# **DOGS THAT DO NOT BARK:**

#### RIGHT-HANDED NEUTRINOS IN A SUPERSYMMETRIC WORLD

#### **Biswarup Mukhopadhyaya**



Harish-Chandra Research Institute, Allahabad, India

Gregory (Scotland Yard detective): "Is there any other point to which you would wish to draw my attention?"

Holmes: "To the curious incident of the dog in the night-time."

Gregory: "The dog did nothing in the night-time."

Holmes: "That was the curious incident."

Silver Blaze in The Memoirs of Sherlock Holmes

by Sir Arthur Conan Doyle

#### The known elementary particles.....



🛟 Fermilab 95-759

#### The known elementary particles.....

In addition, the 'standard electroweak model' requires the Higgs boson

The left-chiral quarks and leptons are SU(2) doublets, and the right-chiral ones, singlets,

but

no right-handed neutrinos– no neutrino mass If RH neutrinos ( $\nu_R$ ) exist, they are completely sterile, except for the interaction  $\sim y_{\nu} \bar{\nu_L} \nu_R H$  $y_{\nu} \sim m_{Dirac}^{\nu}$  (H = Higgs doublet) Neutrinos perhaps have mass and mixing Evidence from solar, atmospheric and terrestrial neutrino data + cosmology

 $\implies \Delta m_{23}^2 \simeq 10^{-3} eV^2, \ \Delta m_{12}^2 \simeq 10^{-5} eV^2$  $\theta_{23} \simeq 45^{\circ}, \theta_{12} \simeq 35^{\circ}, \ \theta_{12} \lesssim 12^{\circ}$  $\text{Individual masses} \lesssim 0.1 \text{ eV}$ 

# With Higgs doublet(s) only, neutrino mass requires $\nu_R$ :

• Just  $m_D \bar{\nu_L} \nu_R$  (no lepton number violation) or

•  $m_D \bar{\nu_L} \nu_R + M_R \bar{\nu_R}^c \nu_R$  ( $\Delta L = 2$  included)

 $\implies m_{\nu} = m_D^2/m_R$ (requires large  $M_R$ )

Depending on the origin of the  $\bar{\nu_L}\nu_R$ -term,  $M_R$  can range from TeV to  $10^{14}$  GeV

Some new physics is expected The Higgs mass in the standard modelsubject to large radiative corrections A cut-off to standard model at  $\leq$ , TeV may control the damage A popular solution : supersymmetry (SUSY) with  $m_{boson} \sim m_{fermion} \lesssim TeV$  so that radiative corrections beyond TeV cancel

#### **SUSY and right-handed neutrinos:**

- Both are 'perhaps necessary'
- Does it make any serious difference to have SUSY with right-chiral neutrino superfields (i.e. RH neutrinos as well as corresponding spin-zero 'sneutrinos') ?

#### **Questions to ask...**

### Is accelerator phenomenology of SUSY altered by the RH neutrino or its scalar partner?

Is accelerator phenomenology of SUSY altered by the RH neutrino or its scalar partner?

Does SUSY with  $\nu_R$  enable  $\nu$ -mass and mixing generation mechanisms?

Is accelerator phenomenology of SUSY altered by the RH neutrino or its scalar partner?

**Does SUSY with**  $\nu_R$  enable  $\nu$ -mass and mixing generation mechanisms?

Does the  $\nu_R$  superfield help us in explaining something more than just neutrino masses?

#### A right sneutrino and the LHC...

SUSY signals may look different ! Most commonly, the lightest neutralino ( $\chi^0_1$ ) is the lightest SUSY particle (LSP) Is stable if  $R = (-)^{3B+L+2S}$  is conserved, and so better be colourless and neutral A viable cold dark matter candidate All SUSY particle production results in decay

chains leading to a pair of 'invisible' LSP's

**Canonical SUSY signals at the LHC:** 

$$pp \longrightarrow \tilde{g}\tilde{g}(\tilde{q}\tilde{q^*})(\tilde{q}\tilde{q}) \longrightarrow (anti)quarks + \chi_1^0\chi_1^0$$

'jets + missing  $p_T$ '

$$pp \longrightarrow \tilde{g}\tilde{g} \longrightarrow \chi_1^{\pm}\chi_1^{\pm}... \longrightarrow (anti)quarks + l^{\pm}l^{\pm}\chi_1^0\chi_1^0$$
  
'like-sign dileptons (LSD) + jets + missing  $p_T$ '

Must  $\chi_1^0$  be the LSP?

