10504 10505	Appendix C. The New Jersey Shore
10506	Author: James G. Titus, U.S. Environmental Protection Agency
10507	
10508	Contributing Author: E. M. Strange, Stratus Consulting Inc.
10509	
10510	The New Jersey shore has included popular resorts since the steamship first facilitated
10511	travel from Philadelphia to Cape May, and from New York to Long Branch in the early
10512	19th century (Salvini, 1995). As the dry land close to the ocean became developed,
10513	people began to build homes on lands that were somewhat more marginal. The narrow
10514	fringing marsh on the bay sides of barrier islands was often filled to create buildable
10515	lots ⁶⁷ . Sea level has continued to rise in the ensuing decades, leaving some of the bay
10516	sides of developed barrier islands with some very low land. In some cases, the extensive
10517	marshes on the mainland side of the back-barrier bays have converted to dredge-and-fill
10518	canal estates, such as Beach Haven West.
10519	
10520	Severe storms have been a regular feature of the New Jersey shore, although hits from
10521	hurricanes have been rare. The northern most numbered street in Barnegat Light is 4th
10522	Street, because other portions eroded until shoreline armoring and jetties were
10523	constructed to stabilize the inlet. Harvey Cedars extended 1-2 blocks farther seaward in
10524	the 1880s than today.

⁶⁷ See, *e.g.*, Lloyd, J.B. Eighteen miles of history at Long Beach Island. Down The Shore Publishing. (showing substantial marsh on the bay side of Beach Haven in areas that are developed today).

- 10526 The dense development of the New Jersey shore led many people to take the view that
- 10527 people should not simply retreat in response to storm erosion, but instead hold back the
- sea. In 1898 the U.S. Army built a seawall between Sandy Hook and Sea Bright to
- 10529 protect the operations at Fort Hancock (NPS, 2007). Over time, the seawall was extended
- 10530 south as far as Long Branch, and there was little or no beach along most portions of the
- 10531 New Jersey shore between Long Branch and Sandy Hook. During the 1970s
- 10532 oceanographer Orrin Pilkey and coastal geologists began to warn people around the
- 10533 nation about the disadvantages of what they called "New Jerseyization," by which they
- 10534 meant replacing beaches with seawalls (Pilkey, et al., 1978). As we discuss in this
- 10535 chapter, however, the state has reversed that trend and restored the beaches, although the
- 10536 seawalls remain.

BOX C.1: Tuckers Island, New Jersey's First Resort

In spite of the historical importance of Cape May and Long Branch, some historians believe that New Jersey's first seashore resort was Tuckers Island (Lloyd, 1994), a barrier island that was partly to the south and partly inland — and sheltered by — Long Beach Island. Tuckers Island was across the bay from Tuckerton, a major port, where ships destined for Philadelphia sometimes offloaded when the Delaware River was frozen (Nash, 1947). During the 1790s, wealthy Quakers who had made their fortunes in Tuckerton during the Revolution began organizing 5-day meetings on Tuckers Island (Lloyd, 1994). The Tucker family eventually converted their farm house on Tuckers Island to a boarding hotel. Soon there was regular stagecoach service from Camden to Tuckerton. After staying overnight in Tuckerston, visitors took a boat ride to Tuckers Island.

On nearby Long Beach Island, resort hotels opened in 1822 at what is now called Surf City and Holgate. A few decades later, several hotels were built in Beach Haven, Barnegat City, and the community of Bonds near the southern end of Long Beach Island. By 1880, Beach Haven was a small town. Still, proximity to Tuckerton kept Tuckers Island popular, even when rail was extended to Atlantic City. Streets were platted on Tuckers Island for a proposed community. But in 1886 the Pennsylvania Railroad connected to nearby Beach Haven, diverting most investor interest in the area to Long Beach Island.

But it was coastal processes, not the railroad, that caused the decline of Tuckers Island. During a storm in 1920, what we now call the Beach Haven inlet opened up near the southern most street on Long Beach Island. The portion of Long Beach Island that had sheltered Tuckers Island from the Atlantic Ocean — generally known as Tuckers Beach — was south of new inlet. Tuckers Beach eroded within five years, exposing Tuckers Island to the Atlantic Ocean. Residents relocated, and by 1933, the hotels, homes and lighthouse on Tuckers Island had all disappeared.

10537

10539 C.1 VULNERABILITY TO INUNDATION AND EROSION

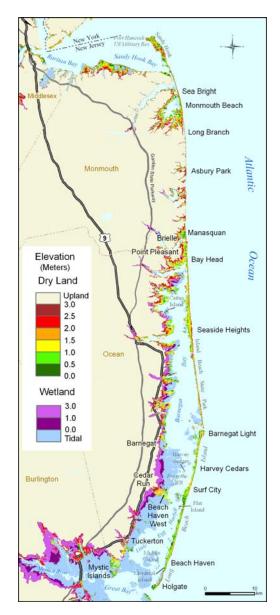
10540	The New Jersey shore has three types of ocean coasts (see Chapter 2 for more on ocean

- 10541 coasts). At the south end, Cape May and Atlantic Counties have short and fairly wide
- 10542 "tide-dominated" barrier islands. Behind the islands, 253 sq km of marshes dominate the

- 10543 relatively small open water bays. To the north, Ocean County has "wave dominated"
- 10544 coastal barrier islands and spits. Long Beach Island is 29 km (18 miles) long and only 2-3
- 10545 blocks wide in most places; Island Beach to the north is also long and narrow. Behind
- 10546 Long Beach Island and Island Beach lies Barnegat and Little Egg Harbor Bays. These
- 10547 shallow estuaries ranges from 2 to 7 km wide, and have 167 sq km of open water
- 10548 (USFWS, 1997) with extensive eelgrass, but only 125 sq km of tidal marsh (Jones and
- 10549 Wang, 2008). Monmouth County's ocean coast is entirely headlands, with the exception
- 10550 of Sandy Hook at the Northern tip of the Jersey Shore.

10551

- 10552 Figures C.1 and C.2 show the elevations of lands close to sea level along the New Jersey
- 10553 shore, south and north of Tuckerton, respectively. Between 67 and 129 square kilometers
- 10554 of land lie within one meter above the tides along the Atlantic Ocean and adjacent back
- 10555 barrier bays (see Table C.1). Nontidal wetlands are immediately inland of the tidal
- 10556 wetlands along most of the mainland shore, and account for more than half of the land
- close to sea level⁶⁸. 10557


- 10559 Between 18 and 61 sq km of dry land are within 50 cm above the tides (Jones and Wang,
- 10560 2008). The maps suggest that most of the land close to sea level is either on the bay side

⁶⁸ The estimates are based on 2-foot contours and spot elevation data with RMS errors of 30 cm. Therefore, it was possible to derive a meaningful estimate of the land within 50 cm above the tides.

10561	of a barrier island or relatively compact peninsulas of very low land that extend out into
10562	the marsh, such as Beach Haven West and Mystic Isle. Most of these "peninsulas" are
10563	dredge-and-fill developments that were created by filling the wetlands and thereby
10564	elevating the land surface.
10565	
10566	The vulnerability suggested by the maps is consistent with what one actually sees when
10567	visiting these areas. In several neighborhoods in the southern half of Long Beach Island,
10568	streets and yards are flooded by spring high tides whenever the bay is elevated by either
10569	strong winds from the East or a rainy period. (See box on Long Beach Island and Figure
10570	C.3.) Portions of Sea Bright, Monmouth Beach, Manasquan (and small areas of Brielle
10571	and West Wildwood) also flood during spring tides. Small floodwalls have been
10572	constructed along the bay side of Avalon, and drainage is slow enough that pumping is
10573	often necessary. Water tables are often close enough to the land surfaces to prevent
10574	rainwater from draining into the soil, allowing water to stand for days in minor land
10575	surface depressions, generally in back yards. Over the last decade, the elevation of homes
10576	and yards has become commonplace.

