
A Generalization of Activated Complex Theory of Reaction Rates 
* 

11. Class ica l  Mechanical Treatment 

R. A. Marcus ** 

Departments of Chemistry, Brookhaven National Laboratory, Upton, N.  Y . ,  and 

Polytechnic I n s t i t u t e  of Brooklyn, Brooklyn, N. Y . ,  11201 

I n  its usual c l a s s i c a l  form ac t iva ted  complex theory assumes a 

p a r t i c u l a r  expression f o r  t he  k i n e t i c  energy of the react ing system one 

associated with a r e c t i l i n e a r  motion along the  react ion coordinate. The 

der iva t ion  of the r a t e  expression given i n  the  present paper is based on the 

enerpv exnression- A r a t e  eauation of the customarv form 

* where F is the  f r e e  energy of a system constrained t o  e x i s t  on a hyper- 
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Introduction 

A number of der iva t ions  of the ac t iva ted  complex theory 

equation f o r  chemical reac t ion  r a t e s  have been published. ' Several 

assumptions 
are the following: 
1. 

normally made i n  the c l a s s i c a l  mechanical form of the  theory 

For reac t ion  t o  occur some n-1 dimensional hypersurface i n  the 

n-dimensional configuration space must be crossed. (The hypo- 

t h e t i c a l  system constrained t o  e x i s t  on t h i s  surface i s  

the  "ac t iva ted  complex". The surface w i l l  be ca l l ed  thenreac t ion  
hypersurface" ) 
The probabi l i ty  of f inding the system i n  any p a r t  of the  2. 

2 n-dimensional phase space on the reac tan ts '  s ide  of the above 

surface i s  t h a t  calculated from equilibrium s t a t i s t i c a l  mechanics. 

3. A system s t r i k i n g  the above hypersurface has u n i t  p robabi l i ty  

of crossing it and recrossings can be neglected. Thereby, the 

transmission coe f f i c i en t  is un i ty ,  

4 .  The k i n e t i c  energy along the react ion coordinate has a very 

simple fom,p2/2 p, where p is the momentum conjugate t o  t h i s  

coordinate and p is a constant,  and there are no cross-terms with p i n  the  
total k i n e t i c  energy expression.2 

I n  addi t ion,  the Born-Oppenheimer approximation is  

normally employed. Sometimes t h i s  approximation breaks down, the 

reac t ion  becoming quantum mechanically nonadiabatic. The r a t e  i s  

then occasionally calculated with the a i d  of the Landau-Zener 

equation, and some approximetions a r e  contained there in .  
3 
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In  the present paper assumption 4 is removed. Assumtion 

. 
1 is  l a t e r  weakened by permitt ing the  i n t e r n a l  motions of the  complex 

t o  depend on r o t a t i o n a l  constants of the motion. 

t i o n  4 leads , surpds ingly  perhaps, t o  a r a t e  equation formally sirnilfir 

Removal of assimp- 

t o  the  usual one of ac t iva ted  complex theory. The reason f o r  t h i s  

behavior is  described 1a te r : i t  i s  shown t h a t  i f  one r e in t e rp re t s  the 

coordinates employed i n  the  usua l  der ivat ion as "geodesic normal co- 

ordiristes" no approximation i n  f'assumptiontt 4 was ac tua l ly  made. The 

subsequent shortcomings of such coordinates f o r  purposes of comparing with 

a quantum mechanical formulation are then noted. 

now been removed. 

However, assumption 4 has 

The present  paper is confined t o  a c l a s s i c a l  mechanical 

descr ipt ion.  A r e l a t ed  quantum mechanics1 treatment w a s  given 

4 e a r l i e r .  While t h e  l a t te r  was more general  than the c l a s s i c a l  t r e a t -  

ment i n  t h a t  quantum effectswere inc luded , i t  was a l s o  l e s s  general  

i n  t h a t  the  assumption of s epa rab i l i t y  of the reac t ion  coordine.te was made f o r  

practical convenience in the  quantum treatment but not  i n  the  c l a s s i c a l  

one, The reason 

To be sure, the assumption of s epa rab i l i t y  i s  less d r a s t i c  than 

formerly, because of the a v a i l a b i l i t y  of a recent ly  devised l o c a l  

approximation of "nonseparable" po ten t i a l  energy surfaces by 

surfaces  permitt ing separat ion of var iab les .  

f o r  t h i s  difference has been described previously. 

5 

One appl icat ion of the  present  paper has been made e l se-  
6 

where t o  e lec t ron  t r a n s f e r  react ions.  I t  can a l s o  be applied t o  o t h e r  

react ions i n  solut ion f o r  which many degrees of freedom a r e  invo lved  
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i n  the  de f in i t i on  of the  ac t iva ted  complex and f o r  which the  usual 

saddle-point de f in i t i on  need no longer suf f ice .  1,2 
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The Hamiltonian and Other Prowrties 

"he line eleaent in mass-weighted configuration space, ds, 

is given by ( 1). 

n n 
ds2 = ~ ~ ( d x ~ ) ~  = gij dqi dqj 

k=l  i, j=1 

k 3rz ,3*1 where the x are space- fixed Cartesian coordinates of the atoms (m 
i = B A ~ ~ ~  i sA  the r t  th atom). The q are generalised coordinates, and g 

is a symmetric, covariant second order tensor, given by 

the m a s s  of 

i j 7 
( 2 ): 

gij = 2 
k=l  

The contravariant tensor conjugate to g is gij: 
i j 

i where 6, is 0 or 1 according as i+k or i=k. 