If the RH neutrino superfield exists, then the  $\tilde{\nu}_R$  is an LSP candidate

- More favoured than the  $\tilde{\nu}_L$  in a setting where
- masses evolve from a high scale
- Feeble interaction suppresses  $\tilde{\nu}_R$  production
- side by side with low annihilation rate Interaction with matter suppressed– direct dark matter search limits evaded
- Bottomline: A  $\tilde{\nu}_R$ -type LSP in the mass range
- O(100) GeV is consistent
- Consequence in accelerator experiments: decay chains lead to different final states

#### New signals at the LHC (no L-violation)

- The LSP (dominantly a  $\tilde{\nu}_R$ ) couples to all other SUSY particles with a strength
- $\sim y_{\nu} \sim m(Dirac)_{\nu}$
- **SUSY particle production**
- $\Rightarrow$  cascades into the next-to-lightest SUSY particle (NLSP)  $\Rightarrow$  Very slow decay of the NLSP to the LSP

- The LSP only is cosmologically stable, but the
- NLSP (maybe charged) appears stable in the
- **collider detectors**
- The signal of the 'stable' NLSP can be not missing- $p_T$  but charged tracks
- The dog that does not bark makes its presence felt!

• In the superpotential:

 $W^R_{\nu} = y_{\nu} H_u L \nu^c_R$  $m_{\nu} = y_{\nu} \left\langle H_{u}^{0} \right\rangle = y_{\nu} v \sin\beta$  $y_{\nu}$  = Yukawa coupling,  $L = (l, \nu_L)$  $H_{n}$  = Higgs superfield giving mass to the  $T_3 = +1/2$  fermions  $\tan\beta = v_u/v_d$ 

#### • In the scalar potential,

$$-\mathcal{L}_{soft} \sim M_{\tilde{\nu}_R}^2 |\tilde{\nu}_R|^2 + (y_{\nu}A_{\nu}H_u.\widetilde{L}\tilde{\nu}_R^c + h.c.)$$

# $A_{\nu}$ is the term driving left-right mixing in the scalar mass matrix

• The low-scale sneutrino mass matrix:

$$m_{\tilde{\nu}}^2 = \begin{pmatrix} M_{\tilde{L}}^2 + \frac{1}{2}m_Z^2\cos 2\beta & y_\nu v(A_\nu \sin\beta - \mu\cos\beta) \\ y_\nu v(A_\nu \sin\beta - \mu\cos\beta) & M_{\tilde{\nu}_R}^2 \end{pmatrix}$$

 $M_{\tilde{L}}$  = soft mass for the left-handed sleptons  $M_{\tilde{\nu}_R}$  = soft mass for the right-handed sneutrino In general,  $M_{\tilde{L}} \neq M_{\tilde{\nu}_R}$  because of different evolution patterns + D-term contribution for the former. Physical states:  $\tilde{\nu}_1$ (lighter),  $\tilde{\nu}_2$ (heavier)

With high-scale SUSY breaking generating  $M_{\tilde{\nu}_R}$ ,  $\frac{dM_{\tilde{\nu}_R}^2}{dt} = \frac{2}{16\pi^2} y_{\nu}^2 A_{\nu}^2$ 

**Extremely small Yukawa couplings** 

 $\Rightarrow M_{\tilde{\nu}_R}$  nearly frozen at the high-scale value  $m_0$ 

Other sfermion masses are jacked up at the

#### electroweak scale

 $\Rightarrow$  A right-chiral sneutrino for every family is at the bottom of the spectrum

