Up: Main Previous: Acknowledgements


References

1
P. Hirsch, J.D. Birchall, D.D. Double, A. Kelly, G.K. Moir, and C.D. Pomeroy, Technology in the 1990's: Developments in the science and technology of hydraulic cements, Phil. Trans. Roy. Soc. Lond. 310, 1-207 (1983).
2
R.L. Coble and W.D. Kingery, Effect of porosity on physical properties of sintered alumina, J. Amer. Ceram. Soc. 39, 377-385 (1956).
3
J. Rodel and A.M. Glaeser, Production of controlled-morphology pore arrays: Implications and opportunities, J. Amer. Ceram. Soc. 70, C172-C175 (1987).
4
R.L. Johnson, J.A. Cherry, and J.F. Pankow, Diffusive contaminant transport in natural clay: A field example and implications for clay-lined waste disposal sites, Environ. Sci. Technol. 23, 340-349 (1989).
5
R.L. Smith and S.D. Collins, Porous silicon formation mechanisms, J. Appl. Phys. 71, R1-R2 (1992).
6
F.A.L.Dullien, Porous Media: Fluid Transport and Pore Structure 2nd Edition(Academic Press, San Diego, 1992).
7
M. Sahimi, Transport, reaction, and fragmentation in evolving porous media, Phys. Rev. A 43, 5367-5376 (1991).
8
M. Sahimi, Flow and Transport in Porous Media and Fractured Rock (VCH, New York, 1996).
9
(a) M.A. Biot, Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys. 33, 1482-1498 (1962); (b) M.A. Biot, Generalized theory of acoustic propagation in porous dissipative media, J. Acoust. Soc. Am. 34, 1254-1264 (1962).
10
E.J. Garboczi, Mercury porosimetry and effective networks for transport calculations in porous media, Powder Tech. 67, 121-130 (1991).
11
B.E. Hornby, L.M. Schwartz, and J.A. Hudson, Anisotropic effective-medium modeling of the elastic properties of shales, Geophysics 59, 1570-1583 (1994).
12
K.A. Snyder, E.J. Garboczi, and A.R. Day, The elastic moduli of random two-phase composites: Computer simulation and effective medium theory, J. Appl. Phys. 72, 5948-5955 (1992).
13
C. Kittel, Introduction to Solid State Physics 5th Edition (John Wiley and Sons, New York, 1979).
14
E.J. Garboczi, M.F. Thorpe, M.S. DeVries, and A.R. Day, Universal conductivity curve for a plane containing random holes, Phys. Rev. A 43, 6473-6482 (1991).
15
N.Martys and E.J. Garboczi, Length scales relating the fluid permeability and electrical conductivity in random two-dimensional model porous media, Phys. Rev. B 46, 6080-6090 (1992).
16
J. Berryman, E. Garboczi, and N. Martys, unpublished.
17
B. Lu and S. Torquato, Local volume fraction fluctuations in heterogeneous media, J. Chem. Phys. 93, 3452-3459 (1990).
18
K.R. Castleman, Digital Image Processing (Prentice- Hall, Englewood Cliffs, 1981).
19
E.E. Underwood, Quantitative Stereology (Addison -Wesley, Reading, Massachusetts, 1970).
20
R.T. DeHoff and F.N. Rhines, Quantitative Microscopy (McGraw-Hill, New York, 1968).
21
John C. Russ, The Image Processing Handbook (CRC Press, Cleveland, 1994).
22
V. Cantoni, S. Levialdi, and G. Musso, eds. Image Analysis and Processing (Plenum Press, New York, 1986).
23
J. Serra, Image Analysis and Mathematical Morphology (Academic Press, London, 1982); J. Serra, Image Analysis and Mathematical Morphology Volume II: Theoretical Advances(Academic Press, London, 1988).
24
B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman and Company, New York, 1983).
25
P. Wong, The statistical physics of sedimentary rock, Phys. Today 41, 24-25 (1988).
26
P. Wong, Scattering by inhomogeneous systems with rough internal surfaces: Porous solids and random-field Ising systems, Phys. Rev. B 32, 7417-7424 (1985).
27
P. Wong and A.J. Bray, Small-angle scattering by rough and fractal surfaces, J. Appl. Cryst. 21, 786-794 (1988).
28
P. Wong and Q. Cao, Correlation function and structure factor for a mass fractal bounded by a surface fractal, Phys. Rev. B 45, 7627-7632 (1992).