The kinetic energy T equal's *(ds/dt)2 and so is given by ( 5) 
i g  in terms of the generalized velocities 4 . 

i, j=1 
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Some of the q i l s  a r e  usual ly  ro t a t ions ,  with the  r e s u l t  

that many of the g a r e  then ne i the r  diagonal nor constant.  Since the 

generalized momentum pi equals 

po ten t i a l  energy, pi is given by ( b ) . ’  From (4 )  to (G), Eq.  ( 7 )  
is obtained f o r  H, the  Hamiltonian of the system. 

i j 
i n 

(T-U)/ 4 , where U(q’ , . . .q ) i s  the 

IO 

= 9 gij  q 4 
j= l  P i  

n H = 8 2 gi j  pipj + u ( q l ,  ...q ) 
i, j=1 

We s h a l l  a l s o  need the l i n e  element,ds, i n  ordinary con- 

f igu ra t ion  space: 

n 

ds2  = k=l (dxk)2 = i, j=1 a i j  dqi dqj  

where a 

jugate  t o  it. 

i s  a covariant tensor .  The contravariant  tensor  a i j  i s  con- i d  
Both a r e  defined i n  ( 9  ):  

n 

‘kj a 
2 a i j  ajk = . E  
j=1 j=1 

We shall make use of some results on determinants. Because 
of  the product rule,(  1 1 )  follows from ( Z ) ,  and (12) from (q  ) .  u 

i 2  
s x  d e t  n g = :(d:t -$ 

i, j=1 ij k = l  i, j=1 %j 

n 
a = de t  a 

i,j=l i j  i, j=1 

I ;  : ’ ,  
i, ! ; 
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The volume element i n  mass-weighted configuration 

space snd t h a t  i n  ordinary configuration space w i l l  be denoted by df 

and dV, respect ively:  
IL 

( I3i dT = ( d e t  

n n 

Because of ( I \ ) ,  one obtains (If;) from ( i ? ) .  

The are8 element of a coordinate hypersurface on 

which qN i s  constant w i l l  be denoted by d b  and by dS f o r  mass-weighted 

and ordinary configuration space, respect ively.  These area elements 

a r e  the volume elements i n  an n-1 dimensional space i n  which dq 

zero. Hence, 

N is 
I3 
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Since gg" and d e t  g i j  are each t he  cofactor of gWN 
L j j N  

i n  g, they are equal. From (16) one then obtains ( 1 % ) .  Eq. (14) 

follows s imi l a r ly  from ( '7) ,  s ince  both aa" and d e t  a are i j  
i, j#N 

t he  cofac tor  of aNw i n  a.  

I 

dS = (aa " ) I  dqi 
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Derivation of the Rate Equation f o r  a Reaction Hypersurface Dependent 
on Coordinates Alone 

When the  "react ion hypersurface" depends on the  coordinates 

alone, it i s  independent, thereby, of any constants of the motion. 

Otherwise, the l a t t e r  would appear as  parameters i n  the  equation 

of the  hypersurface. 

wr i t ten  as 

The equation of t h i s  hypersurface, S ,  may be 

0 (on S >  

A choice of coordinates can be made s o  t h a t  S is  a coordinate 

hypersurface for one of them, qr. 

taken a s  zero on it. 

Thus, qr is constant on S, and can be 

This surface w i l l  be a qr- coordinate hypersurface 

both i n  mass-weighted and i n  ordinary configuration space. 

The react ion r a t e  is the ne t  r a t e  a t  which systems cross  S. 

It can be computed under the equilibrium assumption f o r  the rezc tan ts  as  

follows: The probabi l i ty  t h a t  a system i n  equilibrium with the reac tan ts  

w i l l  l i e  i n  a volume element of phase space, & dqidpi, w i l l  be denoted 
" i  by pT dq dpi, where yis the  equilibrium phase space densi ty:  
i 

4 = e  /J e 
( 2  c> 

On dividing the  above probabi l i ty  by dqr and multiplying by F ,  the  prob- 

a b i l i t y  t h a t  the react ing system w i l l  c ross  the element T i  dq of the 
i# c 
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r .r 
hypersurface S i n  u n i t  t i m e  is found t o  be (Jpq n d p i  ?f d q l ,  w k e _ - ~  ! R b  

1s 1 i #r 

i n t eg ra t ion  i s  Over a l l  p i  such that only passages from the  r eac t an t s '  

s i d e  of S t o  t h e  products'  side are counted. 

obtained by in t eg ra t ing  over t h e  coordinates. 

The rate constant i s  then 

By de f in i t i on  of a rate constant of a homogeneous react ion ( i t  has units of 

moles/volume and time) t h e  q-integration i n  (21) i s  such t h a t  th ree  

t r a n s l a t i o n a l  coordinates of the  ac t iva ted  complex a r e  in tegra ted  over 

a u n i t  volume. For a heterogeneous reac t ion  the  int2egratJion i n  (21) i s  such 

t h a t  t he  two t r ans l a t iona l  coordinates of the  ac t iva ted  complex p a r a l l e l  t o  

t he  in t e r f ace  of the  two phases are integrated over a unit. area of the in t e r -  
f a c e e l l  I n  the  denominator of (20) the  in tanra t ion  over the t r ans l a t iona l  coordinates 
of each reac tan t  is over u n i t  volume. 

on the  other  s ide  it i s p o s i t i v e .  
On one s ide  of S ( the  reac tan ts ' ,  s ay ) ,  qr is negative and 

Accordingly, i n  order t o  count only 

pawages from one first s ide  of S t o  t h e  other ,  t h e  in tegra t ion  i n  

(21) i s  such t h a t  4 r i s  confined t o  t h e  i n t e r v a l  (0, + QQ ).  

According to Foo+.ote 10, 4r is given by 

For any given value of 4r, (22) represents  t he  equation of a hyperplane i n  

momentum space. 

follows: 

Integrat ion i n  (21) may therefore  be performed as 

1 For any given value of (q , . . ,qn) t he  p i t s  a r e  integrated 

over t he  i n f i n i t e  half-space i n  momentum space, corresponding t o  ail.  
n 

va r i a t ions  i n  pi subject t o  c grS p lying between zero and inf'Li-,i!d;?, j=1 J 
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By i n t eg ra t ing  p from - 
remaining p from - -to 

a subsequent i n t eg ra t ion  

value zero. Siice 

r 

j 

6 3p,. The pr i n t eg ra t ion  yields (23): 

gr j  pj/grr t o  &and by in tegre t ing  t h e  
j+-r 
a t h i s  i n t eg ra t ion  can be perfomed.  Luririg 

over a l l  qi other  than i=r, qr is  kept  a t  t h e  

4r i s  ?I H/a p,, 4r exp(-H/kT) equals -kT 

where 

- ( F+-F) / k ~  - -  kT e krate - h 

and H -1 is given by (20). 

it is the  value of H f o r  a system constrained t o  exist on t h e  hyper- 

surface of S. 