- The LSP state(s) =  $\tilde{\nu}_1$
- Dominantly  $\tilde{
  u}_R$ , with admixture of  $\tilde{
  u}_L ~\sim~ y_{
  u}$
- All decay widths into  $\widetilde{
  u}_1$  is  $\sim y_
  u^2$
- Extremely suppressed- decay takes place
- outside detector

Within the detector, all decays lead to the NLSP The NLSP controls collider phenomenology

#### The NLSP can be...

 $\chi_1^0 \longrightarrow$  No difference in collider signal  $\chi_1^{\pm}, \tilde{\nu}_L \longrightarrow$  Difficult to accommodate in most models  $\tilde{t}_1$  (the lighter stop)  $\longrightarrow$  interesting signal, in a certain region of the parameter space

A. de Gouvea + S. Gopalakrishna + W. Porod,

2006

 $ilde{ au}_1$  (the lighter stau, dominated by  $ilde{ au}_R$ )

- $\longrightarrow$  allowed over a large region
- A charged track can be seen in the muon
- chamber-kinematically differentiable
  - S. K. Gupta + BM + S K Rai, PRD, 2007



Lifetime of stau NLSP against the universal gaugino mass parameter  $m_{1/2}$ .  $m_0=100~{\rm GeV}$ ,  $A=100~{\rm GeV}$ ,  $sgn(\mu)=1$ .

Supergravity theories with gravitino LSP J. Feng et al, 2003,2004, J. Ellis et al, 2004, A. Ibarra + S. Roy, 2006....

Supergravity theories with gravitino LSP J. Feng et al, 2003,2004, J. Ellis et al, 2004, A. Ibarra + S. Roy, 2006.... Gauge mediated SUSY breaking with a superlight gravitino D. Dicus + S. Nandi + B. Dutta, 1997,1998, J. Feng + T. Moroi, 1998 K. Cheung et al., 1998, P. Mercadante et al., 2001...

Supergravity theories with gravitino LSP J. Feng et al, 2003,2004, J. Ellis et al, 2004, A. Ibarra + S. Roy, 2006.... Gauge mediated SUSY breaking with a superlight gravitino D. Dicus + S. Nandi + B. Dutta, 1997,1998, J. Feng + T. Moroi, 1998 K. Cheung et al., 1998, P. Mercadante et al., 2001... MSSM with stau-neutralino near degeneracy (co-annihilation region) S. Ambrossanio et al., 1997, Gladyshev et al., 2005, T. Jittoh et al., 2006....

Supergravity theories with gravitino LSP J. Feng et al, 2003,2004, J. Ellis et al, 2004, A. Ibarra + S. Roy, 2006.... Gauge mediated SUSY breaking with a superlight gravitino D. Dicus + S. Nandi + B. Dutta, 1997,1998, J. Feng + T. Moroi, 1998 K. Cheung et al., 1998, P. Mercadante et al., 2001... **MSSM** with stau-neutralino near degeneracy (co-annihilation region) S. Ambrossanio et al., 1997, Gladyshev et al., 2005, T. Jittoh et al., 2006.... Supergravity with  $\tilde{\nu}_R$  LSP T. Ashaka + K. Ishiwata + T. Moroi, 2006, S. K. Gupta + BM + S. K. **Rai**, 2007

Jets + two muon-like stau tracks (equivalent of jets +  $p_T$  in MSSM)

Jets + dimuons + two muon-like stau tracks (equivalent of jets + dimuons +  $p_T$  in MSSM)

Differentiator: thickness of tracks, time delay, absorption in stoppers ....