29
H.E. Stanley and N. Ostrowsky, eds., Random Fluctuations and Pattern Growth (Kluwer Academic Publilshers, Dordrecht, 1988).
30
T. Vicsek, Fractal Growth Phenomena (World Scientific, Singapore, 1989).
31
F. Family and T. Vicsek, eds., Dynamics of Fractal Surfaces (World Scientific, Singapore, 1991).
32
J. Feder, Fractals (Plenum, New York, 1988).
33
A.H. Thompson, A.J. Katz,, and C.E. Krohn, The microgeometry and transport properties of sedimentary rock, Adv. in Phys. 36, 625-694 (1987).
34
D.W. Schaefer and K.D. Keefer, Structure of random porous materials: Silica aerogel, Phys. Rev. Letts. 56, 2199-2202 (1986).
35
D.N. Winslow, J.M. Bukowski, and J.F. Young, The fractal arrangement of hydrated cement paste, Cement and Concrete Research 25 (1), 147-156, 1995.
36
R. Lemaitre and P.M. Adler, Fractal Porous Media IV: Three-dimensional Stokes flow through random media and regular fractals, Transport in Porous Media 5, 325-340 (1990).
37
J.K. Williams and R.A. Dawe, Fractals -- An overview of potential applications to transport in porous media, Transport in Porous Media 1, 201-209 (1986).
38
S. Torquato and G. Stell, J. Chem. Phys. 79, 1505 (1983).
39
J.G. Berryman, Measurement of spatial correlation functions using image processing techniques, J. Appl. Phys. 57, 2374-2384 (1985).
40
P. Debye, H.R. Anderson, and H. Brumberger, J. Appl. Phys. 28,679 (1957).
41
J.G. Berryman, Relationship between specific surface area and spatial correlation functions for anisotropic porous media, J. Math. Phys. 28, 244-245 (1987).
42
J.G. Berryman and S.C. Blair, Use of digital image analysis to estimate fluid permeability of porous materials: Application of two-point correlation functions, J. Appl. Phys. 60, 1930-1938 (1986).
43
D.A. Coker and S. Torquato, Extraction of morphological quantities from a digitized medium, J. Appl. Phys. 77, 6087-6099 (1995).
44
D.A. Coker and S. Torquato, Simulation of diffusion and trapping in digitized heterogeneous media, J. Appl. Phys. 77, 955-964 (1995).
45
S. Torquato, Random heterogeneous media: Microstructure and improved bounds on effective properties, Appl. Mech. Rev. 44, 37-76 (1991).
46
Z. Hashin, Analysis of composite materials: A Survey, J. Appl. Mech. 50, 481-505 (1983).
47
W.F. Brown, Solid mixture permitivitties, J. Chem. Phys. 23, 1514-1517 (1955).
48
S. Torquato, Effective stiffness tensor of composite media --I. Exact series expansions, J. Mech. Phys. Solids 45, 1421-1448 (1997).
49
J.G. Berryman and G.W. Milton, Normalization constraint for variational bounds on fluid permeability, J. Chem. Phys. 83, 754-760 (1985).
50
J. Rubinstein and S. Torquato, J. Fluid Mech. 206, 25-46 (1989).
51
S. Torquato, Relationship between permeability and diffusion- controlled trapping constant of porous media, Phys. Rev. Letts. 64, 2644- 2646 (1990).
52
M. Avellaneda and S. Torquato, Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media, Phys. Fluids A 3, 2529-2540 (1991).
53
D. Stauffer, Percolation Theory (Taylor and Francis, London, 1985).
54
D.P. Bentz and E.J. Garboczi, Percolation of phases in a three-dimensional cement paste microstructural model, Cem. Conc. Res. 21, 325-344 (1991).
55
R. Zallen, The Physics of Amorphous Solids (J. Wiley and Sons, New York, 1983), Chapter 4.
56
N.S. Martys, S. Torquato, and D.P. Bentz, Universal Scaling of Fluid Permeability for Sphere Packings, Phys. Rev. E, 50 (1), 403-408, 1994 (PDF version).
57
E.J. Garboczi, Finite element and finite difference codes for computing the linear electrical and elastic properties of digital images of random materials, National Institute of Standards and Technology Internal Report 6269 (1998).