10578Figure C.1 Cape May, Burlington, and Atlantic counties, New Jersey: Elevations relative to spring high
water. Source: Titus and Wang, 2008.

10581

Figure C.2 Ocean and Monmouth counties, New Jersey: Elevations relative to spring high water. Source:
 Titus and Wang, 2008.

Elevations above spring	50 cm		1 meter		2 meters		3 meters		5 meters		
high water:	Tidal	Low	High	Low	High	Low	High	Low	High	Low	High
County		С	umulati	ve (total) amoun	t of Dry	Land be	low a gi	iven elev	vation	
Cape May		7.6	21.8	23.8	42.0	56.1	73.5	78.4	102.2	124.2	144.1
Atlantic		4.0	13.5	14.0	29.0	40.8	53.9	57.3	71.0	88.5	105.8
Burlington		0.0	2.1	1.3	4.1	4.0	8.9	7.0	15.1	18.4	27.1
Ocean		4.6	18.7	21.8	44.0	67.3	80.6	93.2	106.8	136.6	149.1
Monmouth		2.1	4.9	5.5	9.4	15.3	19.9	26.4	31.8	50.4	54.9
Total		18.3	61.1	66.5	128.5	183.5	236.9	262.3	326.9	418.1	481.0
		C	umulati	ve (total) amoun	t of wet	lands be	low a gi	ven elev	ation	
Cape May	153.2	2.9	12.0	10.2	20.4	22.2	33.1	32.2	42.7	47.6	55.2
Atlantic	204.0	4.8	17.9	14.7	29.2	31.9	50.1	48.3	68.2	82.0	102.9
Burlington	37.3	0.2	9.7	6.2	19.1	18.7	32.7	30.0	41.3	45.8	57.2
Ocean	124.8	2.3	11.6	10.0	21.7	25.8	38.3	39.0	49.4	56.5	65.8
Monmouth	4.4	0.5	0.9	1.0	1.4	1.9	2.3	2.9	3.2	4.8	5.1
Total	523.6	10.7	52.1	42.1	91.9	100.5	156.5	152.4	204.9	236.5	286.3
Dry and nontidal wetland		29	113	109	220	284	393	415	532	655	767
All land	524	553	637	632	744	808	917	938	1055	1178	1291
Source: Titus and Cacela, 2008. The low and high estimates are based on the on the contour interval and/or stated root mean square error (RMSE) of the data used to calculate elevations. See Chapter 1 for more details.											

Table C.1 Low and high estimates for the area of dry and wet land close to sea level New Jersey Shore (square kilometers).

10586 10587 10588

Figure C.3 Ship Bottom, New Jersey. Labor Day Weekend 2006, high tide, after a moderate northeaster.

10589	The land within one meter above the tides is not the only land vulnerable to rising sea
10590	level. The ocean shores have been eroding. As we discuss below, substantial efforts are
10591	underway to rebuild these beaches to promote recreation and protect the buildings behind
10592	the beaches. A panel of USGS experts expects that, as long as sea-level rise does not
10593	accelerate by more than 2 mm/yr, the conditions that affect beaches today are likely to
10594	continue. The panel is almost certain, however, that if sea level were to rise one meter per
10595	century, most barrier islands would start to disintegrate over the next two hundred years
10596	unless shore protection activities are accelerated compared to what they have been in the
10597	past. During the next century, the long, narrow "wave-dominated" islands (and spits) of
10598	Ocean County appear to be more vulnerable than the short and wide "tide-dominated"
10599	islands of Cape May and Atlantic Counties. While refraining from predicting the future

- 10600 for any specific island, the USGS panel views disintegration of the narrow islands as
- 10601 "very likely," while the disintegration of the wider islands is only "more likely than not."10602

10603 C.2 VULNERABLE HABITAT

10604 Species and habitats along the Atlantic Coast of south-central New Jersey are potentially 10605 at risk because of sea-level rise. This region encompasses the barrier islands, barrier spits, 10606 and back-barrier lagoons of New Jersey's Ocean, Atlantic, and Cape May counties. The 10607 region contains important habitats for a wide variety of fishes, invertebrates, terrapins, 10608 and birds, and a great deal is known about the ecology and habitat needs of these species. 10609 Although it is possible to make qualitative statements about the ecological implications if 10610 sea-level rise causes a total loss of habitat, our ability to say what the impact might be if 10611 only a portion of the habitat is lost is more limited. A total loss of habitat might be 10612 expected if shores are protected with hard structures and the wetlands are unable to keep 10613 pace with sea level rise. 10614 10615 There have been many efforts to conserve and restore species and habitats in the barrier 10616 island backbarrier lagoon system. Some of the larger parks and wildlife areas in the 10617 region include Island Beach State Park, Great Bay Boulevard State Wildlife Management 10618 Area, and the E.B. Forsythe National Wildlife Refuge (Forsythe Refuge) in Ocean and 10619 Atlantic counties. Parts of the Cape May Peninsula are protected by the Cape May 10620 National Wildlife Refuge (TNC, date unknown), the Cape May Point State Park (NJDEP, 10621 DEP, date unknown), and The Nature Conservancy's (TNC's) Cape May Migratory Bird 10622 Refuge (NJDEP, date unknown). The peninsula is renowned as one of the primary

10623	stopover sites for migrating birds along the U.S. Atlantic Coast. The North Brigantine
10624	Natural Area is a critical nesting area for least terns and piping plovers, and a critical
10625	stopover habitat for a number of migrating shorebirds (Strange, 2008). Corson's Inlet
10626	State Park and Strathemere Natural Area, which straddle Corson's Inlet, have historically
10627	provided critical habitat area for black skimmers, least terns and piping plovers, and in an
10628	important stopover habitat for migratory shorebirds (Strange, 2008). Stone Harbor Point
10629	and Champagne Island, part of the Hereford Inlet system, are critical nesting areas for
10630	least terns, black skimmers, piping plovers, common terns, and American oystercatchers,
10631	and provide critical resting and feeding habitat for migrating shorebirds, including red
10632	knot (Strange, 2008). Marsh islands behind this inlet system and behind Stone Harbor
10633	host the largest concentration of nesting laughing gulls in the world (Strange, 2008). The
10634	TNC refuge alone supports an estimated 317 bird species, 42 mammal species, 55 reptile
10635	and amphibian species, finfish, and shellfish and other invertebrates (NPS, 2008). All of
10636	these areas are likely to be placed at increased risk by rising sea levels.
10637	
10638	Tidal and Nearshore Nontidal Marshes. There are 18,440.7 ha (71.2 mi ²), 29,344.6 ha
10639	(113.3 mi^2), and 26,987.7 ha (104.2 mi^2) of tidal salt marsh in Ocean, Atlantic, and Cape
10640	May counties, respectively (Jones and Wang, 2008). Based on a review of available
10641	studies, a panel of accretion experts convened for this report concluded that marshes in
10642	the study are keeping pace with current local rates of sea-level rise of 4 mm/yr, but will

- 10643 become marginal with a 2 mm/yr acceleration, and will be lost with a 7 mm/yr
- 10644 acceleration except where they are near local sources of sediments (e.g., rivers such as
- 10645 the Mullica and Great Harbor rivers in Atlantic County) (Reed, 2008).