It, is the value of H when qr = 4' - -_ 0 ,  Thus, 

where 
r UT = U(qi ...,q n, e t  q = 0 

and 

i j? The quant i ty  g 

space f o r  which dq 

i s  e a s i l y  shown t o  be conjugate t o  g i j  or: R S Q ~ -  

r = 0, i .e . ,  on the hypersurface,  Z ,  
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$ F i s  the  f r e e  energy of the  constrained system and F 

is  t h e  free energy of t he  unconstrained reac t ing  system. 

energies and i n  a l l  subsequent f ree  energy expressions the  usual  

product of f a c t o r i a l s ,  which co r rec t s  f o r  i nd i s t ingu i shab i l i t y  of 

l i k e  p a r t i c l e s ,  is  omitted f o r  brevity.  These f a c t o r s  cancel i n  

computing ( 23 ) . 

In both f ree  

I n  passing, w e  note t h a t  Eq. ( 2 3 )  has been obtained 

without introducing assumption 4. 

Integrat ion over the  momenta i n  (2q) ar,d (25) can readily 

be performed. One obtains:  

where db is given by (16) and d r  by (13). 

+ On introducing an e f f ec t ive  mass m defined i n  t he  next, 

sec t ion ,  the expression f o r  the  r a t e  constant becomes: 

where dV is given by ( I + )  And dS by (17).  
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An Effect ive Mass 

An e f f ec t ive  mass, m', f o r  motion normal t o  S i n  

ordinary n dimensional configuration space m y  be defined i n  severs1 

ways. A def in i t i on  su i t ed  t o  our Purpose is  the fo l lowing:  When 

the momentum p is  normal t o  S i n  t h i s  rordimrry canfiguration 
2 space the proport ional i ty  factor of p / 2  i n  tie k i n e t i c  nnergy w i l l  

be designated by l / m  . + + To evaluate m , one may proceed t h u s :  

The covariant components of A vector of unit l e n g t h  

(magnitude) normal t o  the qr-coordinate hypersurface S i n  t h i s  

IS i r r - k  ) . The covariant comnonents of space a re  equal  t o  g i  = Ei ( a  

rr 2 ?, pi, a r e  therefore  equal t o  6: 7 (a ) ,where p i s  the magnitude of 
-. 

. .  

P. 
Y- 

(7) 

On noting that the  k i n e t i c  energy is 

and on introduczing the  above values 

energy is found t o  equal grrp*/2arr. Hence, we have 

given by t h e  f i r s t  txrm i n  

for the pits, the  kinetic 
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InteErat ion over External Coordinates 

I n  a d i l u t e  gas an ac t iva ted  complex may be regprded P S  

Rn i so la t ed  p a r t i c l e .  

s t rongly  coupled t o  those of the surrounding molecules. I n  the 

l a t t e r  case it w i l l  be use fu l  t o  consider as the ac t iva ted  comylex 

a macroscopic 

r eac t an t  o r  p a i r  of reac tan ts  and on the boundary of which t h e  cor- 

r e l a t i o n  of the motion of the  solvent  molecules with those of t h e  

In  a l i q u i d  o r  dense gas i t s  motions mpy be 

Subsystem, near  the center  of which is  the ac tua l  

reac tan ts  i s  negl ig ib le .  This subsystem i s  regerded P S  imbedded 

i n  the remainder of t he  i n f i n i t e  ( o r  Drnct ical ly  i n f i n i t e )  system. 

For homogeneous reac t ions  r i g i d  t r ans l a t ions  o r  ro t a t ions  will l a t e r  

be performed on the  

maining p a r t  w i l l  be permitted t o  continuously s d j u s t  themselves. 

For heterogeneous systems r i g i d  t r ans l a t ions  of the macroscopic 

ac t iva t ed  complex p a r a l l e l  t o  t he , in t e r f ace  w i l l  be performed 

with a s imi l a r  adaptat ion of the  remaining molecules occurring. 

subsystem,and the  solvent  molecules of the rp- 

The ac t iva ted  complex of a homogeneous. react ion i n  R 

g a s  o r  l i qu id ,  defined above, has as  coordinates th ree  t r ans ln t ions  

(x, y, z ) ,  two ro t a t ions  of an axis f ixed  i n  the complex ( c ,  d ) ,  and n-5 o the r  

coordinates which w i l l  be c a l l e d .  the in te rna l  coordinat,es of the complex, 

though one of them ( ro t a t ion  about the  body-fixed a x i s )  ha: a p r o p  

e r t y  analogous t o  the  f i v e  "externa.1" ones: The po ten t i a l  energy 

of t he  e n t i r e  system is  invar ian t  t o  changes i n  the f i v e  ext,ernal 

coordinates ,  
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I n  t h e  ca8e of a heterogeneous reac t ion  on a uniform i n t e r f a c e  

the p o t e n t i a l  energy f * . c t i o n  f o r  the  ac t iva t ed  complex is inva r i an t  

t o  t h e  two Cartesian coordinates,  x and y, p a r a l l e l  t o  the  i n t e r f a c e  

of t he  two phasesu Presumably, such a case occurs i n  electrochemical 

e l ec t ron  transfers t o  a good approximation when t h e  r eac t an t  i s  not 

adsorbed. I n  reac t ions  involving loca l i zed  adsorption on pe r fec t  

crystals t h e  p o t e n t i a l  energy i s  a periodic func t ion  of x and y. 

alpr heterogeneous r eac t ion  the  remaining n-2 w i l l  be c a l l e d  t h e  i n t e r n a l  

ones of t h e  a c t i v a t e d  complex, though i n  t h e  p a r t i c u l a r  case of  a nonunif o m  

sur face ,  U and q below depend on &lJ. n coordinates, 

For 

# r 

The i n t e g r a l  appearing in t he  denominator of (33) is  evaluated 

for a system where the  r eac t an t s  are fa r  a p a r t ,  when the re  is more than 

one of them, o r  far from t h e  i n t e r f a c e  i n  t h e  heterogeneous reac t ion .  