58
M.J. Graf, C.A. Huber, T.E. Huber, and A.P. Salzberg, Indium-impregnated porous glass: Magnetotransport and superconducting transition, in MRS Proc. Vol. 195 Physical Phenomena in Granular Materials, edited by G.D. Cody, T.H. Geballe, and P. Sheng, pp. 397-402.
59
K. Kendall, Electrical conductivity of ceramic powders and pigments, Powder Technology 62, 1147-154 (1990).
60
C.B. Millikan, On the steady motion of viscous, incompressibole fluids; with particular reference to a variation principle, Phil. Mag. S. 7. 7, 641-662 (1929).
61
H. Helmholtz, Wiss. Abh. 1, 223-230 (1868); J.B. Keller, L.A. Rubenfeld, and J.E. Molyneux, Extremum principles for slow viscous flows with applications to suspensions, J. Fluid Mech. 30, 97-125 (1967).
62
E.J. Garboczi and D.P. Bentz, Computer simulation of the diffusivity of cement-based materials, J. Mater. Sci. 27, 2083-2092 (1992).
63
M.A. Ioannidis, M.J. Dwiecien, and I. Chatzis, Electrical conductivity and percolation aspects of statistically homogeneous porous media, Transport in Porous Media 29, 61-83 (1997).
64
A.E. Scheidegger, The Physics of Flow Through Porous Media,(University of Toronto Press, Toronto, 1974).
65
R. Peyret and T.D. Taylor, Computational Methods for Fluid Flow (Springer-Verlag, New York, 1983).
66
L.M. Schwartz, N.S. Martys, D.P. Bentz, E.J. Garboczi, and S. Torquato, Cross property relations and permeability estimation in model porous media, Phys. Rev. E 48, 4584-4591 (1993).
67
S. Whitaker, Flow in porous media: A theoretical derivation of Darcy's law, Trans. Porous Media 1, 3 (1986).
68
D.L. Johnson, J. Koplik, and L.M. Schwartz, Phys. Rev. Letts. 57, 2564 (1986).
69
A.J. Katz and A.H. Thompson, Phys. Revv. B 34, 8179 (1986); J. Geopys. Res. 92, 599 (1987).
70
L.D. Landau and E.M. Lifshitz, Theory of Elasticity, 3rd Ed. (Pergamon Press, Oxford, 1986).
71
J. Poutet, D. Manzoni, F. Hage-Chehade, C.J. Jacquin, M.J. Bouoteca, J.-F. Thovert, and P.M. Adler, The effective mechanical properties of reconstructed porous media, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 33, 409-15 (1996); J. Poutet, D. Manzoni, F. Hage-Chehade, C.J. Jacquin, M.J. Bouoteca, J.-F. Thovert, and P.M. Adler, The effective mechanical properties of random porous media, J. Mech. Phys. Solids 44, 1587-1620 (1996).
72
E.J. Garboczi and A.R. Day, An algorithm for computing the effective linear elastic properties of heterogeneous materials: 3-D results for composites with equal phase Poisson's ratios, J. Phys. Mech. Solids 43, 1349-1362 (1995).
73
R.D. Cook, D.S. Malkus, and M.E. Plesha, Concepts and Applications of Finite Element Analysis, 3rd Edition (J. Wiley and Sons, New York, 1989).
74
S.P. Timoshenko and J.N. Goodier, Theory of Elasticity 3rd Ed. (McGraw-Hill Book Co., New York, 1970), 90-97.
75
D.P. Bentz, E.J. Garboczi and D.A. Quenard, Modelling drying shrinkage in porous materials using image reconstruction: Application to porous Vycor glass, Model. and Sim. in Mater. Sci. and Eng. 6, 211-236, (1998).
76
E.J. Garboczi and D.P. Bentz, Digitized simulation of mercury intrusion porosimetry, Ceramics Trans. 16, 365-379 (1991).
77
J.A. Lewis, M.A. Galler, and D.P. Bentz, Computer simulation of binder removal from 2-D and 3-D model particulate bodies, J. Amer. Ceram. Soc. 79, 1377-1388 (1996).
78
D.P. Bentz, D.A. Quenard, V. Baroghel-Bouny, E.J. Garboczi, and H.M. Jennings, Modelling drying shrinkage of cement paste and mortar: Part I. Structural models from nanometres to millimetres, Materials and Structures 28, 450-458 (1995).
79
J.F. Thovert, J. Salles, and P.M. Adler, Computerized characterization of the geometry of real porous media: Their discretization, analysis, and interpretation, J. Microscopy 170, 65-79 (1993).