10646	
10647	There is potential for wetland migration in Forsythe Refuge, and other lands that preserve
10648	the coastal environment such as parks and wildlife management areas. Conservation
10649	lands are also found along parts of the Mullica and Great Egg Harbor rivers in Atlantic
10650	County. However, many estuarine shorelines in developed areas are hardened, limiting
10651	the potential for wetland migration (Strange, 2008). The narrow fringing salt marshes
10652	along protected shorelines north of Barnegat Inlet could be lost even with a 2 mm/yr
10653	acceleration in rate of sea-level rise. With continued sea-level rise, natural sedimentary
10654	processes will be increasingly disrupted and lead to "drowning" of marshes. Many typical
10655	back-bay areas will likely become lakes.
10656	
10657	As marshes along protected shorelines experience increased tidal flooding, there may be
10658	an initial benefit to some species. This is because as tidal creeks become wider, deeper,
10659	and more abundant, fish species may benefit because of increased access to forage on the
10660	marsh surface (Weinstein, 1979). Fish species such as Atlantic silverside, mummichog,
10661	and bay anchovy move into the creeks during low tide, but have greater access and are
10662	more common on the marsh surface during high tide (Talbot, 1984). Sampling of larval
10663	fishes in high salt marsh on Cattus Island, Beach Haven West, and Cedar Run in Ocean
10664	County showed that high marsh is important for production of mummichog, rainwater
10665	killifish, spotfin killifish, and sheepshead minnow (Talbot, 1984). The flooded marsh
10666	surface and tidal and nontidal ponds and ditches appear to be especially important for the
10667	larvae of these species (Talbot, 1984). However, as sea levels continue to rise, and
10668	marshes along hardened shorelines convert to open water, marsh fishes will lose access to

10669	these marsh features and the protection from predators, nursery habitat, and foraging
10670	areas provided by the marsh.

10672	Loss of marsh area would also have negative implications for the dozens of bird species
10673	that forage and nest in the region's marshes. Initially, deeper tidal creeks and marsh pools
10674	will become inaccessible to short-legged shorebirds such as plovers (Erwin, 2004). Long-
10675	legged waterbirds such as the yellow-crowned night heron, which forages almost
10676	exclusively on marsh crabs (fiddler crab and others), will lose important food resources. ⁶⁹
10677	High marsh nesting birds such as northern harrier, black rail, clapper rail, and willet may
10678	be most at risk ⁷⁰ . Eventually, complete conversion of marsh to open water will affect the
10679	hundreds of thousands of shorebirds that stop in these areas to feed during their
10680	migrations. The New Jersey Coastal Management Program estimated that some 1.5
10681	million migratory shorebirds stopover on New Jersey's shores during their annual
10682	migrations (Cooper, 2005). Waterfowl also forage and overwinter in area marshes. Mid-
10683	winter aerial waterfowl counts in Barnegat Bay alone average 50,000 birds (USFWS,
10684	1997). The tidal marshes of the Cape May Peninsula provide stopover areas for hundreds
10685	of thousands of shorebirds, songbirds, raptors, and waterfowl during their seasonal
10686	migrations (USFWS, 1997). The peninsula is also an important staging area and
10687	overwintering area for seabird populations. Surveys conducted by the U.S. Fish and
10688	Wildlife Service from July through December 1995 in Cape May County recorded more
10689	than 900 000 seabirds migrating along the coast (USEWS 1997)

10689 than 900,000 seabirds migrating along the coast (USFWS, 1997).

⁶⁹ Dave Jenkins, Acting Chief, New Jersey Division of Fish and Wildlife, Endangered and Nongame Species Program, Trenton, New Jersey. Personal communication 7/25/07 in email to Stephen Keach of PQA. 70 *Ibid*.

10690	
10691	As feeding habitats are lost, local bird populations may no longer be sustainable. For
10692	example, avian biologists suggest that if marsh pannes and pools continue to be lost in
10693	Atlantic County as a result of sea-level rise, the tens of thousands of shorebirds that feed
10694	in these areas may shift to feeding in impoundments in the nearby Forsythe Refuge,
10695	increasing shorebird densities in the refuge by ten-fold and reducing population
10696	sustainability due to lower per capita food resources and disease from crowding (Erwin,et
10697	al., date unknown).
10698	
10699	Local populations of marsh nesting bird species will also be at risk where marshes drown.
10700	This will have a particularly negative impact on rare species such as seaside and sharp-
10701	tailed sparrows, which may have difficulty finding other suitable nesting sites. According
10702	to synthesis of published studies in Greenlaw and Rising (1994) and Post and Greenlaw
10703	(1994), densities in the region ranged from 0.3 to 20 singing males per hectare and 0.3 to
10704	4.1 females per hectare for the seaside and sharp-tailed sparrows, respectively (Greenlaw,
10705	et al., 1994). Loss and alteration of suitable marsh habitats are the primary conservation
10706	concerns for these and other marsh-nesting passerine birds (BBNEP, 2001). Non-
10707	passerine marsh nesting birds may also be at risk, particularly high marsh species such as
10708	northern harrier and black rail, which are state-listed as endangered. Species that nest in
10709	other habitat but rely on marshes for foraging, such as herons and egrets, will also be
10710	affected as marshes drown.
10711	
10712	

10713	Shore protection activities are underway to protect the vulnerable freshwater ecosystems
10714	of the Cape May Meadows (The Meadows), which are located behind the eroding dunes
10715	near Cape May Point (USACE, 2008). Freshwater coastal ponds in The Meadows are
10716	found within a few hundred feet of the shoreline and therefore could easily be inundated
10717	as seas rise. The ponds provide critical foraging and resting habitat for a variety of bird
10718	species, primarily migrating shorebirds (Strange, 2008). Among the rare birds seen in
10719	The Meadows by local birders are buff-breasted sandpipers, arctic tern, roseate tern,
10720	whiskered tern, Wilson's phalarope, black rail, king rail, Hudsonian godwit, and black-
10721	necked stilt (Kerlinger, date unknown). TNC, the U.S. Army Corps of Engineers
10722	(USACE), and the New Jersey Department of Environmental Protection (NJDEP) have
10723	undertaken beach replenishment to protect a mile-long stretch of sandy beach found in
10724	the Cape May Migratory Bird Refuge that provides nesting habitat for the rare piping
10725	plover and least tern (Blair, date unknown).
10726	
10727	Estuarine Beaches. Estuarine beaches will largely disappear as a result of erosion and
10728	inundation of sandy habitat as seas rise. This could eliminate the billions of invertebrates
10729	that are found within or on the sandy substrate or beach wrack along the tide line of
10730	estuarine beaches (Bertness, 1999). These species provide a rich and abundant food
10731	source for bird species. Small beach invertebrates include isopods and amphipods, blood
10732	worms, and beach hoppers, and beach macroinvertebrates include soft shell clams, hard
10733	clams, horseshoe crabs, fiddler crabs, and sand shrimp (Shellenbarger Jones, 2008).
10734	
10725	