The func t ion  U i n  this i n t e g r a l i s  independent of t he  three t r ans l a t ions  

of t h e  cen te r  of mass of each r eac t an t ,  which w i l l  be c a l l e d  t h e  

external coordinates f o r  t he  deliominator of (33) .  (However, U is  also 

independent of some of t h e  o t h e r  coordinates, of course.) 

Since the  proger t ies  of t h e  reac t ion  hypersurfac? 

depend only on the i n t e r n a l  coordinates they can be ?,elected P O  

t h a t  the  coordinate q is one of them. r 

* The reduced mass m is  shown i n  Appendix I t o  be in- 

dependent of t he  values of the ex ternol  coordinates. I t  normally is a functiori 

of 

cases, as discussed l a t e r .  

I1 t o  be a product of a function of the  ex terna l  coordinates  lone 

the i n t e r n a l  coordinates,though it is a constant i n  special. 

The area element dS i s  shown i n  Apzendix 

and of a function of the i n t e r n a l  coordinates alone, the l a t t e r  

f o r  bimolecular repctions Fnd by U S  for denoted by R2dSint i n 5  

horr,ogeneous unimolecular reactions o r  f o r  heterogeneous re;?ztioT:s, 

as discussed i n  the  Appendix. 
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! homogeneous 
(bimolecular) dS = s i n  8 d e d 6 dx dy dz R2 dSint (352 

homogeneous 
(unimol.eculaA dS = s i n  8 d 0 d 6 dx dy dz dSint 

(heterogeneous) dS = dx dy dSint 

(36,: 

where 8 and 6 define a body-fixed axis of the  complex,R i s  the dis- 

tance of two atomsor any two pointsof the  complex on t h i s  zx i s ,  2nd 

x, y, x have been defined e a r l i e r .  

(35) the  two atoms o r  po in ts  are constrained so th8.t one i s  f i x e d  

I n  t he  computation of' dSint i n  

on the  c i t e d  body-fixed a.xis and the o ther  can move only a.long that 

axis. The two points can be the  centers  of mass of each r eac t an t ,  f o r  example 

(Appendix 11). 

t he  complex is  constrained t o  move along any f ixed  line norrnnl t o  t h c  

I n  the  compution of t he  dSint of (37) one w i n t  of 

.J 1 l i , r l C '  , I < $ '  .. 
to 
*the so l id- l iqu id  in t e r f ace .  This po in t  c m  be the  center  of mass 

of t he  r eac t an t .  

Similarly, the  volume element dV i n  (33) can be shown t o  

be the product of volume elements rT dx dy da f o r  the external co- 

ordinates  of all reac tan ts  g and of dVint, t he  volume element of all re- 

maing coordinates. (There is only one term i n  < when the react ion is 

unirnolecular, of courae. 

a s a d  

These remaining coordinates are cordinates i n  

a space where t h e  center  of mass of each reac tan t  is f ixed and where 

the  reactants  a r e  far apart .  

Integrat ion may now be performed over the external  coordinates 
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i n  the  numerator and denominator of (33). 

homogeneous) (bimolecular krate = (8nkT)'YR' (I&' e 

One obtains 

.U*/lCT 
dSint'Q 

-U*/kT 
(unimolecular homogenems , kmte dSint'Q o r  unif o m  heterogeneous ) 

where cons t r a in t s  on the numerator in tegra t ion  have j u s t  been described 

and where Q is  given by(40), 

Q =/.-"/"' dVint 

It is the configurat ional  i n t e g r a l  of the reactants when they are far 

apart. In tegra t ion  i n  Q is subjec t  t o  the cons t r a in t  that a point on 

each reac tan t  (e.g., i t s  center  of mass) is  held f ixed,  and thus i s  

over the volume Vintof some n-3N dimensional i n t e r n a l  coordinate space 

where N is the number of reactants .  For a heterogeneous react ion on a 

nonuniform interface, dSint i n  (39) should be replaced by dx dy dSint,; 

x and y vary over a unit area  of in te r face .  is I n  e i t h e r  case,  k 
ra te  

(38)  

(39) 

(40 )  

the  react ion r a t e  per u n i t  area of i n t e r f ace  per u n i t  concentration of 

the reac tan t .  It has u n i t s  of cm sec", f o r  example. 
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In the  simple c o l l i s i o n  theory the  qr-reaction hypersurface 

i e  taken t o  be one of constant separat ion dis tance between the centers  

of mass of each reac tan t  i n  the  bimolecular react ion,  which w i l l  be 

denoted & R 

i n  f a c t  equal t o  p, the  reduced mss for t he  two reac tan ts .  

B i 8  now constant over S it too can be extracted from the  i n t e g r a l  i n  

(38). 
( 8wkT/p)fR2exp(- AU/kT), s ince  the a rea  element in the  numerator is 

F the collision diamete 
The quant i ty  m , it can sham,  is then a constant,  and ' A  

Since 

Intagpation then leads t o  the  simple c o l l i s i o n  theory expression 
I 

now the same as the  volume element i n  the  denominator. 

In an analogous simple c o l l i s i o n  theory f o r  unimolecular 

heterogeneous react ions,  the  q '- react ion hypersurface is  taken to 

be a plane p a r a l l e l  t o  the in t e r f ace  of the two phases. I n  that, case m 

again be shown t o  be a constant,  the  mass of the reac tan t ,  m, and the 

aimple heterogeneous c o l l i s i o n  theory expreasion i s  obtained, 

.f can 

[ kT/2n 4 e-(- NJ/kT) ,  s ince the area element i n  the numerator and 

the  volume element i n  the  denominator a reequa l .  

Another spec ia l  case of (38) 6. 
^ _ _ _ ^ _ _  _ _ _ _ _ -  ~ --_--_... -.----- ---.- 'I- 

r 
G 9 T - o b t a i n s  when the  qb- react ion hypersurface c l n  be chosen t o  

be a hyperplane i n  the i n t e r n a l  coordinate apace of the  ac t iva ted  

complex. 

the l a t t e r  ex i s t a ,  and is normal t o  the  tangent of a l i n e  of s teepes t  

(This hyperplane passes through the saddle-point, when 
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ascent  t o  the  saddle-point drawn i n  i n t e r n a l  coordinate space. ) 

The hyperplane approximation has been used Vineyard i n  h i s  calcu- 

l a t i o n  of the  r a t e  of d i f fus ion  of an atom from one s i t e  t o  a neigh- 

boring one i n  a c rys t a l .  