80
D.A. Quenard, D.P. Bentz, and E.J. Garboczi, Capillary condensation, hystersis, and image analysis, in Drying 92, Ed. A.S. Mudjumdar, Elsevier Press, Pt. A 252-262, 1992.
81
J. van Brakel, S. Modry, and M. Svata, Mercury porpsimetry: State of the art, Powder Technology 29, 1-12 (1981). This is the first article in a special issue devoted to mercury poroisimetry.
82
D.H. Rothman, Geophysics 53, 509 (1988); D.H. Rothman and S. Zaleski, Lattice-gas models of phase separation: Interfaces, phase transitions, and multiphase flow, Rev. Mod. Phys. 66, 1417-1479 (1994).
83
N.S. Martys and H. Chen, Simulation of multi-component fluids in complex three-dimensional geometries by the lattice Boltzmann method, Phys. Rev. E 53, 743-750 (1996) PDF Version.
84
R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: Theory and applications, Phys. Rep. 222, 145-197 (1992).
85
P.E. Stutzman, Serial Sectioning of Hardened Cement Paste for Scanning Electron Microscopy, Ceramic Transactions 16, 237, 1991.
86
B.P. Flannery, H.W. Deckman, W.G. Roberge, and K.L. D'Amico, Three-Dimensional X-ray Microtomography, Science 237, 1439-1444 (1987).
87
D.P. Bentz, N.S. Martys, P. Stutzman, M.S. Levenson, E.J. Garboczi, J. Dunsmuir, and L.M. Schwartz, X-ray microtomography of an ASTM C-109 mortar exposed to sulfate attack, in Microstructure of Cement- Based Systems/Bonding and Interfaces in Cementitious Materials, edited by S. Diamond et al. (Materials Research Society Vol. 370, Pittsburgh, 1995), 77-82.
88
F.M. Auzerais, J. Dunsmuir, B.B. Ferreol, N. Martys, J. Olson, T.S. Ramakrishman, D.H. Rothman, and L.M. Schwartz, Transport in sandstone: A study based on three dimensional microtomography, Geophysical Researach Letters 23, 705-708 (1996) PDF Version.
89
M. Joshi, A Class of Stochastic Models for Porous Media, Ph. D. Thesis, Univ. of Kansas, 1974.
90
J.A. Quiblier, A New Three-Dimensional Modeling Technique for Studying Porous Media, J. Colloid and Interface Science 98 84-102 (1984).
91
P.M. Adler, C.G. Jacquin, and J.A. Quiblier, Flow in Simulated Porous Media, Int. J. Multiphase Flow 16, 691- 712 (1990).
92
P.M. Adler, C.G. Jacquin, and J.F. Thovert, The Formation Factor of Reconstructed Porous Media, Water Resources Research 28, 1571-1576 (1992).
93
D.P. Bentz and N.S. Martys, Hydraulic radius and transport in reconstructed model three-dimensional porous media, Transport in Porous Media 17, 221-238 (1994).
94
D.A. Quenard, K. Xu, H.M. Kunzel, D.P. Bentz, and N.S. Martys, Microstructure and transport properties of porous building materials, Materials and Structures, 31 (209), 317-324, 1998 (PDF Version).
95
D.A. Young and E.M. Corey, Lattice models of biological growth, Phys. Rev. A 41, 7024-7032 (1990).
96
M.B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).
97
J.W. Essam, Percolation Theory, Rep. Prog. Phys. 43, 833- 912 (1980).
98
J.M. Hammersley and D.J. A. Welsh, Percolation theory and its ramifications, Contemp. Phys. 21, 593-605 (1980).
99
P. Renault, The effect of spatially correlated blocking-up of some bonds or nodes of a network on the percolation threhold, Transport in Porous Media 6, 451-468 (1991).
100
S. Kirkpatrick, Percolation and conduction, Rev. Mod. Phys. 45, 574-588 (1973).
101
E.J. Garboczi, K.A. Snyder, J.F. Douglas, and M.F. Thorpe, Geometrical percolation threshold of overlapping ellipsoids, Phys. Rev. E 52, 819-828 (1995).
102
W. Xia and M.F. Thorpe, Phys. Rev. A 38, 2650-2655 (1988).
103
I. Balberg, Recent developments in continuum percolation, Phil. Mag. B 56, 991-1003 (1987).
104
P. Salatino and L. Massimilla, Modeling fragmentation by percolation in combustion of carbons, Powder Technology 66, 47-52 (1991).