10736	Northern diamondback terrapin nests on estuarine beaches in the Barnegat Bay area
10737	(BBNEP, 2001). Loss of these habitats will make terrapins even more dependent on
10738	habitats modified by humans (roadways). Local scientists consider coastal development,
10739	which destroys terrapin nesting beaches and access to nesting habitat, one of the primary
10740	threats to diamondback terrapins, along with predation, roadkills and crab trap bycatch ⁷¹ .
10741	
10742	Loss of estuarine beach could also have negative impacts on the northeastern beach tiger
10743	beetle. There are two sub-species, Cincindela dorsalis dorsalis, which is a federally listed
10744	threatened species and a state species of special concern and regional priority, and
10745	Cincindela dorsalis media, which is considered rare, though it has not been considered
10746	for state listing 72 . In the mid-1990s, the tiger beetle was observed on the undeveloped
10747	ocean beaches of Holgate and Island Beach. The USFWS does not know whether this
10748	species is also found on the area's estuarine beaches, but studies indicate that it feeds and
10749	nests in a variety of habitats (USFWS, 1997). The current abundance and distribution of
10750	the northeastern beach tiger beetle in the coastal bays is a target of research (State of NJ,
10751	2005). At present, there are plans to reintroduce the species in the study region at
10752	locations where natural ocean beaches remain (State of NJ, 2005).
10753	
10754	Tidal Flats. The tidal flats of New Jersey's back-barrier bays are critical foraging areas
10755	for hundreds of species of shorebirds, passerines, raptors, and waterfowl (BBNEP, 2001).

10756 Tidal flats support invertebrates, such as insects, worms, clams, and crabs, that provide an

⁷¹ See the website of the Wetlands Institute's terrapin conservation program at http://www.terrapinconservation.org. Accessed January 24, 2008.
72 Dave Jenkins, Acting Chief, New Jersey Division of Fish and Wildlife, Endangered and Nongame Species Program, Trenton, New Jersey. Personal communication 7/25/07 in email to Stephen Keach of PQA.

10757	important food source for these and other birds that forage in the study region. Some
10758	shorebirds, such as semipalmated sandpiper, dunlin, and dowitcher, forage preferentially
10759	on mudflats and shallow impoundments (BBNEP, 2001). Important shorebird areas in the
10760	study region include the flats of Great Bay Boulevard Wildlife Management Area, North
10761	Brigantine Natural Area, and the Brigantine Unit of the Forsythe Refuge (USFWS,
10762	1997). The USFWS estimates that the extensive tidal flats of the Great Bay alone total
10763	1,358 ha (3,355 ac). Inundation of tidal flats with rising seas would eliminate critical
10764	foraging opportunities for the area's abundant avifauna. As tidal flat area declines,
10765	increased crowding in remaining areas could lead to exclusion and mortality of many
10766	foraging birds (Galbraith, 2002; Erwin, 2004). Some areas may become potential sea
10767	grass restoration sites, but whether or not "enhancing" these sites as eelgrass areas is
10768	feasible will depend on their location, acreage, and sediment type (Strange, 2008). ⁷³
10769	
10770	Shallow Nearshore Waters and Submerged Aquatic Vegetation (SAV). The Barnegat
10771	Estuary is distinguished from the lagoons to the south by more open water and SAV and
10772	less emergent marsh. Within the Barnegat Estuary, dense beds of eelgrass are found at
10773	depths under 1 m (3.28 ft), particularly on sandy shoals along the backside of Long
10774	Beach Island and Island Beach, and around Barnegat Inlet, Manahawkin Bay, and Little
10775	Egg Inlet. Eelgrass is relatively uncommon from the middle of Little Egg Harbor south to
10776	Cape May, particularly locations where water depths are more than 1 m (3.28 ft), such as
10777	portions of Great South Bay (USFWS, 1997).
10770	

10779	Seagrass surveys from the 1960s through the 1990s indicate that there has been an overall
10780	decline in seagrass in Barnegat Estuary, from 6,823 ha (16,847 ac) in a 1968 survey to an
10781	average of 5,677 ha (14,029 ac) of seagrass beds during the period 1996 to 1998
10782	(BBNEP, 2001). Numerous studies indicate that eelgrass has high ecological value as a
10783	source of both primary (Thayer, et al. 1984) and secondary production (Jackson et al.,
10784	2001) in estuarine food webs. In Barnegat Estuary eelgrass beds provide habitat for
10785	invertebrates, birds, and fish that use the submerged vegetation for spawning, nursery,
10786	and feeding habitat (BBNEP, 2001). In addition, many species graze on eelgrass,
10787	including gastropods, fishes, ducks, and muskrats (BBNEP, 2001).
10788	
10789	Short and Neckles (1999) suggested that a 50 cm (19.7 in) increase in water depth as a
10790	result of sea-level rise could reduce the light available for eelgrass photosynthesis by
10791	50%, resulting in a 30-40% reduction in seagrass growth. The researchers suggested that
10792	this will, in turn, result in reduced productivity and functional values of eelgrass beds
10793	(Short and Neckles, 1999).
10794	
10795	Results of a study in Barnegat Bay indicated that shoreline protection may exacerbate this
10796	problem. The study found that where shorelines are bulkheaded, SAV, woody debris, and
10797	other features of natural shallow water habitat are rare or absent. In these bulkheaded
10798	areas, there were reduced abundances of fishes compared to sites that were not
10799	bulkheaded sites (Byrne, 1995).

10801	Marsh and Bay Islands. Large bird populations are found on marsh and dredge spoil
10802	islands of the back-barrier bays in the study region. These islands include nesting sites
10803	protected from predators for a number species of conservation concern, including gull-
10804	billed tern, common tern, Forster's tern, least tern, black skimmer, American
10805	oystercatcher, and piping plover (USFWS, 1997). Diamondback terrapins are also known
10806	to feed on marsh islands in the bays (USFWS, 1997).
10807	
10808	Some of the small islands in Barnegat Bay and Little Egg Harbor are several feet above
10809	mean spring high water (Jones and Wang, 2008), but portions of other islands are very
10810	low, and some low islands are currently disappearing. Many of the islands used by
10811	nesting common terns, Forster's terns, black skimmers, and American oystercatchers are
10812	vulnerable to sea-level rise and erosion (MLT, date unknown). With the assistance of
10813	local governments, the Mordecai Land Trust is actively seeking grants to halt the gradual
10814	erosion of Mordecai Island, a 45-acre island just west of Beach Haven on Long Beach
10815	Island (MLT, date unknown). Members of the land trust have documented a 37% loss of
10816	island area since 1930. The island's native salt marsh and surrounding waters and SAV
10817	beds provide habitat for a variety of aquatic and avian species. NOAA Fisheries considers
10818	the island and its waters Essential Fish Habitat for spawning and all life stages of winter
10819	flounder as well as juvenile and adult stages of Atlantic sea herring, bluefish, summer
10820	flounder, scup, and black sea bass. ⁷⁴ The island is also a strategically-located nesting
10821	island for many of New Jersey's threatened and endangered species, and it contains

10822 moderate-size black skimmer colony, common terns, and most recently, a very small10823 colony of royal terns (Strange, 2008).

