Looking for New Physics in the b-Quark System

Dmitri Tsybychev SUNY at Stony Brook On behalf of DØ Collaboration Wine and Cheese Seminar October 19, 2007

Outline

Introduction

- B_s system
 - Mixing and related quantities
- Direct CP violation in $B^+ \rightarrow J/\psi K^+$
- Summary

The CKM Matrix

Quark Weak *≠* Mass Eigenstates

$$L = \frac{g}{\sqrt{2}} \left(\overline{u, c, t} \right)_{L} V_{CKM} \gamma_{\mu} \left(\begin{array}{c} a \\ s \\ b \end{array} \right)_{L} W^{\mu} + h.c.$$

(d)

S

 $= \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{d} & V_{ts} & V_{tb} \end{bmatrix}$

- \Rightarrow CKM Mixing Matrix
 - 3 angles
 - 1 complex phase \Rightarrow CP-violation $\mathbf{\xi}$
 - CPV requires $m(q_i) \neq m(q_i)$
 - CPV in SM is not enough to account
 - for baryon density

 \Rightarrow Unitary:

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

Jass

Unitarity Triangle

• Vector sum in complex plane

- In SM, has to be closed $(\alpha+\beta+\gamma=180^{\circ})$
- Area of triangle indicates
 CP violation in SM due to
 CKM "non-flat" → η≠0.
 - Measure all sides
- Measure all angles
- Are they consistent?

• Dominant theoretical uncertainties cancel in the ratio \Rightarrow

 $\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s} f_{B_s}^2 B_{B_s}}{m_{B_d} f_{B_d}^2 B_{B_d}} \cdot \left| \frac{V_{ts}}{V_{td}} \right|^2$

Smaller uncertainty

Measure Δm_s

Fermilab W&C

The CKM Triangle (2005)

Δm_s and V_{td}

Rule out large new physics effects: DØ Collab. PRL 97 021802 (2006) Precision SM measurement: CDF Collab. PRL 97 242003 (2006)

History of Mixing

- Particle ↔ antiparticle oscillation was first pointed out by Gell-Mann and Pais in 1955 (Phys. Rev. 97,1387 (1955))
- Mixing in K0 system
- → charm quark discovery of CP violation third generation
- Mixing in Bd system
- \rightarrow early indication of a heavy top
- Mixing in neutrino system \rightarrow neutrinos are massive
- Mixing in the Bs system \rightarrow new physics ?

 Light and heavy B meson mass eigenstates differ from flavor eigenstates:

 $\widehat{H} \begin{pmatrix} B^{0} \\ \overline{B}^{0} \end{pmatrix} = \begin{pmatrix} M - \frac{i\Gamma}{2} & M_{12} - \frac{i\Gamma_{12}}{2} \\ M_{12}^{*} - \frac{i\Gamma_{12}^{*}}{2} & M - \frac{i\Gamma}{2} \end{pmatrix} \begin{pmatrix} B^{0} \\ \overline{B}^{0} \end{pmatrix}$ $\left| \mathbf{B}_{\mathrm{L}} \right\rangle = p \left| \mathbf{B}^{0} \right\rangle + q \left| \overline{\mathbf{B}}^{0} \right\rangle$ $|\mathbf{B}_{H}\rangle = p|\mathbf{B}^{0}\rangle - q|\overline{\mathbf{B}}^{0}\rangle$ $\Delta m_s = M_H - M_L \cong 2|M_{12}|$ $\Delta \Gamma_{s} = \Gamma_{L} - \Gamma_{H} \cong 2 |\Gamma_{12}| \cos \varphi_{s}$ Measure all four at Tevatron $\varphi_s = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right); \quad A_{SL} = Im\frac{\Gamma_{12}}{M_{12}} = \left|\frac{\Gamma_{12}}{M_{12}}\right| \sin\varphi_s$