**Observation: Kinematic separation of muonic** and stable stau tracks is possible at the LHC

#### Benchmark points in a SUGRA setting...

| Parameter                                   | Benchmark point 1                        | Benchmark point 2                        |
|---------------------------------------------|------------------------------------------|------------------------------------------|
|                                             | $m_0 = 100 \ GeV, \ m_{1/2} = 600 \ GeV$ | $m_0 = 110 \ GeV, \ m_{1/2} = 700 \ GeV$ |
| mSUGRA input                                | $A = 100~GeV,~sgn(\mu) = +$              | $A = 100 \ GeV, \ sgn(\mu) = +$          |
|                                             | $\tan \beta = 30$                        | $\tan\beta = 10$                         |
| $ \mu $                                     | 694                                      | 810                                      |
| $m_{	ilde{e_L}}, m_{	ilde{\mu}_L}$          | 420                                      | 486                                      |
| $m_{	ilde{e_R}}, m_{	ilde{\mu}_R}$          | 251                                      | 289                                      |
| $m_{	ilde{ u}_{eL}}, m_{	ilde{ u}_{\mu L}}$ | 412                                      | 479                                      |
| $m_{	ilde{ u}_{	au L}}$                     | 403                                      | 478                                      |
| $m_{	ilde{ u}_{iR}}$                        | 100                                      | 110                                      |
| $m_{	ilde{	au}_1}$                          | 187                                      | 281                                      |
| $m_{	ilde{	au}_2}$                          | 422                                      | 486                                      |
| $m_{\chi_1^0}$                              | 243                                      | 285                                      |
| $m_{\chi_0^0}^{\chi_1^0}$                   | 469                                      | 551                                      |
| $m_{\chi_2^0}$                              | 700                                      | 815                                      |
| $m_{\chi_4^0}^{\chi_3^0}$                   | 713                                      | 829                                      |
| $m_{\chi^{\pm}_{1}}$                        | 470                                      | 552                                      |
| $m_{\chi^{\pm}_2}$                          | 713                                      | 829                                      |
| $m_{	ilde{g}}$                              | 1366                                     | 1574                                     |
| $m_{	ilde{u}_L}, m_{	ilde{c}_L}$            | 1237                                     | 1424                                     |
| $m_{	ilde{u}_R}, m_{	ilde{c}_R}$            | 1193                                     | 1373                                     |
| $m_{	ilde{d}_I},m_{	ilde{s}_L}$             | 1239                                     | 1426                                     |
| $m_{\tilde{d}_R}^{-L}, m_{\tilde{s}_R}$     | 1189                                     | 1367                                     |
| $m_{\tilde{t}_1}$                           | 984                                      | 1137                                     |
| $m_{	ilde{t}_2}$                            | 1176                                     | 1365                                     |
| $m_{	ilde{b}_1}$                            | 1123                                     | 1330                                     |
| $m_{\tilde{b}_2}$                           | 1161                                     | 1358                                     |
| $m_{h^0}$                                   | 118                                      | 118                                      |
| $m_{H^0}$                                   | 712                                      | 941                                      |
| $m_{A^0}$                                   | 707                                      | 935                                      |
| $m_{H^{\pm}}$                               | 717                                      | 944                                      |

#### Jets + two tracks: signal vs background



Kinematic distributions for the signal 2 stau<sub>1</sub> + ( $\geq 2$ ) hard jets: (a) the transverse momentum distributions for the harder stau<sub>1</sub> (b) the invariant mass distribution for the stau<sub>1</sub> pair. The dash-dot-dash (red) histograms are for benchmark point 1 and the solid (blue) histogram for benchmark point 2. The dashed histograms show the corresponding SM background.

#### Jets + two tracks: signal vs background

| Cuts                            | Background | Benchmark point 1(2) |  |
|---------------------------------|------------|----------------------|--|
| Basic                           | 39617      | 8337 (1278)          |  |
| Basic $+ p_T > 350 \text{ GeV}$ | 5          | 2587 (737)           |  |

The expected number of events for the signal and background with the cuts imposed. Integrated luminosity =  $30 fb^{-1}$ .

Hardness cut on both tracks drastically reduces backgrounds

#### Jets + two $\mu$ 's + two tracks:



Distributions in the scalar sum of  $p_T$ 's of all tracks in the muon chamber.