10824

10825	Sea-level fens. Sea-level fens are a tidally influenced seepage wetland, located at the
10826	upland/freshwater swamp/tideland interface where fresh groundwater seepage discharges
10827	and occasional tidal inundation occurs. New Jersey has identified 12 sea-level fens,
10828	encompassing 126 acres. This rare ecological community is restricted in distribution to
10829	Ocean County in New Jersey, between Forked River and Tuckerton, in an area of artesian
10830	groundwater discharge from the Kirkwood - Cohansey aquifer. Additional recent field
10831	surveys have shown possible occurrences in the vicinity of Tuckahoe in Cape May and
10832	Atlantic counties (Walz 2004).
10833	
10834	These communities provide significant wetland functions in the landscape as well as
10835	supporting 18 rare plant species, of which one is listed as State Endangered. Sea-level fen
10836	is an ecological community recognized in the National Vegetation Classification System
10837	and is ranked as a G1, or critically globally imperiled, community. It is not clear what
10838	effect sea-level rise may have on these wetlands. Fens do not tolerate nutrient-rich ocean
10839	waters, and therefore if a fen is at an elevation where it can become inundated by rising
10840	seas it may not persist ⁷⁵ . On the other hand, sea-level rise could cause the natural seep
10841	(groundwater discharge) to migrate upslope and increase in volume at some locations,
10842	which would benefit fens ⁷⁶ .
10042	

10843

75 Chris Bason, Delaware Inland Bays Program, written communication to EPA 5/14/07.76 Barry Truitt, Chief Conservation Scientist, The Nature Conservancy, Virginia Coast Reserve, written communication to EPA, 7/25/07.

10844	C.3 DEVELOPMENT AND SHORE PROTECTION
10845	Chapter 5 describes the basis for ongoing studies that are analyzing land use plans, land
10846	use data, and coastal policies to create maps depicting the areas where shores may be
10847	protected and where wetlands may migrate inland. Because the maps from those studies
10848	have not yet been finalized, this section describes some of the existing and evolving
10849	conditions that may influence decisions related to future shore protection and wetland
10850	migration.
10851	
10852	C.3.1 Statewide Policy Context
10853	The implications of sea level rise for New Jersey are sensitive to policies related to the
10854	Coastal Facilities Review Act, the State Plan, an unusually strong public trust doctrine,
10855	and the state's strong support for beach nourishment — and opposition to both erosion-
10856	control structures and shoreline retreat — along ocean shores. The first three of these
10857	policies are discussed in Appendix D; we briefly describe the latter here.
10858	
10859	In 1997, then-Governor Whitman promised coastal communities that: "There will be no
10860	forced retreat," and that the government would not force people to leave the shoreline.
10861	That policy does not necessarily mean that there will always be government help (in
10862	terms of state-sponsored shore protection, permits for private actions, guarantees of
10863	insurance availability, maintenance of bridges, highways and causeways, etc.) for shore
10864	protection. Nevertheless, although subsequent administrations have not expressed this
10865	view so succinctly, they have not withdrawn the policy either. If fact, the primary debate

- 10866 in New Jersey tends to be the level of public access required before a community is
- 10867 eligible to receive beach nourishment, not the need for shore protection itself⁷⁷.

10869	The state generally prohibits new hard structures along the ocean front; but that was not
10870	always the case. A large portion of the Monmouth County shoreline was once protected
10871	with seawalls, with a partial or total loss of beach. During the 1970s, Orrin Pilkey and
10872	others pointed to the irony of governments subsidizing the owners of valuable homes by
10873	providing shore protection structures that protected the homes but destroyed the primary
10874	asset that made the homes valuable to begin with: a nearby beach. Sea Bright and Long
10875	Branch were commonly cited by coastal geologists who decried the "New Jerseyization"
10876	(i.e., shoreline hardening) of coastal communities elsewhere (Pilkey et al., 1978).
10877	
10878	Today, beach nourishment is the preferred method for reversing beach erosion and
10879	providing ocean front land with protection from coastal storms (Maureillo, 1991). The
10880	entire Monmouth County shoreline now has a beach in front of the old seawalls. Beach
10881	nourishment has been undertaken or planned for at least one community in every coastal
10882	county from Middlesex along Raritan Bay, to Salem along the Delaware River.
10883	
10884	Coastal officials are well-aware of the dynamic nature of barrier islands and have often
10885	sought to develop plans to allow development to adapt to shifting shores. If a
10886	catastrophic storm caused substantial beach erosion and property damage, it might be
10887	economically infeasible to reclaim all the land lost to ocean side erosion. A severe storm
10888	might also cause new land to be created on the bay sides of some barrier islands, through
	77 See Chapter 7.

- 10889 the geological overwash process. Nevertheless, current plans assume that permanent
- 10890 changes to the shoreline along the densely developed New Jersey shore would be
- 10891 confined to a very small number of unusually vulnerable areas.
- 10892

10893 C.3. RESPONSES TO SEA LEVEL RISE

- 10894 With extensive development and tourism along its shore, New Jersey has a well-
- 10895 established policy in favor of shore protection along the ocean shores⁷⁸. In particular, the
- 10896 state's policies specifically promote the use of beach nourishment to protect property and
- 10897 tourism⁷⁹. For example, Island Beach State Park, a barrier spit along the central portion
- 10898 of Barnegat Bay just north of Long Beach Island, is heavily used by New Jersey residents
- 10899 and includes the official beach house of the Governor. Although it is a state park, it is
- 10900 currently included in the authorized Corps of Engineers Project for beach nourishment
- 10901 from Manasquan to Barnegat Inlet. In the case of Cape May Meadows, however,⁸⁰
- 10902 environmental considerations have prompted shore protection efforts (USACE, 2008).
- 10903 The areas critical freshwater ecosystem is immediately behind dunes that have eroded
- 10904 severely as a result of the jetties protecting the entrance to the Cape May Canal.

⁷⁸ For example, the primary coastal policy document during the Whitman administration suggested that even mentioning the term "retreat" would divide people and impede meaningful discussion of appropriate policies. See NJDEP, 1997 ("The mere use of the word serves to divide people \ldots '[R]etreat' can mean government-imposed prohibition on construction or reconstruction of oceanfront development \ldots . [which] often fuels the divisive `retreat' debate \ldots ."). Governor Whitman promised coastal mayors and residents that "there will be no forced retreat."

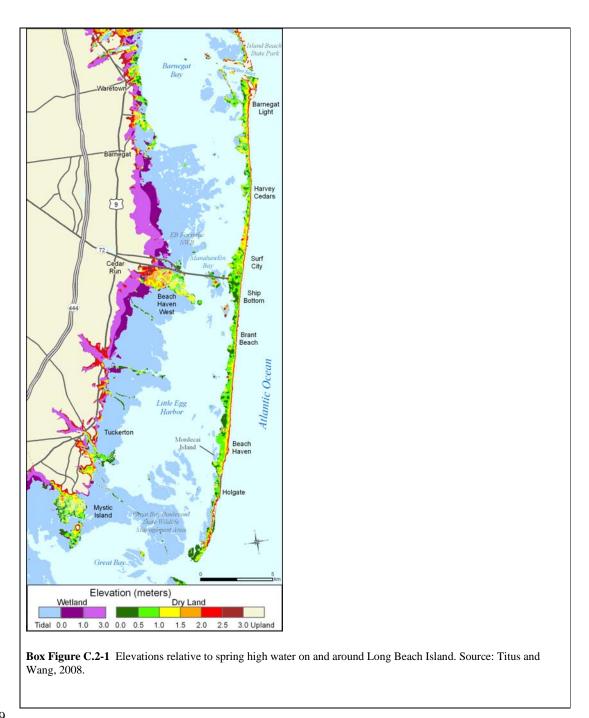
⁷⁹ See Coastal Engineering N.J.A.C. 7:7E –7.11

⁸⁰ The Meadows are within Cape May Point State Park and the Nature Conservancy's Cape May Migratory Bird Refuge.