Standard Model and New Physics

- Γ_{12}^{s} governs decays (tree level)
 - Not sensitive to New Physics
- $B_s^0 \bullet M_{12}^s$ governs oscillations(loop level)
 - Sensitive to New Physics
 - New CP-violating phase

$$\bullet \phi_{s} = \phi_{s}^{SM} + \phi^{NP}$$

•
$$M_{12}^{s} = M_{12}^{SM} \cdot \Delta_{s}, \quad \Delta_{s} = |\Delta_{s}| e^{i\phi NP}$$

- \bullet Reduced Δm_{s}
- $\Delta_s=1$ in SM
- $\Delta \Gamma_{s} = \Delta \Gamma_{s}^{SM} |\cos \phi_{s}|$
 - Reduced width

Fermilab W&C

B_{s}^{0} - \overline{B}_{s}^{0} Mixing

$$P(B \to B) = \frac{e^{-\Gamma t}}{2} \left(\cosh \frac{\Delta \Gamma t}{2} + \cos \Delta m t \right)$$
$$P\left(B \to \overline{B}\right) = \frac{e^{-\Gamma t}}{2} \left(\cosh \frac{\Delta \Gamma t}{2} - \cos \Delta m t \right)$$

• Assume $\Delta\Gamma=0$

$$P_{u,m}(t) = \frac{1}{2} \Gamma e^{-\Gamma t} \left(1 \pm \cos \Delta m t \right)$$

 ∆m_s large → measurement experimentally very challenging

$B_{s}^{0}-\overline{B}_{s}^{0}$ Oscillations Measurement

$$A(t_{B_s}) = \frac{N^{non-osc}(t_{B_s}) - N^{osc}(t_{B_s})}{N^{non-osc}(t_{B_s}) + N^{osc}(t_{B_s})} \propto \cos(\Delta m_s \cdot t_{B_s})$$

Analysis Overview

- Select final states suitable for the ∆m_s measurement
 - Flavor specific decays
- Determine proper decay time: ct =m_{Bs}L_{xy}/p_T
 Resolution
- Tag mixed and unmixed
 - Tag B_s meson flavor at production time (initial state)
- Fit for Δm_s

Effect of Flavor Tagging

Effect of Resolution

• Proper decay time resolution has contribution from decay length (L_T) and boost

Analysis Strategy

Significance of Observation

$$S(\Delta m, \sigma_t) = \sqrt{\frac{\varepsilon D^2}{2}} \frac{S}{\sqrt{S+B}} \times e^{-(\Delta m \sigma_t)^2/2}$$

Add more data (S-number of signal events, B- background)
 Additional channels

- $B_s \rightarrow D_s \pi X$, $D_s \rightarrow \phi \pi$ New!
- $B_s \rightarrow D_s \mu \nu X$, $D_s \rightarrow \phi \pi$
- $B_s \rightarrow D_s \mu \nu X$, $D_s \rightarrow K^*K$
- $B_s \rightarrow D_s ev X$, $D_s \rightarrow \phi \pi$
- $B_s \rightarrow D_s \mu \nu X$, $D_s \rightarrow K_s K$

• Improve decay length resolution (σ_t)

Improve initial state flavor tagging (εD²-tagging power)

Tevatron and DØ Detector

Excellent Tevatron Performance

DØ Detector

- Excellent coverage of Tracking and Muon Systems (|η|<2)
- Excellent vertex resolution
- 2T Solenoid, Toroid magnets
 - Polarity reversed bi-weekly !
 - Unique feature to DØ

Signals transferred to readout chips using low mass analog cables

48 modules mounted on carbon fiber support structure

Four silicon sensor types provide 98.4% of acceptance

SVX4 readout chips

Layer 0

Installed inside existing DØ silicon detector

- First sensor at r=16 mm
- Outstanding noise performance for this type of device
 - ~1.7 ADC
 - Signal/Noise ~ 18

B_s Candidate Selection

Select B_s candidate

• Example $B_s \rightarrow I(\pi)D_s X$

- Combine two oppositely-charged tracks into $\phi \rightarrow KK$
 - Add third track (π) to form D_s
- Form B_s candidate:
 - Semileptonic decay - add lepton
 - Hadronic decay add pion