This hyperplanar approximation i s  often made i n  the  usual  ac t iva ted  

complex theory, by U 8 i n g  nor& coordinate ana ly i s  and neglecting 

vibrat ion-rotat ion in te rac t ion .  

1 

H i s  r e s u l t s  are der ivable  from (39). 

B 
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Case where Reaction Hypersurface Depends on Rotat ional  Constants of 
t he  Motion 

In some reac t ions ,  t he  equation of the  reac t ion  hypersurface 

may depend on constants  of t he  motion, i n  p a r t i c u l a r  on the angular  

momentum. Several  examples are some unimolecular d i ssoc ia t ions ,  

r a d i c a l  recombinations, and ion-molecule react ions.  For examole, 

t h e  reac tan ts  i n  the two l a t t e r  reac t ions  have been t r ea t ed  as two 

16 17 

p a r t i c l e s  which, i n  the  ac t iva t ed  complex, have t h e i r  mutually 

a t t rac t ive  fo rce  balanced by their  cen t r i fuga l  force.  The a t t r a c t i o n  

was attr ibuted t o  induced dipole-induced d ipole  fo rces  i n  the  recon- 

b ina t ion  and t o  ion-induced dipole  forces  i n  the  ion-molecule system. 

The cen t r i fuga l  fo rce  was ca lcu la ted  by t r e a t i n g  the  p a i r  of reac tan ts  

as a "diatomic" ac t iva t ed  complex. 

The above treatments were based on the  assumption t h a t  t he  

reac t ion  hypersurface is the s e t  of coordinates for which the  a t t r a c t i v e  

fo rce  equals i n  magnitude the  repulsive cen t r i fuga l  force  between the  

t u a p a r t i c l e s .  This s e t  depends on the angular moFentum. In  these  and 

o ther  react ions t h i s  "diatomic" arqroximation is  readi ly  imTosed on the 

treatment of the  previous sec t ion ,  when rrn angular momentum deFendence 

of the react ion hynersurface For a given nnglilDr 

momentum of the complex i n  any in f in i t e s ima l  range the contr ibut ion t o  ',\s 

overa l l  react ion r a t e  ctln be calculated.  

angular nomenta. 

"symmetric top" apm-oximation t rea ted  below, and i t s  derive tior! w i lL1 br 

is  t o  be considered: 

One m y  then in t eg r s t e  C V F Y  s l i  

The r e s u l t  w i l l  emerge as P, s ? e c i a l  case of the  

omitted f o r  t h a t  rep5on. (The der ivPt icn n e r r , l l e l c  cpc t , c I c w ,  ' : ,3~+, L*.c  

angle 1.I, ;Ind the conjugate rcommturc p a r e  omit,tr.d, and ti7e " h 3 r "  s u t s - ~ ~ c e  i c  

one dimension l a r g e r .  ) 
IJ 
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If the  "diatomic!'approximation i s  inadequate, i n  that 

t h e  value of a t h i r d  p r i n c i p a l  moment of i n e r t i a  of the  complex 

changes during reac t ion ,  a somewhat better approximation can be 

obtained by t r e a t i n g  the  complex as a symmetric top  and including 

the  dependence of the  r eac t ion  hypersurface on the  magnitude of the  

angular momentum prOt as before, and on the  component of p r o t  along 

t h e  symmetlcg axis . If t h e  v i b r a t i o n a l  angular momentum is 

ignored the  k i n e t i c  energy of t he  complex is the  sum of terms from 

t h e  th ree  t r ans l a t ions  of t he  cen te r  of mass, from the  r o t a t i o n s ,  

and from the  remaining 3 n-6 i n t e r n a l  coordinates. 

energy of a symmetric t op  complex is  given by (40, 

' p$ 

The r o t a t i o n a l  
18 

The three pr inc ipa l  

moments of i n e r t i a  of t h e  complex are A, A and C. 

- - -  p:ot + &(L '> 
Tro t  2A 2 C A 

Since prot and p+ a r e  constants of t h e  motion, and s ince  A and. C denend 

on the  i n t e r n a l  coordinates T 

thereby a f f ec t ing  the reaction hypersurface by en amount depending  on 

a c t s  as o cen t r i fuga l  n o t e n t i a l ,  r o t  

Pro% and ? 
+ *  

The reac t ions  of present i n t e r e s t  f o r  which the hypersurfacc 

may depend s i g n i f i c a n t l y  on the angular momentum a re  gRs reactions.  I n  t h i s  

case, it is  convenient t o  transform the  Csrtesian coordinates of the 

atoms i n  the comnlex x k i n t o  generalized coordinates q i , th ree  of 

which a r e  the t r a n s l a t i o n s  of the  center  of mass of the activste-d 

complex. 

( S ,  6 and d1) defining the o r i en ta t ion  of' the  p r i n c i w l  

Another th ree  Fire se lec ted  t o  bF t h e  hlerlan angles 

@ 
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axes, and the  remaining 13-6 wil l  be called t h e  internal coordinates of the 

ac t iva t ed  complex. The line-element i n  arass-weighted space i e  given by (1). 