#### Jets + two $\mu$ 's + two tracks:

| Final States                                  | Background | Benchmark pt. 1(2) |  |
|-----------------------------------------------|------------|--------------------|--|
| $2	ilde{	au}_1$ + 2 $\mu$                     | 83         | 689 (103)          |  |
| $2\tilde{\tau}_1 + 2\mu + (\geq 2)$ hard jets | 29         | 686 (103)          |  |
| $2\tilde{\tau}_1 + 2\mu + (\geq 2)$ hard jets | 0          | 553 (89)           |  |
| $(\sum p_T > 600 \text{ GeV})$                |            |                    |  |

The expected number of events for the signal and background with the different cuts imposed on the selection of events.  $\sum p_T$  corresponds to the scalar sum of the individual transverse momenta of the charged tracks in the muon chamber. Integrated luminosity =  $30 \ fb^{-1}$ .

Finding the answer to a basic question...

SUSY  $\Rightarrow$  dark matter candidate if  $\Delta L = 1$  (or L-violation by odd units) is forbidden (R-parity conserved)

However, seesaw mechanism (or Majorana

neutrino mass) requires  $\Delta L = 2$ 

Can SUSY suggest any underlying principle to justify this? BM + S. SenGupta + R. Srikanth H., 2006

## The proposal...

- Lepton number is a global quantum number
- shared by the hidden (i.e. SUSY breaking) and
- observable sectors
- Most SUSY breaking effects come from a chiral superfield S(L=0)
- But there is also a similar superfield  $\boldsymbol{X}(L=1)$
- **X** is like  $N_R$  (RH neutrino that will ultimately
- have a Majorana mass)

But X does not take part in Yukawa couplings if the superpotential is

$$W = \Lambda^{2}S + Y_{u}^{ij}Q_{i}U_{j}^{c}H_{2} + Y_{d}^{ij}Q_{i}D_{j}^{c}H_{1} + Y_{e}^{ij}L_{i}E_{j}^{c}H_{1} + Y_{\nu}^{ij}L_{i}N_{j}^{c}H_{2} + \frac{XX}{2M_{P}}N_{i}^{c}a_{ij}N_{j}^{c}, \qquad (0)$$

$$\Lambda \simeq \sqrt{(M_P M_{EW})}$$

 $\Rightarrow \text{Right-handed } (\Delta L = 2) \text{ neutrino mass} \sim \frac{(\langle X \rangle)^2}{M_P}$  $\Rightarrow \text{ After seesaw mechanism, } m_{\nu} \sim 10^{-1} \text{ eV if } \langle X \rangle \sim \Lambda,$  $m(Dirac)_{\nu} = O(\text{MeV})$ 

#### The Kahler potential...

 $\mathcal{L} = \int K d^4\theta + (\int W d^2\theta + \text{h.c.})$ 

$$K = K_0(S, S^{\dagger}, XX^{\dagger}) + \sum_i K_{\Phi_i}(S, S^{\dagger}) \Phi_i^{\dagger} \Phi_i$$
$$+ \left( K_1(S, S^{\dagger}) H_1 H_2 + \text{h.c.} \right).$$

 $K_0$  is enough to ensure our effects– a near-minimal structure except for a term  $S^{\dagger}SX^{\dagger}X$  $K_1$  allows the generation of the  $\mu$ (Higgsino mass)-parameter  $\sim \langle F_S \rangle / M_P$ 

No  $\Delta L = 1$  term (also forbidden by R-symmetry) X and N have different R-charges

