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I . L i s t  of Pr inc ipa l  Symbols 

Symbols a r e  l i s t e d  alphabet ical ly  

A 

Ai 
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i k  

BO 

Bi 

- 
B 

C 

cO 

E 

e i 

e i j  

i jk  e 

Fi 

F? 

F ik  

F?k 

fi  

Acceleration 
4 

BO Components of A with respect t o  base vectors i n  

Amplitudes i n  t r ia l - func t ion  expansions fo r  the  v 

Deformed e l a s t i c  body 

Undeformed e l a s t i c  body 

i 

Body force per  uni t  mass i n  B 

Components of B with respect t o  base vectors i n  
- 

BO 

Boundary curve of surface S 

Boundary curve of surface 

Young ' s modulus 

Relative change i n  magnitude of d i f f e r e n t i a l  l i n e  element along 

'i 

Functions of derivatives of displacement components ; defined 

i n  E q s .  (2.28) 

Alternating tensor:  uni ty  when i # j # k and i, j , k  i n  cycl ic  

order;  negative uni ty  when i # J # k and i, j ,k  i n  noncyclic 

order;  zero otherwise 

coordinate curve 

Sum of surface loads referred t o  

Integrated surface loads on 

So - see E q s .  (7.20) 

Co - see Eqs.  (7.21) 

Coefficients of t h e  6a i n  expansion fo r  6W t h a t  r e s u l t  from 

surface loads re fer red  t o  S - see Eq. (7.35) 

Coefficients of the 6a i n  expansion f o r  6W t h a t  r e s u l t  from 

surface loads on 

Generalized surface loads associated with v i r t u a l  displacements 

i k  e 

0 

i k  e 
- see Eq. (7.36) 

cO 

Fvi 



,I . G 

Qij’Q i j  

h 

k 

Determinant of metric components G 
i j  

Covariant and contravariant base vectors, respectively,  of body- 

f ixed  coordinate system i n  B 

Covariant and contravariant components, respectively,  of metric 

tensor  f o r  body-fixed coordinate system i n  B 

Same def in i t ions  a s  above f o r  body-fixed coordinate system i n  Bo 

P la t e  thickness 

Summation index f o r  t r ia l - func t ion  expansions 

Integrated p l a t e  s t r e s ses  - see E q s .  (7.27) i j  
M 

m Sum of surface loads referred t o  So - see E q s .  (7.20) 

m Integrated surface loads on Co - see E q s .  (7.21) 

i 

i 
* 

co 

cO 

m Surface loads m referred t o  normal coordinate n on 

m Surface loads mi referred t o  normal coordinate n on 

n i 
* * 
n 

N i j  

n 

+ 
n 

n i 

P 

’i 
-4 

R 

S 

Integrated p l a t e  s t resses  - see E q s .  (7.27) 

Coordinate normal t o  C 
0 

Surface uni t  normal 

Components of n with respect  t o  base vectors i n  B 

Point i n  B 

Surface load vector 

Components of ? with respect  t o  base vectors i n  B 

* 

Vector from o r ig in  t o  P 

Surface of B 

V 



dSi Elemental area defined by surface 0 .  = const.  
1 . 

Coordinate tangent ia l  t o  S 

i j  
S Stresses  re fer red  t o  undeformed area 

Kinetic energy 

Time 

S t r e s s  vector  referred t o  area i n  B 

T 

t 

v Volume of B 

Displacement vector  

Components of v with respect t o  base vectors i n  B 
* 

0 

+ 
V 

V i 

V n Components of middle -surf ace displacement along normal t o  

V 
S cO Components of middle -surf ace displacement along -gent t o  

W Stra in  energy 

Vir tua l  work of external  loads "e 

Cartesian coordinates of points  i n  Bo 'i 

Cartesian coordinates of po in ts  i n  B 'i 

si 6 
j '  ij Kronecker de l t a :  unity i f  i = j, zero otherwi-se 

Covariant components of s t r a i n  tensor  re fer red  t o  Bo E 
i j  

Coordinates of .body-fixed coordinate system I( can be written 
ei or ei) 
Lame' constants of e l a s t i c i t y  

Poisson's r a t i o  

Density 

i 0 
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v i  
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c . I INTRODUCTION 

. This report  presents a summary of the  f i rs t  year of research on 

nonlinear aspects of hypersonic panel f l u t t e r .  The research was car r ied  

out under NASA Grant NGR 05-020-102, monitored technical ly  by the  Nonsteady 

Phenomena Branch of Ames Research Center. 