The i n t e r n a l  coordinates m'ay be. chosen s o  as t o  s a t i s f y  
19. 

the  Eckart  conditions,  lessening thereby the  v ib ra t iona l  angular 

momentum. 

an  approximation which corresponds t o  s e t t i n g  g equal t o  zero when 

The r e s idua l  v ib ra t iona l  angular  momentum w i l l  be neglected,h-e,r<, 
i j  

i is one of the  i n t e r n a l  coordinates and j i s  one of the  Eulerian 

angles.  Correspondingly, one can show, g a l s o  vanishes then f o r  these  i j  

choices bf i and j .  Independently of t h i s  approximation t h e  usua l  

i n  terms of t he  ii's o r  p 's shows 

u 

expression f o r  the  k i n e t i c  energy 
i j  t h a t  g and g a l s o  vanish when i i s  a t r a n s l a t i o n  of the  center  i j  

of mass and j i s  an o r i en ta t iona l  or an  i n t e r n a l  coordinate. 

i 

I t  w i l l  be convenient t o  choose the i n t e r n a l  coordinates 

r 

If the  i n t e r n a l  coordinates are denoted by 

i n  such a way t h a t  one of the coordinates,  q , i s  constant on the 

reac t ion  hypersurface. 

q1 t o  qn-6 t h e i r  choice may depend on prot and p , s ince  t h e  hypersurface 
$ 

and,thereby, qr depend on prOt and p+. Thus, we have : 

q i = q i 1  (x ,... X n ) i = n-5 t o  n 

) i = 1 t o  n-6 i i l  n 
9 = 9 (x  , * *  *x 'P,,t,Pd, 

1 This de f in i t i on  of q t o  qn-6 would not  necessar i ly  be a cons is ten t  one 

if  the  de f in i t i ons  of prOt and p themselves depended on the ql t o  

qn-6 o r  on the  q 

s ince  the  v ib ra t iona l  angular momenta were neglected. 

J, 
.1 . n-6 

t o  q . Thqydo not  s o  depend, it can be shown, 
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The argument leading t o  Eq. ( t 3 )  is  again a p d i c a b l e ,  

provided the  in tegra t ion  i n  (24) is first performed a t  

f ixed  prOt and p , reserving f o r  the  l as t  two in tegra t ions  those over p rot $ 4  
,and pd. The gijf appearing i n  T * 

on an n-1 dimensional subspace. + g i  j 

of c e r t a i n  g I s  and g i j l s  t he  g i j  
i j 

( E q . a  a r e  again conjugate t o  the  

Indeed, because of t he  neglect  

are conjugate t o  the  g on the i j  

subspace of coordinates of t he  ac t iva ted  complex f o r  which the 

o r i en ta t ion  of t he  complex i s  f ixed  (d€=db = d+=O). 

t he  vanishing of c e r t a i n  o ther  g 

conjugate t o  the g 

complex . ) 

(BecaiJse cf 

even' 
. .* 

I s  and g i j l s  the g l J  ij 
on the  i n t e r n a l  coordinate subspace Gf t he  

i j 

Res t r i c t ion  of an oDeration t o  an n-3 dimensional sub- 

space i n  which the  o r i en ta t ion  of the comdex is  f ixed  ( i . e  . df.?=d~=dJ~:O) 

w i l l  be designated by a bar, e.g. i n z  d e t ,  d e t  and . In a l l  

cases i = 1 t o  n-3 and, where indicated,  i f r. 

- - -- 
i ! j  i,j+r i$r i' 

In tegra t ion  over a l l  momenta but pe;  "6 and n in (L-L t )  

and over a l l  momenta i n  (6) may be performed. 

t o  those given previously one obtains  (32) and ( 4 4 ) .  

By arguments similar 

where 

a n  d 
= T d q '  dpa ~ dZ,ot a 
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- 
@ with a = 8, and dl. The integrand i n  the i n t e g r a l  over TT dqi i n  

(49 depends on the angular momenta but only v i a  prOt and P,~,. If 

and p a r e  the  components of p along the body-fixed pr inc ipa l  px, py 2 r o t  

axes, the  symmetry axis being the  z-axis and P, thereby being 

equal t o  p then dp dp dp equals .sin 8 dpx dp dp and ~ f , ~  .a@ 
*' e rd q .  Y J Y  

e W a l s  P i  i- P2 t P i *  

(47) where t h e  limits on p'  are - 
Q. (43) D€W be in tegra ted  i n  part,21 y ie ld ing  Y 

Pro% to Prot ,  tb 

a 

U 2 
r sin 8 n dq dp? dprot 

The masses can -e  ex-racted from (47) : 

The quant i ty  conjugate t o  +r on the n-3 dimensional subsnace,  
- - 

denoted by -p, equals det 
of the  g 

cross-terms were neglected,  equals g/A2Csin26. From g one may 

g './g, where i s  det gij. However, s ince  the determinant, 
i J  Ljtr 

ij 
I s  of the three  ro t a t ions  equals A2Csin2e and s ince  ce r t a in  g 

i 

I I  

now e x t r a c t  El mi, as i n  ( I \  >. 
A reduced mass;? f o r  motion normal t o  S can again be 

defined, but now only on the n-3 dimensional subspace. 

would occur. on this aubpace is  denoted by 

ziJ then the  argument which l e d  t o  (34) leads t o  (49: ,  when appl ied t o  this 

Otherwise a n  inconsistency 

If the  quant i ty  conjugate t o  a 
ij 
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$ = S;"i/Zirr (48 ) 

The area element dS of the hypersurface of constant qr i n  n-dimensional 
cI$ 

space, f o r  any given prOt and p+, is ( aarr)' i#r fsI dqi* It a l so  equals 

d% s i n  8 ( dq') On introducing these results one finds:  

On introducing Eq. (35) for dS and performing several  integrations one 

obtains ( 50). 

where 

(*en the in tegra l  over Sint is independent of prOt and pTB one may in t e r -  

change the order of integrat ion of dSint and du$ durOt. 

&xp(-TrOt/kT du+ durOt (A%)-* equals unity,  since p 4 is integrated from 

-prOt t o  + prot and prOt is integrated from 0 t o  oo.) 

One then finds that  

The re la t ion  of gm t o  am, can be deduced from determinant 

theory, and the  result,^ are Appendix 111. Conditions under which arr and 
Zrr ri 

a re  equal a r e  a180 descr i  here, namely when the cross terms a 

vanish if  i i s  a rotation. 
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From (23)9 (32) and (so) one obtains: 
cs 

where Q is a, configurat ional  i n t e g r a l  f o r  the  reac tan ts ,  defined 

The "diatomid' approximation is r ead i ly  derlved from (5 1 )  ar (52). 