10906	Chapter 2 suggests the possibility of disintegrating barrier islands along the New Jersey
10907	shore. If this risk is substantiated, it is more likely to be a motivation for continued
10908	nourishment than an abandonment of these coastal communities. Communities are just
10909	starting to think about how the low bay sides of barrier island shores should be protected.
10910	Although the baysides of these islands are bulkheaded, communities are unlikely to
10911	seriously consider the option of being encircled by a dike as sea-level rises (see BOX C.2
10912	on Long Beach Island). However, Avalon uses a combination of floodwalls and
10913	checkvalves to prevent tidal flooding; and Atlantic City's stormwater management
10914	system includes underground tanks with checkvalves. These systems have been
10915	implemented to address current flooding problems; but they would also be a logical first
10916	step in a strategy to protect low lying areas with structural solutions as sea-level rises ⁸¹ .
10917	
10917 10918	With 72 square kilometers of nontidal wetlands within 1 meter above the tides (Jones and
	With 72 square kilometers of nontidal wetlands within 1 meter above the tides (Jones and Wang, 2008), wetlands along the back-barrier bays of New Jersey's Atlantic coast are
10918	
10918 10919	Wang, 2008), wetlands along the back-barrier bays of New Jersey's Atlantic coast are
10918 10919 10920	Wang, 2008), wetlands along the back-barrier bays of New Jersey's Atlantic coast are likely to have some room to migrate inland. On effort at the state level to preserve such
10918 10919 10920 10921	Wang, 2008), wetlands along the back-barrier bays of New Jersey's Atlantic coast are likely to have some room to migrate inland. On effort at the state level to preserve such coastal resources is the State's Stormwater Management Plan, which establishes a special
10918 10919 10920 10921 10922	Wang, 2008), wetlands along the back-barrier bays of New Jersey's Atlantic coast are likely to have some room to migrate inland. On effort at the state level to preserve such coastal resources is the State's Stormwater Management Plan, which establishes a special water resource protection area that limits development within 300 feet along most of its
10918 10919 10920 10921 10922 10923	Wang, 2008), wetlands along the back-barrier bays of New Jersey's Atlantic coast are likely to have some room to migrate inland. On effort at the state level to preserve such coastal resources is the State's Stormwater Management Plan, which establishes a special water resource protection area that limits development within 300 feet along most of its coastal shore (NJDEP, DWM, April 2004). While the primary objective of the regulation
10918 10919 10920 10921 10922 10923 10924	Wang, 2008), wetlands along the back-barrier bays of New Jersey's Atlantic coast are likely to have some room to migrate inland. On effort at the state level to preserve such coastal resources is the State's Stormwater Management Plan, which establishes a special water resource protection area that limits development within 300 feet along most of its coastal shore (NJDEP, DWM, April 2004). While the primary objective of the regulation is to improve coastal water quality and reduce potential flood damage, it serves to
10918 10919 10920 10921 10922 10923 10924 10925	Wang, 2008), wetlands along the back-barrier bays of New Jersey's Atlantic coast are likely to have some room to migrate inland. On effort at the state level to preserve such coastal resources is the State's Stormwater Management Plan, which establishes a special water resource protection area that limits development within 300 feet along most of its coastal shore (NJDEP, DWM, April 2004). While the primary objective of the regulation is to improve coastal water quality and reduce potential flood damage, it serves to

81 See Chapter 5 for explanation of progression of structural mechanisms to combat flooding.

Do Not Cite or Quote


BOX C.2: Shore Protection on Long Beach Island

The effects of sea-level rise can be observed on both the ocean and bay sides of this 18-mile long barrier island. Along the ocean side, shore erosion has threatened homes in Harvey Cedars and portions of Long Beach township. During the 1990s, a steady procession of dump trucks brought sand onto the beach from inland sources. In 2007, the Corps of Engineers began to restore the beach at Surf City and areas immediately north. The beach had to be closed for a few weeks, however, after officials discovered that munitions (which had been dumped offshore after World War II) had been inadvertently pumped onto the beach.

High tides regularly flood the main boulevard in the commercial district of Beach Haven, as well as the southern two blocks of Central Avenue in Ship Bottom. Referring to the flooded parking lot during spring tides, the billboard of a pizza parlor in Beach Haven Crest boasts "Occasional Waterfront Dining."

EPA's 1989 Report to Congress used Long Beach Island as a model for analyzing alternative responses to rising sea level, considering four options: a dike around the island, beach nourishment and elevating land and structures, an engineered retreat which would include the creation of new bayside lands as the ocean eroded, and making no effort to maintain the island's land area. Giving up the island was the most expensive option. The study concluded that a dike would be the least expensive in the short run, but unacceptable to most residents due to the lost view of the bay and risk of being on a barrier island below sea level. In the long run, fostering a landward migration would be the least expensive, but it would unsettle the expectations of bayfront property owners and hence require a leadtime of a few generations between being enacted and new bayside land actually being created. Thus, the combination of beach nourishment and elevating land and structures appeared to be the most realistic, and EPA used that assumption in its nationwide cost estimate.

Long Beach township, Ship Bottom, Harvey Cedars, and Beach Haven went through a similar thinking process in considering their preferred response to sea-level rise. In resolutions enacted by their respective councils, they concluded that a gradual elevation of their communities would be preferable to either dikes or the retreat option. In the last ten years, several structural moving companies have had ongoing operations, continually elevating homes.

10930 C.4 POPULATION OF LANDS CLOSE TO SEA LEVEL

Do Not Cite or Quote

- 10931 Table C.2 estimates the population of lands close to sea level for each of the counties
- 10932 along the Atlantic coast of New Jersey. Because Census data measures official residents,
- 10933 these figures omit the many summer residents. Nevertheless, thousands of people inhabit
- 10934 the very-low lying lands along the back barrier bays of Ocean, Cape May, and Monmouth
- 10935 Counties. Tens of thousands of people live within two meters above the tides in coastal
- 10936 communities from Cape May to Sea Bright.
- 10937

Table C 2	Dopulation	of lande	aloco to coo	lovel, New	Jersev Shore.
	I UDUIAUUU	or ranus	cluse to sea	ICVCI. INCW	JEISEV SHULE.

			Low and h	igh estimate	es of	
County		population	n below a gi	iven elevatio	on (thousands	5)
	50c	m	1n	ı	2m	
	Low	High	Low	High	Low	High
Jersey						
Atlantic	0.1	39.6	21.3	67.1	72.4	86.6
Burlington ¹	0.0	23.7	0.0	27.6	2.6	46.2
Cape May ¹	2.1	30.5	17.3	44.2	38.9	56.9
Monmouth ²	4.9	19.5	15.2	36.8	46.5	68.5
Ocean	1.0	21.6	11.3	50.4	64.8	89.5
Total	8.1	134.9	65.1	226.1	225.2	347.7
¹ Figures a	re for the er	tire county	7. County is	split betwee	n New Jersey	Shore and
Delaware Bay Wate						
² Figures a	re for the er	ntire county	. County is	split betwee	n New Jersey	Shore and
Hudson River Wate	rsheds.					