#### The scalar potential

$$V = M_P^4 e^G [M_P^2 G_M K^{M\bar{N}} G_{\bar{N}} - 3]$$

#### where

$$G = \frac{K}{M_P^2} + \ln \left| \frac{W}{M_P^3} \right|^2$$

 $V_{\text{total}} = V_0 + V_1 + V_D$ 

$$V_{0} = e^{K/M_{P}^{2}} \left[ K_{0}^{S\bar{S}} \Lambda^{4} \left( 1 + \frac{S\partial_{S}K_{0}}{M_{P}^{2}} \right) \left( 1 + \frac{S\partial_{S}K_{0}}{M_{P}^{2}} \right)^{*} + K_{0}^{X\bar{X}} \Lambda^{4} \frac{(S\partial_{X}K_{0})(S\partial_{X}K_{0})^{*}}{M_{P}^{4}} - 3\Lambda^{4} \frac{SS^{*}}{M_{P}^{2}} + \left( K_{0}^{X\bar{S}} \Lambda^{4} \frac{S\partial_{X}K_{0}}{M_{P}^{2}} \left( 1 + \frac{S\partial_{S}K_{0}}{M_{P}^{2}} \right)^{*} + \text{h.c.} \right) \right]$$

$$\begin{split} V_{1} &= e^{K/M_{P}^{2}} \left[ \left( \frac{\partial W_{0}}{\partial \Phi_{i}} \right)^{*} \frac{\partial W_{0}}{\partial \Phi_{i}} + m_{0}^{2}(S,S^{*}) \Phi_{i}^{*} \Phi_{i} \right. \\ &+ M_{h}^{2}(S,S^{*})(H_{1}^{*}H_{1} + H_{2}^{*}H_{2}) + (-B_{\mu}(S,S^{*})H_{1}H_{2} \right. \\ &+ A_{h}(S,S^{*})(\frac{\partial W_{0}}{\partial H_{1}}H_{2}^{*} - \frac{\partial W_{0}}{\partial H_{2}}H_{1}^{*}) + A_{2}(S,S^{*})W_{0} \\ &+ A_{1}(S,S^{*})\frac{\partial W_{0}}{\partial \Phi_{i}} \Phi_{i} + B_{N}(S,S^{*},X,X^{*})\tilde{N}_{i}^{c}a_{ij}\tilde{N}_{j}^{c} \\ &+ \frac{X^{*}X^{*}}{M_{P}}\frac{\partial W_{0}}{\partial \tilde{N}_{i}^{c}}a_{ij}\tilde{N}_{j}^{c*} + \frac{XXX^{*}X^{*}}{2M_{P}^{2}}a_{ij}a_{ik}\tilde{N}_{j}^{c}\tilde{N}_{k}^{c*} \\ &+ \mathrm{h.c.}] \, , \end{split}$$

#### With

$$\langle S \rangle \simeq M_P, \langle F_S \rangle \simeq \Lambda$$
  
 $\langle X \rangle \simeq \Lambda, \langle F_X \rangle = 0$   
 $\langle \tilde{N} \rangle \simeq 0$  (choice of  $a_{ij}$  ensures this)

#### **One has**

- All SUSY-breaking masses  $\simeq$  TeV
- A vanishing cosmological constant
- $\bullet$  Lifetime of lightest neutralino  $\gtrsim$  age of the universe

#### Low-energy SUSY parameters...

| Parameter | Source                                       | Order of      |
|-----------|----------------------------------------------|---------------|
|           |                                              | magnitude     |
| $m_0^2$   | $m_0^2(S,S^*)$ in $V_1$                      | ${\sf TeV}^2$ |
| A         | $A_1(S, S^*), \ A_2(S, S^*) \text{ in } V_1$ | TeV           |
| $B_{\mu}$ | $B_\mu(S,S^*)$ in $V_1$                      | ${\sf TeV}^2$ |
| $\mu$     | $M_h \sim \frac{F_S}{M_P}$ from $K_1$        | TeV           |
| $m_{1/2}$ | $\frac{F_S}{M_P}$ from gauge kinetic terms   | TeV           |

The different parameters of low energy SUSY and their sources.

#### **Summary and Conclusions**

- Right-handed neutrinos are not so innocent!
- They not only provide neutrino masses
  - but also affect the mysteries of the TeV scale in very novel fashions.

#### **Summary and Conclusions**

- Right-handed neutrinos are not so innocent!
- They not only provide neutrino masses

but also affect the mysteries of the TeV scale in very novel fashions.

• These dogs may not bark, but they can bite!