Inspection of t h e  der iva t ion  reveal8 that these equations apply, wi th  

d% ( C)20mitted, with Trot equal t o  ~:,~/28, with ptOt = p i  + $, and 

with the bar on Fr and inddrmting that they are conjugate t o  arr 

and g on an n-2 dimeneional subspace. One obtains: 

I 
e- 

- -  rr 

-T /kT -U*/kT -1 r o t  

( bimolecular)kra te= ( 8nkT)" YUFt'e (&m*arrbm) dSint]e durot'Q 

A spec ia l  case of t h i s  diatomic approxim8tion i n  . .. 
r 

which the coordinate q was taken t o  beR,the separat ion dis tance of 

I 

(st. > 

(54; 



I7 
the  reac tan ts  i n  the  ion-molecule system o r  i n  the recombining 

16 
r ad ica l  system can be derived from (53) RS follows: 

In  the ro t a t ion  plus reac t ion  coordinate subspace 

the l i n e  element is 
ds2 = dR2 t R Z s i f i z 8  d$ + R2deZ, 

from which the corresponding a ' s  e re  given immediately. I n  t h i s  
i j  

orthogonal coordinate system the a i j l s  also vanish f o r  if j .  I t  the  follows 

from Appendix I1 ( A 9 )  that hrr 

easilyr v e r i f i e s  t h a t  w + equals 

rr equals a . Again, i n  

1, the  reduced mass of 
I6,II 4. 

this system one  

the  two 

reac tan ts .  

a term depending so le ly  on R,  U ( R ) ,  and of the  po ten t i a l  energy of 

the i n t e r n a l  coordinates,  where RbWWthe  value of R which 

maximizes the  integrand a t  the  given p 

The approximation was a l s o  made t h a t  UT is the  sum of 

Thereby, one obtains : r o t  

where R is a function of p being the so lu t ion  of r o t  ' 
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Geodesic N o d  Coordiaa tes 

For any reaction hypersurface 

vanishes f o r  i i r  be defined f o r  which g ri 22 1 

S % coordinate system mag 

and for which grr is a con- 

s tan t :  A cooHinate system qL(i=l  t o  n, i+r) is first defined on the 

surface i n  mass-weighted apace. The ooordinates of any point off 

this surface are then defined & drawing the  geodesic through the 

point,  such that the  geodesic cuts  the hypersurface orthogonally. 
i The q f o r  ih are then erssigned the  same values a8 those occurring 

a t  the  intersect ion of the geodesic and the hypersurface. 

f o r  qr is set equal t o  the arc length along t h i s  geodesic from the hyper- 

surface t o  the point. 

this geodesic in maes-weighted space. 

The value 

Hence, ds2 5: g , ( d q r ) 2  = (dqr.)2 along 

The line element i n  this space 

i 8  : 

ds2 = i , j # r g i j  c dqidqj + ( d q q 2  
(57) 

Correspondingly, it c m  be shown, gri vanishes f o r  i+r, and grr 

equals unity. The k i n e t i c  energy then has the following simple form, 

(pi equals d[ (d~/d t )~ /2]  / a i i ) .  .If the def in i t ion  af qr is 

modified so that  ds2 equala 

is some constant then the- coeff ic ient  of p, would be 1/2 p instead. 

p (dqr)2 along the geodesic, w3ere p 

2 
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Af'ter having mad@ a choice of geodesic n o d  coordinates one may use 

(58) and der ive  t h e  ac t iva ted  complex theory rate equation in the  usual 

way,  obtaining an expreasaion analogous to (2.3). 

canonical coordinate transformation t o  any other  coordinates qi and t o  

t h e i r  conjugate momenta, pi, such 88 those occurring i n  (26, Eq. ( 2 3 )  

is obtained becauae of t h e  invariance of the  Hamiltonian and of t he  

phase space volume element t o  such oanonical tranafonuationa. 

Upon introducing I 

It is c l ea r ,  therefore ,  why (23) is the  same a8 the  usua l  ac t iva ted  complex I 
rate equation i n  the l i t e r a t u r e .  

k r t  hur 
It is  of' i n t e r e s t  t o  compareAthe above der iva t ion  of (23) with 

t h e  usua l  one i n  the l i t e r a t u r e .  

we have seen that if one introduces geodesic normal coordinates no assump 

t i o n  is Even without 

the introduct ion of these coordinates,(58) can be used i f  a f i f t h  assump- 

In  t h a t  case assumptions 4 i s  made, though 

using  a 
made i n  k i n e t i c  energy expression of the  form ( 5 8 ) .  A 

t ion ,  o f ten  made i n  ac t iva ted  complex theory, is added, The po ten t i a l  energy 

is expanded about a saddle-point (when it occurs) and only the quadrat ic  

powers of the  displacements a r e  re ta ined;  normal coordinates are then in- 

troduced and rotat ion-vibrat ion in t e rac t ion  is neglected. I n  this case 

gri i e  i n  f a c t  zero and the  k i n e t i c  energy is of t h e  form ( 5 8 ) .  

when the react ion OCCWLI in so lu t ion  and many reolvent molecules p a r t i c i p a t e  

However, 

i n  the complex, t he  r e t en t ton  of only quadrat ic  terms is presumably not r a :  d 

for the many-coupled ro t a t ions  of these solvent, moleculee, though it 

preeumably is va l id  f o r  vibra'tions. - 
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One advantage of t he  der iva t ion  of Eq. (23) given i n  the  

e a r l i e r  sec t ion  as compared w i t h  one based on geodesic normal coordinates 

is that a more d i r e c t  comparison with the step-by-step der iva t ion  of the 

quantum form of (23) is possible i n  the former case. We have seen else- 

where that c e r t a i n  coordinate systems are more useful than other6 in the 
Y 

quantum derivat ion:  

po ten t i a l  energy surface i n  t he  v i c i n i t y  of a saddle-point by one which 

permits separat ion of var iables .  

geodesic normal coordinates, except i n  a spec ia l  case. 

they permit one t o  mlske a l o c a l  approximation of the  

Such coordinate systems do not involve 
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to Chames in External Coordinates *. arr and p: rr ADmndix I. Invariance of p 

For notational convenience, the Cartesian coordinates x1 , . . , 
xn of the atoms in the aetivated complex will be written in this 

E E I !  
appendix as xl, y!, sl,..., x3, y3, 83. When the, Cartesian coordinates 

are varied at  any fixed values of the internal ooordinates the value of 

q ie unohanged. 
n 

n - mt Xf' the x1,...,i3 are 80 transformed to new values, 

, . . .33 by variation of one or more external coordinates we have, 

theref ore : 

-i -i -i i i  new set  x ,y , t is a function only of x , y , si: If Ti 

cmd are coltlnul vectors with elements x , y , a and x , y 5 , 
respectively. 

rrv 

i A -i -i i i i  
w 

They are related according to (A2). 

when R is a oolumn vector whose elements are the x, y and x components 

of the translational displacement and e A is an orthogonal matrix describ- 

ing the rotation. 