High track multiplicity per event

Samples

Hadronic samples

- Small BR, Low yield
- No dedicated trigger
- Good cτ resolution

• Semileptonic samples

- Large BR, high event yield
- Clean trigger
- Poorer cτ resolution, due to missing neutrino

Proper Decay Length (Partially Reconstructed Decays)

- Proper Decay Length is determined from the Visible Proper Decay Length
- K-factor takes into account the escaping neutrino and other missing particles
 - From MC for each decay mode

 $x^{M} = m_{B_{s}} \cdot \frac{\left(\vec{L}_{T} \cdot \vec{p}_{T}^{D_{s}\mu}\right)}{\left(p_{T}^{D_{s}\mu}\right)^{2}}$ $ct = x^M K$ \leftarrow $K = p_T^{D_s \mu}$

Initial State Flavor Tagging

Opposite Side Tagging (OST)

PRD 74, 112002 (2006)

- Independent from the reconstructed B side (B_u, B_d, B_s)
 - Rely on fact that b produced as banti b pair
- Construct P.D.Fs using $B^0_d \rightarrow \mu \nu D^*X$ sample with VPDL = [0-0.050] μm
 - 96% pure
 - Subtract background using wrong sign combination
- Measure dilutions in large $B^0{}_d \rightarrow \mu\nu D^*X$ and $B^{\pm} \rightarrow \mu\nu D^0X$ samples

Same Side Tagging (SST)

DØ Run II Preliminary

- Depends on B-hadron species
 No direct transfer B⁺, B⁰ → B_s
- Predict SST dilution using MC
 No PID 🙁
- Use kinematic variables ΔR , p_T^{rel} ,
- To verify compare data and MC with known flavor for individual taggers and combination

• i.e. $B^+ \rightarrow J/\psi K^+$

Combined Tagger

- Combine OST and SST if both present
 - Assume both independent
- Combine SST and "Event charge" if both present
 - Σq_i of all tracks on opposite side

DØ Run II Preliminary

Tagger	ϵD^2
Comb. SST	$1.7\pm0.6\%$
Comb. OST without Evt. Charge	$2.5\pm0.2\%$
Evt. Charge	$1.5\pm0.5\%$
All	$4.5\pm0.9\%$

Amplitude Method

 $p_s^{nos/osc} \sim (1 \pm \mathcal{D} \cos(\Delta m_s \cdot Kx/c) \cdot \mathcal{A})$

- Scan Δm_s , for each value find $\mathcal{A} \pm \sigma_A$
 - Fit of proper decay length distribution for mixed and unmixed B_s using unbinned likelihood
- If mixing signal with Δm_s , amplitude $\mathcal{A} = 1$ (statistically significant) otherwise $\mathcal{A} = 0$

∧m (ps)

∆m_s (ps⁻¹)

Systematics

- Vary each source separately within uncertainty
- Incorporate systematics as $\sigma^{sys}=\Delta A+(1-A)\Delta\sigma_A/\sigma_A$
- Consider following sources:
 - Dilution
 - K-factors
 - VPDL model
 - Mass fit model
 - Sample composition
 - Background description
- Systematic uncertainties are small compared to statistical

Results

Ldt =2.4 fb⁻¹

∆(log L) = -4.71

 $\Delta(m_s) = 18.52 \pm 0.91$

18 20 22 24 26 28 30

 $\Delta m_s (ps^{-1})$

 $\Delta m_s = 18.5 \pm 0.9 \text{ ps}^{-1}$

16

14

Other Parameters: $\Delta \Gamma_s$ and ϕ_s

Charge Asymmetry and ϕ_s

• Measurement of the charge asymmetry induced by B_s mixing

$$A_{SL}^{\mu\mu}(tag) = \frac{N(\mu^{+}\mu^{+}) - N(\mu^{-}\mu^{-})}{N(\mu^{+}\mu^{+}) + N(\mu^{-}\mu^{-})} = \frac{1}{4f} \left[A_{SL}^{d} + \frac{f_{s}\chi_{s0}}{f_{d}\chi_{d0}} A_{SL}^{s} \right] = 2A_{SL}(untagged)$$