10939 C.5 STATEWIDE POLICY CONTEXT

- 10940 We will see in Appendix D (Delaware Estuary) that the implications of sea-level rise for
- 10941 New Jersey are sensitive to policies related to the Coastal Facilities Review Act, the State
- 10942 Plan, and an unusually strong public trust doctrine. Let us now examine the state's strong
- 10943 support for beach nourishment and opposition to both erosion-control structures and
- 10944 shoreline retreat along ocean shores.
- 10945
- 10946 Strong Commitment to Beach Nourishment. In 1997, then-Governor Whitman promised
- 10947 coastal communities that: "There will be no forced retreat," and that the government

10948	would not force people to leave the shoreline. That policy does not necessarily mean that
10949	there will always be government help (in terms of state-sponsored shore protection,
10950	permits for private actions, guarantees of insurance availability, maintenance of bridges,
10951	highways and causeways, etc.) for shore protection. Nevertheless, although subsequent
10952	administrations have not expressed this view so succinctly, they have not withdrawn the
10953	policy either. If fact, the primary debate in New Jersey tends to be the level of public
10954	access required before a community is eligible to receive beach nourishment, not the need
10955	for shore protection itself ⁸² .
10956	
10957	The state generally prohibits new hard structures along the ocean front; but that was not
10958	always the case. A large portion of the Monmouth County shoreline was once protected
10959	with seawalls, with a partial or total loss of beach. During the 1970s, Orrin Pilkey and
10960	others pointed to the irony of governments subsidizing the owners of valuable homes by
10961	providing shore protection structures that protected the homes but destroyed the primary
10962	asset that made the homes valuable to begin with: a nearby beach. Sea Bright and Long
10963	Branch were commonly cited by coastal geologists who decried the "New Jerseyization"
10964	(i.e., shoreline hardening) of coastal communities elsewhere (Pilkey et al., 1978).
10965	
10966	Today, beach nourishment is the preferred method for reversing beach erosion and
10967	providing ocean front land with protection from coastal storms (Maureillo, 1991). The
10968	entire Monmouth County shoreline now has a beach in front of the old seawalls. Beach
10969	nourishment has been undertaken or planned for every coastal county from Middlesex
10970	along Raritan Bay, to Salem along the Delaware River.
	82 See Chapter 7.

10971	
10972	If a catastrophic storm caused substantial beach erosion and property damage, it might be
10973	economically infeasible to reclaim all the land lost to ocean side erosion. A severe storm
10974	might also cause new land to be created on the bay sides of some barrier islands, through
10975	the geological overwash process. Nevertheless, current plans assume that permanent
10976	changes to the shoreline along the densely developed New Jersey shore would be
10977	confined to a very small number of unusually vulnerable areas.
10978	
10979	APPENDIX C REFERENCES
10980	BBNEP (Barnegat Bay National Estuary Program, Scientific and Technical Advisory
10981	Committee), 2001: Chapter 7 of The Barnegat Bay Estuary Program
10982	Characterization Report. Available online at:
10983	http://www.bbep.org/Char_Rpt/Ch7/Chapter%207.htm. Accessed on 1/14/08.
10984	Bertness, M.B., 1999: The Ecology of Atlantic Shorelines. Sinauer Associates Inc.,
10985	Sunderland, MA, 417 pp.
10986	Byrne, D. M., 1995: The effect of bulkheads on estuarine fauna: a comparison of littoral
10987	fish and macroinvertebrate assemblages at bulkheaded and non-bulkheaded
10988	shorelines in a Barnegat Bay Lagoon. In: Second Annual Marine Estuarine
10989	Shallow Water Science and Management Conference, Atlantic City, NJ.
10990	Environmental Protection Agency, Philadelphia, PA, pp. 53-56.
10991	Cooper, M.J.P., M.D. Beevers, and M. Oppenheimer, 2005: Future Sea Level Rise and
10992	the New Jersey Coast. Science, Technology, and Environmental Policy Program,
10993	Woodrow Wilson School of Public and International Affairs, Princeton
10994	University, Princeton, NJ, 37 pp. Available at
10995	http://www.princeton.edu/~step/people/Oppenheimer%20Future%20of%20Sea%
10996	20Level%20Rise.pdf

|--|

10997	Erwin, R.M., G.M. Sanders, D.J. Prosser, and D.R. Cahoon, 2006: High tides and rising
10998	seas: potential effects on estuarine waterbirds. In: Terrestrial Vertebrates in Tidal
10999	Marshes: Evolution, Ecology, and Conservation. [Greenberg, R. (ed.)]. Studies in
11000	Avian Biology No. 32, Cooper Ornithological Society, Camarillo, CA, pp. 214-
11001	228.
11002	Erwin, R.M., G.M. Sanders, and D.J. Prosser, 2004: Changes in lagoonal marsh
11003	morphology at selected northeastern Atlantic Coast sites of significance to
11004	migratory waterbirds. Wetlands, 24, 891-903.
11005	Galbraith, H., R. Jones, P. Park, J. Clough, S. Herrod-Julius, B. Harrington, and G.
11006	Page, 2002: Global climate change and sea level rise: potential losses of intertidal
11007	habitat for shorebirds. Waterbirds, 25(2), 173-183.
11008	Greenlaw, J.S. and J.D. Rising, 1994: Sharp-tailed sparrow (Ammodramus audacutus).
11009	In: The Birds of North America, No. 127, [Poole, A. and F. Gill (eds.)]. The
11010	Academy of Natural Sciences, Philadelphia and the American Ornithologists'
11011	Union, Washington, DC, as cited in Chapter 6 of The Barnegat Bay Estuary
11012	Program Characterization Report. Prepared by the Barnegat Bay National
11013	Estuary Program (Scientific and Technical Advisory Committee), January, 2001.
11014	Available online at: <u>http://www.bbep.org/Char_Rpt/Ch6/Chapter%206.htm</u> .
11015	Accessed on 1/14/08.
11016	Jackson, E.L., A.S. Rowden, M.J. Attrill, S. Bossey, and M. Jones, 2001: The
11017	importance of seagrass beds as habitat for fishery species. Oceanography and
11018	Marine Biology Annual Review, 39 , 269-303.
11019	Jones, R. and J. Wang, 2008: Interpolating elevations: proposed method for conducting
11020	overlay analysis of GIS data on coastal elevations, shore protection, and wetland
11021	accretion. Section 1.2 in: Background Documents Supporting Climate Change
11022	Science Program Synthesis and Assessment Product 4.1: Coastal Elevations and
11023	Sensitivity to Sea Level Rise [Titus, J.G. and E. Strange (eds.)]. EPA 430R07004,
11024	Environmental Protection Agency, Washington, DC.

11025	Kerlinger, P., Date unknown: Cape May birding places: the Cape May Migratory Bird
11026	Refuge. Cape May Times. Available at
11027	http://www.capemaytimes.com/birds/capemay-meadows.htm. Accessed on
11028	1/14/08.
11029	Lloyd, J.B., 1994: Eighteen miles of history at Long Beach Island. Down The Shore
11030	Publishing, Harvey Cedars, NJ, 208 pp.
11031	Mauriello, M., 1991: Beach nourishment and dredging: New Jersey's policies. Shore &
11032	Beach, 59, 3.
11033	MLT (Mordecai Land Trust), Date unknown: <u>http://www.mordecaimatters.org</u>
11034	Accessed on 1/14/08.
11035	Nash, C.E., 1947: The Lure of Long Beach: Being a Detailed Account of the Traditions,
11036	History and Growth of a Grand Little Island off the New Jersey Coast. Long
11037	Beach Board of Trade, [Long Beach, NJ], 170 pp.
11038	NJDEP (New Jersey Department of Environmental Protection), 1997: Coastal Report
11039	Task Force, New Jersey Department of Environmental Protection, 1997, New
11040	Jersey Coastal Report: A Framework Document for a Coastal Management
11041	Partnership.
11042	NJDEP (New Jersey Department of Environmental Protection). Division of Parks and
11043	Forestry, (date unknown): Cape May Point State Park.
11044	http://www.state.nj.us/dep/parksandforests/parks/capemay.html Accessed
11045	1/14/08.
11046	NJDEP (New Jersey Department of Environmental Protection). Division of Watershed
11047	Management, April 2004: Stormwater Best Management Practices, Appendix D.
11048	http://www.njstormwater.org/tier_A/pdf/NJ_SWBMP_D.pdf. Accessed 1/21/08.
11049	NPS (National Park Service), 2007: "Shifting Sands of Sandy Hook." Gateway National
11050	Recreation Area. At