- 
A+.. 

/u 

& differentiation of (Al) Eq. (A3)  is obtained. 
lc . 

P 

(A 3j 

where the t ' s  are the elements of the matrix _I A. Because of the 
."m - 
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orthogonal nature of this matrix it fol lwe that the right hand side of 

(A3) equals 

Thia invariance of vi2qr holds for all i (1 t o  n). Recalling the 

definition of .gm and am in Eqs. ( 3 and ( ), it follows that they 

are also invariant to changes in the values of the external coordinates. 
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Ammndix 11. Factor- o f as, 

On ' reca l lhg  the value of dS i n  l3q. ( 19) and the f a c t  that 

a'* was shown i n  Appendix I t o  depend on the i n t e r n a l  coordinates alone, 

it s u f f i c e s  t o  show thatg can be factored i n  order t o  show t h a t  dS can 

be factored i n t o  two terms, one depending on t h e  i n t e r n a l  coordin&es, 

the other  depending on the external coordinates. 

volume element dV equals a i=l dqi and it has been shown that it can 

be so factored,  for example by a 

Proof is complete. To show that the  final result of the f ac to r ing  is  

IllblePPUch as t h e  

2 3  
serial method, a can be factored and the 

of the form ( 35) t o  ( 37) we may proceed as follows : 

I n  t h e  serial method one puts one atom of t h e  ac t iva ted  complex 

any place i n  the  system, specifying i t s  coordinates as x, y, and z. 

Another atom i e  then characterirted by coordinates r e l a t i v e  t o  the  f i r s t  

(e.g.,polar coordinates R, 8, 4) .  A t h i r d  atom is then characterized 

lq coordinates r e l a t i v e  t o  the  first two, and so on, 

i s  found t o  be a product 3 Vi, of which Vi depends on the  i ' t h  set of 

( r e l a t i v e )  coordinates alone. 

F2sin 8 d e  d$  dR, e tc .  Hence: 

The volume element 

i=l 
For example, Vi is dxdydz, V2 i s  

( L$ :>,,I a =  ' i=1 dqi F dV = dxdyda s i n  8 (az dr i=3 dVi) \ 

One may now transform the coordinates on the r.h.8. 

used i n  the body of this paper (q ,..,qn) such t h a t  f i v e  of the qits a re  x, y, z, 

8 and 4, the remaining ones being the f t in t e rna l  coordinates" of the ac t iva ted  

of (A5) t o  the coordinates 
1 

complex. It, follows from (A5) that,$ G+ G - & y d i i  

coordinates alone, 

exhibited i n  (35). 

only x and u 

.---*.,-ll_--_.l -4 
s i n  6 de d p  mult ipl ied 

' 2' a funct ion which contains f a c t o r  R , 
a funct ion of t he  i n t e r n a l  

I n  the  ca i e  of heterogeneous react ions 

p are the "external coordinates" and Eq. (37 )  follows. 
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@ Some reactions in solution, pure electron transfer reactions, 

involve no bond ruptures and it is weful to factor dV in a slightly 

different form: 

to the translations of its center of mass, to the rotations about thier 

center and to the vibrations. 

Let the coordinates of one reactant be transformed 

Let the coordinates of the other re- 

actant be transformed to its m translations, rotations and vibra- 

tions. Then from the six translations six new coordinates can be 

introduced: 

two massea, the orientation of the line of centers (e, 8) and the 
separation distance of the two centers (R). 

the three translations (x, y, e) of the center of these 

The aoordinates of all 

the molecules in the medium e m  be transformed to relative coordinates 

with respect to this line of centers (and separation distance). 

element dV ence again has the form (As), but with the above interpre- 
tation of x, y, 0 ,  8, 9, R, and dS has the form (35). In computing 

dSint, one center of mass is to be held fixed and the other constrained 

The 

to move along a fixed line, because of this factoring. 

rr ApDendix 111, Relation of Ern to a . 
We shall use the following theorem:21 If M is a minor 

in the determinant of the aij'B, if m is the corresponding minor in 

the determinant of a 
rcc 

Is, and if m is the algebraic complement of m in a then: 

M = m a  

ij 

(A61 - -1 
The minor in a formed by the a 

and from qr will be denoted 

(s from the rotational coordinates 

a while that formed by the aiJ's for 
ij 

rx 
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these coordinate i n  d e t  a:LJ w i l l  be denoted 

f inds  : 

arx . From (Ab) one 

- -rr s ince  a a 

shows, so is  arge 

formed by the  ai j ts  of the r o t a t i o n a l  coordinates alone, it w i l l  be 

ca l l ed  as . 

is the  algebraic  complement of arr in z and, inspect ion 
-u However, when M i n  ( A 6 )  is  taken to be the minor 

-v 
Then, m is  simply H. From (A6) one then f inds  

- -1 = a a  z a 

From (A7) and (A8) one obtains ,  f i n a l l y ,  

-IT rx( x -1 a = a a )  

Inasmuch as arF and ax are minors v i t h  aid's as elements, and the  

former contains arr, a r e l a t i o n  between a -rr and arr has been obtained. 

When the cross-tenma ari f o r  i equal t o  a r o t a t i o n a l  co- 

ordinate  equal zero, ar  y: f a c t o r s  i n t o  arr a ' . One then has: 

(A101 rr Zrn = a 

These arils vani8h when the  coordinate hypersurfaces of the  rotaations 

a r e  each orthogonal t o  the  qr-coordinate hypersurface. 

c i t e d  i n  the  t e x t  is  a spec ia l  case of this s i t u a t i o n  in which a l l  

coordinate hypersurfacesfor the  coordinates are m t u n l l y  orthogonal. 

The example 
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