 $A_{SL}(B_s) = 0.006 \pm 0.010$

Charge asymmetry in semileptonic $B_s \Delta \Gamma_c \tan \phi_c = 0.02 \pm 0.16 \text{ ps}^2$

Fermilab W&C

 $a_{SL}^{s} = 0.0001 \pm 0.0090$

B_s Lifetime Difference

- Measure lifetime in $B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$
 - Pseudoscalar \rightarrow Vector Vector
- The mass eigenstates are expected to be almost pure CP-eigenstates
 - S,D (CP even): linear combination of A₀,
 A₁₁
 - P (CP odd): A₁

cosθ=transversity

J/W rest frame

 $\Delta \Gamma_{\rm s}$ and $\phi_{\rm s}$ in $B_{\rm s} \rightarrow J/\psi \phi$

 Simultaneous fit of mass, lifetimes, time-dependent angular distributions to extract ΔΓ_s and φ_s

Fermilab W&C

$\Delta m_{s}, \Delta \Gamma_{s} \text{ and } \varphi_{s}$

 Measured all three parameters that characterize B_s system at DØ

 $\Delta m_s = 18.5 \pm 0.9 \text{ ps}^{-1}$ $\Delta \Gamma_s = 0.13 \pm 0.09 \text{ ps}^{-1}$ $\phi_s = -0.70^{+0.47}_{-0.39}$ $a_{SL}^s = 0.0001 \pm 0.0090$

$\Delta m_s, \Delta \overline{\Gamma}_s$ and ϕ_s

Need more data!

Direct CP Violation in $B^+ \rightarrow J/\psi K^+$

Hints for New Physics?

CP Asymmetry in Charmless B Decays

$$A_{CP}(B^+ \to J/\psi K^+) = \frac{N(J/\psi K^-) - N(J/\psi K^+)}{N(J/\psi K^-) + N(J/\psi K^+)}$$

- Standard Model predicts W. Hou et al. hep-ph/060508 $A_{CP}(B^+ \rightarrow J/\psi K^+) \approx 0.003$
- Beyond the Standard Model can be enhanced due to new couplings at tree level:
 - Four Generation Models
 - Flavor-changing Z' between b and s
 - Charged Higgs

Method

 $n_{q}^{\beta\gamma} = \frac{1}{N} \mathcal{E}^{\beta} (1 + q \mathcal{A}_{fb}) (1 + \gamma \mathcal{A}_{NS}) (1 + \gamma \mathcal{A}_{NS}) (1 + q \beta \mathcal{A}_{ro}) (1 + \beta \mathcal{A}_{\beta\gamma}) (1 + q \beta \mathcal{A}_{q\beta})$

- If N total number of events
- ϵ^{β} fraction of events with solenoid polarity

then #events with specific:

- particle charge q
- sign of particle pseudorapidity γ

- depends on asymmetries:
 - charge the one we are after(A)
 - forward-backward (A_{fb})
 - North-South (detector material) (A_{NS})
- range out (A_{ro})

• solenoid polarity ~eta~

• the remaining two complete the system

To consistently account for correlations and errors:

- Divide sample into 8 subsamples according to the signs of $\beta,\!\gamma$ and q
- In each subsample extract $n_q^{\beta\gamma}$ by unbinned likelihood fit
- Solve 8 simultaneous equations for N, ${\mathcal E}^{\,\beta}$, and asymmetries