11051	http://www.nps.gov/archive/gate/shu/pdf_files/nature_shifting_sands.pdf as of
11052	<u>July 1</u> , 2007.
11053	NPS (National Parks Service and New Jersey Coastal Heritage Trail Route). Current
11054	Destinations on the Wildlife Migration Trail. See
11055	http://www.nps.gov/archive/neje/migsites.html. Accessed on 1/14/08.
11050	Billion Old II, W.I. Neel Old Billion Grand G.B. Bierry 1079, France Construction
11056	Pilkey , O.H., Jr., W.J. Neal, O.H. Pilkey, Sr., and S.R. Riggs, 1978: <i>From Currituck to</i>
11057	Calabash: Living with North Carolina's Barrier Islands. North Carolina Science
11058	and Technology Research Center, Research Triangle Park, NC, 228 pp.
11059	Post, W. and J. S. Greenlaw, 1994: Seaside sparrow (Ammodramus maritimus). In The
11060	Birds of North America, No. 127, [Poole, A. and F. Gill (ed.)]. The American
11061	Ornithologists' Union, Washington, DC.; The Academy of Natural Sciences,
11062	Philadelphia, as cited in Chapter 6 of The Barnegat Bay Estuary Program
11063	Characterization Report. Prepared by the Barnegat Bay National Estuary Program
11064	(Scientific and Technical Advisory Committee), January, 2001. Available online
11065	at: http://www.bbep.org/Char_Rpt/Ch6/Chapter%206.htm. Accessed on 1/14/08.
11066	Reed, D.J., D.A. Bishara, D.R. Cahoon, J. Donnelly, M. Kearney, A.S. Kolker, L.L.
11067	Leonard, R.A. Orson, and J.C. Stevenson, 2008: Site-specific scenarios for
11068	wetlands accretion in the Mid-Atlantic region. Section 2.1 in <i>Background</i>
11069	Documents Supporting Climate Change Science Program Synthesis and
11070	Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea Level Rise
11070	[Titus, J.G. and E.M. Strange (eds.)]. EPA430R07004, Environmental Protection
11072	Agency, Washington, DC.
11073	Salvini, E.R., 1995: The Summer City by the Sea: Cape May, New Jersey: An Illustrated
11074	History. Rutgers University Press, New Brunswick, 142 pp
11075	Shellenbarger Jones, A., 2008: Overview of coastal habitats and environmental
11076	implications of sea level rise. Section 3.1 in Background Documents Supporting
11077	Climate Change Science Program Synthesis and Assessment Product 4.1: Coastal

11078	Elevations and Sensitivity to Sea Level Rise, [Titus, J.G. and E.M. Strange (eds.)].
11079	EPA430R07004, Environmental Protection Agency, Washington, DC.
11080	Short, F.T., and H.A. Neckles, 1999: The effects of global climate change on seagrasses.
11081	Aquatic Botany, 63 , 169-196.
11001	
11082	State of New Jersey, 2005: New Jersey Comprehensive Wildlife Conservation Strategy
11083	for Wildlife of Greatest Conservation Need. August 2005 Draft. 649 pp. Table C1.
11084	Available online at: http://www.njfishandwildlife.com/ensp/waphome.htm
11085	Accessed on 1/14/08.
11086	Strange, E., 2008: Mid-Atlantic coastal habitats and environmental implications of sea
11087	level rise. Section 3 in: Background Documents Supporting Climate Change
11088	Science Program Synthesis and Assessment Product 4.1: Coastal Elevations and
11089	Sensitivity to Sea Level Rise [Titus, J.G. and E. Strange (eds.)]. EPA 430R07004,
11090	Environmental Protection Agency, Washington, DC.
11091	Talbot, C.W. and K.W. Able, 1984: Composition and distribution of larval fishes in New
11092	Jersey high marshes. <i>Estuaries</i> , 7 , 434-443.
11072	versey men marshes. Estauries, 7, 157 (15.
11093	Thayer, G.W., W.J. Kenworthy, and M.S. Fonseca, 1984: The Ecology of Eelgrass
11094	Meadows of the Atlantic Coast: A Community Profile. U.S. Fish and Wildlife
11095	Service, FWS/OBS-84/02.
11096	Titus, J.G., and P. Cacela, 2008: Uncertainty ranges associated with EPA's estimates of
11097	the area of land close to sea level. Section 1.3b in: Background Documents
11098	Supporting Climate Change Science Program Synthesis and Assessment Product
11099	4.1: Coastal Elevations and Sensitivity to Sea Level Rise [Titus, J.G. and E.M.
11100	Strange (eds.)]. EPA 430R07004, Environmental Protection Agency, Washington,
11101	DC.
11102	Titus J.G., and J. Wang, 2008: Maps of lands close to sea level along the middle Atlantic
11103	coast of the United States: an elevation data set to use while waiting for LIDAR.
11104	Section 1.1 in: Background Documents Supporting Climate Change Science

Do Not Cite or Quote

11105	Program Synthesis and Assessment Product 4.1: Coastal Elevations and
11106	Sensitivity to Sea Level Rise [Titus, J.G. and E.M. Strange (eds.)]. EPA
11107	430R07004, Environmental Protection Agency, Washington, DC.
11108	TNC (The Nature Conservancy) (Date unknown) William D. and Jane C. Blair Jr. Cape
11109	May Migratory Bird Refuge.
11110	http://www.nature.org/wherewework/northamerica/states/newjersey/work/art1720
11111	5.html Accessed on 1/14/08.
11112	USACE (U.S. Army Corps of Engineers), 2008: Project Fact Sheet: New Jersey Shore
11113	Protection, Lower Cape May Meadows – Cape May Point, NJ. http://
11114	www.nap.usace.army/mil/cenap-dp/projects/factsheets/NJLowe Cape May
11115	Meadows.pdf. Accessed 1/27/08.
11116	USFWS (U.S. Fish and Wildlife Service). Cape May National Wildlife Refuge. Delaware
11117	Bay/Delmarva Coastal Area Ecosystem. http://www.fws.gov/northeast/capemay/
11118	Accessed on 1/14/08.
11119	USFWS (U.S. Fish and Wildlife Service), 1997: Cape May Peninsula. Significant
11120	Habitat and Habitat Complexes of the New York Bight Watershed. U.S. Fish and
11121	Wildlife Service, South New England, New York Bight Coastal Ecosystems
11122	Program, Charlestown, Rhode Island. Completed November 1996, Published
11123	November 1997.
11124	Walz, K., E. Cronan, S. Domber, M. Serfes, L. Kelly, and K. Anderson, 2004: The
11125	Potential Impacts of Open Marsh Management (OMWM) on a Globally Imperiled
11126	Sea-level Fen in Ocean County, New Jersey. Prepared for the New Jersey
11127	Department of Environmental Protection, Coastal Management Office.18 pp.
11128	Weinstein, M.P., 1979: Shallow marsh habitats as primary nurseries for fishes and
11129	shellfish, Cape Fear River, North Carolina, U.S. Fisheries Bulletin, 77, 339-357.
11130	