geometric properties of the pipe, any of Eqs. 4, 8, or 21 could
be used to predict the flow at a given pressure.
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Bridge to Turbulence

The results derived herein are only applicable to flow in the laminar regime.
However, by representing the two problems in parallel forms, similarities appear.

The friction factor is often used to characterize the losses of fluids in pipes. Eq.
12 can be cast in more conventional terms as a function of Reynold’s number:

2
1⁄n−1

1⁄n−2Re
�
�
�__d

l
___m
64�

�
�

λ = 16φ (26)

As can be quickly verified, this expression reduces to the well-known laminar and ori-
fice limits for and , respectively./1 2=n1=n

This formulation can be compared to that for turbulent flow at moderate Reynold’s
gives the friction factor in smooth pipes for turbulent11numbers. The Blasius formula

flow at :01<eR<01x4 3 5

Blasius
−1⁄4λ = 0.316 Re (27)

7⁄4=nNote that in this regime the flow follows a power-law of .

This similarity would allow networks of laminar pipes to be solved by the same
approaches that Jeppson1 uses for turbulent ones. Other similarities are suggested, but
have not yet been pursued.

Other Geometries

The expressions derived here were based on straight pipes of circular cross-section.
It may be desired to analyze cases with different cross-sections or curved or crooked
lengths. Baker12 has derived an equation similar to Eq. 4 for the case of flat plates
with and without right-angle bends. As the form of the equation is the same, a
power-law formulation can be similarly derived. The work suggests that the value of
m could be increased to account for bends. Further modifications of Eqs. 5, 6, 16
would also prove necessary to account for different cross sections.

The application to building physics, mentioned in the introduction, involves system
characterization, the solution of series/parallel networks, and non-circular cross-
sections. To the extent that this problem could be treated as a single, equivalent circu-
lar pipe, the results of this report are applicable. The exact solution of this problem,
however, requires more development.
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NOMENCATURE

Open area of pipe [m2A ]
Cd Discharge coefficient [-]
d Diameter of pipe [m]
K Power-law coefficient [m3/s-Pan]
l Length (along flow path) of pipe [m]
n Power-law exponent

/s]3Q Fluid flow through pipe [m
Re Reynolds number [-]
S S number [-]
∆P Pressure drop across pipe [Pa]
Pδ Pressure range of interest [Pa]

Pc Critical pressure for short pipe [Pa]
v Mean velocity of fluid [m/s]
λ (Darcy) friction factor [-]
µ Viscosity of fluid [kg/m-s]
ν µ⁄ρ ]s/2Kinematic viscosity ( ) of fluid [m
φ ]-[rotcafwal-rewoP
ρ Density of fluid [kg/m3]
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Figure 1: Kreith’s data with their error bars shown as a function of exponent.  Left hand 
axis is the normalized length from the original reference.  Right hand axis is the pipe 
length divided by the entry length.  Theoritical curve uses m=2.28 as derived in the text.
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Figure 2: Dependence of length, discharge coefficient, and the power-law factor with S number. 