8 Subsamples

DATA

J/ψK

···· J/wa

++-

5.3 5.4 5.5 5.6 5.7 5.4

---- J/vKX

- EXP BKG

TOT FIT

m(J/uK), GeV/c

Asymmetries are small – look similar

βγq:pmp

3,376±57

βγq:ppm

1000

400

200

4.9

5.1 5.2

3,546±59

- DATA

3,399±57

D0 Preliminary, 1.6 fb⁻¹

3,369±57

3,626±59

3,565±59

Fermilab W&C

Detector systematics

Polarity reversal significantly reduces systematics from detector asymmetries

D* Extraction

D. Tsybychev

Fermilab W&C

D* Extraction

ð

Kaon Asymmetry

Results

DØ Run II Preliminary

	$J/\psi K$	$J/\psi\pi$	$J/\psi KX$	BKG
N	$27,694\pm202$	$1,097\pm94$	$3,763\pm180$	$21,926\pm171$
ϵ^+	0.4871 ± 0.0036	0.5368 ± 0.0586	0.5053 ± 0.0198	0.4747 ± 0.0038
A	-0.0072 ± 0.0073	-0.1890 ± 0.1168	0.0035 ± 0.0498	-0.0075 ± 0.0160
A_{fb}	-0.0009 ± 0.0073	0.2192 ± 0.1160	0.0089 ± 0.0494	-0.0285 ± 0.0160
A_{det}	-0.0081 ± 0.0073	0.3333 ± 0.1060	0.0590 ± 0.0497	-0.0196 ± 0.0160
$A_{q\beta\gamma}$	0.0006 ± 0.0073	0.0354 ± 0.1228	0.0571 ± 0.0497	-0.0065 ± 0.0160
$A_{q\beta}$	0.0027 ± 0.0073	-0.2307 ± 0.1170	-0.0176 ± 0.0498	0.0319 ± 0.0160
$A_{\beta\gamma}$	0.0045 ± 0.0073	-0.0027 ± 0.1145	0.0335 ± 0.0496	-0.0071 ± 0.0160

 $A_{K} = 0.0139 \pm 0.0013(stat) \pm 0.0004(syst)$

 $A_{CP}(B^+ \rightarrow J/\psi(1S) K^+) = +0.0067 \pm 0.0074(stat) \pm 0.0026(syst)$

Systematics

- From J/ψKX: repeat the analysis with fraction of J/ψKX fixed to 0
- From A(J/ψπ), A(J/ψKX):
 - Repeat the analysis with A(J/ψπ), A(J/ψKX) artificially suppressed by fixing the ratios:
 - $R = (J/\psi \pi fraction)/(BKG fraction), (J/\psi KX fraction)/(BKG fraction)$
- In every subsample to the value determined from the fit in the total sample

Fixing	$A(J/\psi K)$	$A(J/\psi\pi)$	$\mathcal{A}(J/\psi K^*)$	A(BKG)	
$J/\psi K^*$ fraction $\rightarrow 0$	-0.0079	-0.2098	_	0.0043	
$R_{J/\psi\pi} \rightarrow$ "all" value	-0.0078	0.0488	-0.0581	0.0198	
$R_{J/\psi K^*} \rightarrow$ "all" value	-0.0077	-0.1847	0.0035	0.0041	
$R_{J/\psi\pi}, R_{J/\psi K^*} \rightarrow$ "all" value	-0.0098	-0.0086	0.0077	0.0076	
this deviates maximally from the nominal					
A = -0.007	72				
	· <u> </u>				

Fermilab W&C

DØ Run II Preliminary

$A_{CP}(B^+ \rightarrow J/\psi(1S)K^+)$	PDG-2007 pre new DØ				
VALUE	DOCUMENT ID		TECN	COMMENT	
0.015±0.017 OUR AVERAGE	E Error includes scale factor of 1.2.				
$0.030 \pm 0.014 \pm 0.010$	⁶³⁶ AUBERT	05J	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$-0.026\!\pm\!0.022\!\pm\!0.017$	ABE	0 3B	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$0.018\!\pm\!0.043\!\pm\!0.004$	⁶³⁷ BONVICINI	00	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$

 $A_{CP}(B^+ \to J/\psi(1S) \ K^+) = + 0.0067 \pm 0.0074(stat) \pm 0.0026(syst)$ World's most precise!

- Systematic uncertainties are small
 - Room for improvement
 - Need more data!

Summary

- Presented today new Δm_s and $A_{CP}(B^+ \rightarrow J/\psi K^+)$
 - Measured all three parameters that characterize B_s system
 - No significant deviations from the SM are observed
 - All results are statistics limited
- Looking forward to collecting more data
 - Expected quick turn around as we collect data
 - Very exciting time to be at Tevatron experiments