105
M. Yanuka, Prediction of the capillary hysteresis loop from geometrical and topological information of the pore space, J. Coll. Inter. Sci. 127, 48-58 (1989).
106
L.M. Schwartz and S. Kimminau, Analysis of electrical conduction in the grain consolidation model, Geophysics 52, 1402-1411 (1987).
107
L.M. Schwartz, D.L. Johnson, and S. Feng, Phys. Rev. Letts. 52, 831-834 (1984).
108
R. Lenormand, Proc. Roy. Soc. London A 423, 159 (1989).
109
M. Blunt and P. King, Macroscopic parameters from simulations of pore scale flow, Phys. Rev. A 42, 4780-4787 (1990).
110
P. Wong, J. Koplik, and J.P. Tomanic, Phys. Rev. B 30, 6066 (1984).
111
P.A. Crossley, L.M. Schwartz, and J.R. Banavar, Image-based models of porous media: Application to VycorTM glass and carbonate rocks, Appl. Phys. Lett. 59, 3553-3555 (1991).
112
R. Blumenfeld and S. Torquato, Coarse-graining procedure to generate and analyze heterogeneous materials: Theory, Phys. Rev. E 48, 4492-4500 (1993).
113
A.P. Roberts and M.A. Knackstedt, Mechanical and transport properties of model foamed solids, J. Mater. Sci. Letts. 14, 1357-1359 (1995).
114
A.P. Roberts and M. Teubner, Transport properties of heterogeneous materials derived from Gaussian random fields: Bounds and simulation, Phys. Rev. E 51, 4141-4154 (1995).
115
A.P. Roberts and M.A. Knackstedt, Effective properties of composites with model microstructures: Two level-cut Gaussian random fields and overlapping hollow spheres, Phys. Rev. E 54, 2313 (1996).
116
H.F.W. Taylor, Cement Chemistry (Academic Press, London, 1990).
117
D.P. Bentz, P.V. Coveney, E.J. Garboczi, M.F. Kleyn, and P.E. Stutzman, Cellular automaton simulations of cement hydration and microstructure development, Modelling Simul. Mater. Sci. Eng. 2, 783-808 (1994).
118
D.P. Bentz, Three-dimensional computer simulation of portland cement hydration and microstructure development, J. Amer. Ceram. Soc. 80, 3-21 (1997).
119
D.P. Bentz, E. Schlangen, and E.J. Garboczi, Computer simulation of interfacial zone microstructure and its effect on the properties of cement-based materials, in Materials Science of Concrete IV, edited by J. Skalny and S. Mindess (American Ceramic Society, Westerville, Ohio, 1995).
120
D.P. Bentz, P.E. Stutzman, and E.J. Garboczi, Experimental and simulation studies of the interfacial zone in concrete, Cement and Concrete Research, 22 (5), 891-902 (1992).
121
W.D. Kingery, H.K. Bowen, and D.R. Uhlman, Introduction to Ceramics, 2nd ed. (J. Wiley and Sons, New York, 1976).
122
P. Pimeinta, W.C. Carter, and E.J. Garboczi, Cellular automaton simulations of surface mass transport due to curvature gradients, Comp. Mater. Sci. 1, 63-77 (1992).
123
J.W. Bullard, E.J. Garboczi, W.C. Carter, and E.R. Fuller, Numerical methods for computing interfacial mean curvature, Comp. Mater. Sci. 4, 103-116 (1995).
124
J.C. Russ, Automatic methods for the measurement of curvature of lines, features, and feature alignment in images, J. Computer- Assisted Microscopy 1, 39-77 (1989).
125
G. Polya and G. Szego, Isoperimetric Inequalities in Mathematical Physics (Princeton University Press, Princeton, NJ, 1951).
126
J.W. Bullard and W.C. Carter, Numerical determination of critical strain rate for neck rupture for evaporation-condensation sintering of isotropic particles, in Sintering Technology, edited by R.M. German, G.L. Messing, and R.G. Cornwall (Marcel Dekker, New York, 1996), 45-52.
127
J.W. Bullard, Digital-image-based models of 2D microstructural evolution by surface diffusion and vapor transport, J. Appl. Phys. 81, 159-168 (1997).


Up: Main Previous: Acknowledgements