Sorbent Injection for Small ESP Mercury Control

DE-FC26-03NT41987

DOE/NETL Mercury Control Technology Conference December 11, 2006

> Katherine Dombrowski URS Corporation

URS Project Team

Pierina Noceti (COR)

Ramsay Chang

Mark Berry Nick Irvin Ken McBee

Greg Newman Larry Rapski URS

Carl Richardson Katherine Dombrowski

Sharon Sjostrom

Apogee Scientific

Tim Ebner

Evaluate sorbent injection for Hg control in bituminous flue gas across small-sized electrostatic precipitators (ESPs)

- Mercury removal performance & variability
 - Optimal process conditions
- Balance of plant effects
 - ESP performance
 - FGD operation
 - Effects on byproduct ash, gypsum

- Financial Assistance Program DE-FC26-03NT41987
- Most previous ACI testing with ESPs performed on relatively large units
 - High levels of Hg removal possible
 - No apparent detrimental effects on ESP performance
- 70% of utility ESPs have SCA <300 ft²/1000 acfm
 - Sorbent injection performance in this size range not currently known
 - Effects on ESP performance

URS Project Background

Full-scale activated carbon injection tests at Southern Company's Georgia Power Plant Yates

- Units 1 and 2
 - 100 MW; low-sulfur eastern bituminous coal
- ESPs with SCA <200 ft²/1000 acfm
- Full-scale sorbent injection tests at Reliant Energy's Shawville Station Unit 3
 - 175 MW; medium-sulfur eastern bituminous coal
 - Two ESPs configured in series

SCA = 82, 230 ft²/1000 acfm, respectively

URS Project Status

All field testing completed

Plant Yates Testing

- Units 1 and 2 Parametric Tests (Spring-04)
- Unit 1 Long-term test (Fall-04)
- Site Reports Completed
- Economic Analysis Completed
- Shawville-3 Testing
 - Parametric tests (July-06)
 - Data analysis on-going

Test Plan Baseline Tests Parametric Test Long-term tests Cost Analysis Final Report

Plant Yates Unit 1 Configuration

Summary – Plant Yates Results

Carbon Name	Manufacturer	Carbon Description	Cost (\$/Ib)
Darco FGD™	Norit Americas	Tx lignite-derived activated carbon; baseline carbon; 19 µm mean particle size	0.50
Super HOK	RWE Rhinebraun	German lignite-derived activated carbon; 23 µm mean particle size	0.35*
NH Carbon	Ningxia Huahui Activated Carbon Co.	Chinese chemically treated bituminous-derived activated carbon; 24 µm mean particle size	0.88

URS

Summary – Plant Yates Results

Hg Removal Across Unit 1 ESP

DE-FC26-03NT41987

Summary – Plant Yates Results

ESP Hg Removal Due to Activated Carbon

DE-FC26-03NT41987

ESP Hg Removal Due to Activated Carbon

DE-FC26-03NT41987

Mercury Removal during Long-term Test

DE-FC26-03NT41987

URS

ESP Arcing During Long-term Injection

DE-FC26-03NT41987

URS

ESP Outlet Particulate Concentrations

DE-FC26-03NT41987

Economic Analysis – Plant Yates Data

DE-FC26-03NT41987

URS

URS Summary of Results

- Large variations in ESP inlet Hg concentration
- Vapor Hg removals typically 65 to 85% across ESP at 4 lb/Macf
 - With ACI only, outlet emissions were 0.5-3.5 lb/TBtu
 - Combination of ACI/JBR, outlet emissions were less than 2 lb/TBtu
- ESP Effects
 - Increase in ESP arcing with ACI
 - Particulate breakthrough measured at ESP outlet
 - Carbon particles found in M17 filters and JBR scrubber

URS Shawville 3 Configuration

DE-FC26-03NT41987

Sorbents Evaluated at Shawville

Sorbent	Supplier	Description	
Super HOK	RWE	Activated German lignite;	
	(Germany)	$d_{50} = 24 \ \mu m$	
HOK – Coarse	RWE	Activated German lignite;	
	(Germany)	$d_{50} = 63 \ \mu m$	
Darco Hg Norit Americas Activated T		Activated Taxas lignite	
	(Marshall, TX)	Activated Texas lighte	
Darco Hg-LH	Norit Americas	Activated Texas lignite treated	
	(Marshall, TX)	with bromine	
Darco Hg/High	Norit Americas (Marshall, TX	30/70 mixture of Darco Hg with	
Calcium Hydrated	/Chemical Lime (Dallas, TX)	high surface area hydrated lime	
Lime		(for SO ₃ control)	

DE-FC26-03NT41987

URS Shawville 3 Summary

Baseline Testing

- Hg values range: 26 43 μg/Nm³ @ 3% O₂
- Oxidation high: >80% at ESP-2 outlet
- Hg removal to fly ash occurs upstream of ESPs
- Little to no Hg removal across ESPs
- Sorbent Injection Testing
 - Effect of injection rate and location
 - Co-injection of high surface area lime
 - Pre-mixed; separate injection configurations
 - Impact of SNCR operation

Shawville 3 Summary – Super HOK Injection

DE-FC26-03NT41987

Shawville 3 Summary – Super HOK Injection

DE-FC26-03NT41987

URS

Shawville 3 Summary

DE-FC26-03NT41987

Shawville 3 Summary - HOK vs Darco

DE-FC26-03NT41987

URS

Shawville 3 Summary – Comparison of SO₃ Levels and Sorbent Mercury Removal

DE-FC26-03NT41987

URS

- High levels of mercury removal achieved across small ESPs
- Better performance with Darco-Hg than Super HOK
- Apparent effect of SO₃ at very low levels (<2 ppm)</p>
- ESP performance
 - Electrical properties (TBD)
 - PM removal (single-point M17)
 - Baseline outlet emissions
 - 0.013 to 0.020 gr/dscf
 - ACI outlet emissions
 - 0.009 to 0.030 gr/dscf

- Completion of Shawville data/results characterization (Q1FY07)
- Complete Shawville Site Report (Q1FY07)
- Project Close-out