The work is  summarized i n  three p r inc ipa l  categories.  

f u l l  three-dimensional equations of e l a s t i c i t y  a re  derived, and simplified 

versions of these equations a r e  presented f o r  d i f fe ren t  leve ls  of approxima- 

t i on .  The sect ions dealing w i t h  these equations a re  e s sen t i a l ly  a synthesis 

of the tensor derivations of Ref. 1 and the  successive approximations given 

i n  Ref. 2, with the  exception of the treatment of the s t r e s s  tensor .  It is 
f e l t  t h a t  including such derivations i n  t h i s  report  w i l l  a i d  both i n  just- 

i fy ing  a number of assumptions made i n  the  derivation of the pane l - f lu t te r  

equations and i n  i l l u s t r a t i n g  the re la t ionships  between panel - f lu t te r  theory 

and the  more general  three-dimensional theory. Secondly, a l e v e l  of approx- 

imation su i t ab le  f o r  problems i n  panel f l u t t e r  i s  chosen, and panel - f lu t te r  

equations a r e  derived with the  a id  of a var ia t iona l  formulation. A system- 

a t i c  manner of obtaining higher leve ls  of approximation f o r  these equations 

i s  a l so  out l ined.  Final ly ,  a method of solut ion of these equations is  

proposed and discussed. 

f u r t h e r  research. 

F i r s t ,  t he  

A concluding sect ion then deals with plans f o r  

1 



II. STRAIN 

2.1 The S t r a in  Tensor 

Denote by Bo an e l a s t i c  body a t  r e s t  r e l a t i v e  t o  a f ixed  rectangu- 

lar Cartesian ax is  system; the  coordinates of  the  body a re  %(i= 1,2,3) .* 
Then denote by Qi t he  coordinates of an a r b i t r a r y  curvi l inear  coordinate 

system f ixed  t o  the  body. 

r e l a t e d  by equations of the  form 

When the  body i s  a t  r e s t ,  the  coordinates a r e  

The pos i t ion  vector of a point  Po i n  Bo is  given as 

Covariant base vectors a re  defined f o r  t he  body-fixed coordinates i n  

The contravariant base vectors a re  r e l a t ed  t o  the  covariant ones by the  

equations 

J J 

* 
It w i l l  be assumed throughout t h i s  report  that Lat in  indices take 

on values of one, two, o r ‘ th ree ,  and that an index that  appears twice i n  
a term implies summation over these values, unless it i s  otherwise noted 
o r  obvious. Indices tha t  appear more than twice w i l l  not imply summation 
unless the  summation is  expl ic i ty  indicated.  Also, dis t inc t ion  w i l l  be 
made where necessary between-contravariant and covariant quant i t ies  by 
using respect ively ra i sed  (alJ) or lowered ( a i - )  indices.  Note i n  t h i s  
regard that  the  coordinates 6 i  a re  nei ther  coniravariant nor covariant 
i n  themselves, although there  i s  a difference i n  general letween contra- 
va r i an t  and covariant d i f f e ren t i a l s .  The pos i t ion  of the coordinate 
index w i l l  therefore  be ra i sed  or lowered as is convenient. 

2 



Final ly ,  from the  base vectors w e  can define the  covariant and contra- 

var iant  components of the metric tensor  f o r  Bo: 
- 4  gij  - - Qi g j  

(2.5) 

Then we denote by B the deformed e l a s t i c  body a t  some ins t an t  of 

time, whose coordinates i n  t h e  Cartesian axis system are  y i .  The yi 

are r e l a t ed  t o  the  8i by equations of the  form 

O f  course, these re la t ions  along with Eqs. (2.1) imply similar re la t ions  

between the  xi and the  y i .  We assume t h a t  a l l  of these r e l a t ions  a r e  

unique, so t h a t  every point i n  Bo o r  B i s  determined by unique 

coordinates ei, q, or  yi. 

The point Po i n  Bo has now moved t o  P i n  B. For f ixed time 

t, we can take the  f i r s t  of Eqs. (2.6) and obtain the  Cartesian coordi- 

nates of a curve through P by varying, say, el, while holding Q2 and 

e3 constant a t  the  values they take  on a t  P. This curve i s  then the  

el coordinate curve through P, and i n  similar fashion the  8 and 8, 

coordinate curves can be defined. Thus every point  i n  B (or  Bo, f o r  

t h a t  matter)  has th ree  coordinate curves associated with it, as i l l u s t r a t e d  

i n  Fig. 2.1: 

2 

J 
Y1 

Figure 2.1. Coordinate Curves through P. 

3 



By holding one coordinate constant and varying the  other  two f o r  fixed 

time we define coordinate surfaces through P. The coordinate surface 

= constant,  f o r  example, is the  surface through P containing the  

Q2 and O3 coordinate l i n e s .  
-- 

As was done for Bo, we can define a pos i t ion  vector R(B1,f32,83,t), 
covariant and contravariant base vectors G, and T i ,  and covariant 

and 

I n  

The 

I 

and G i j .  Gi j 
contravariant metric-tensor components 

A d i f f e r e n t i a l  l i n e  element i n  B is given by 
0 

i j  da2 = g. .de de 
0 1 J  

B th i s  l i n e  element becomes 

i j  ds2 = G. .de de 
1 J  

covariant components of the s t r a i n  tensor a r e  then defined as 

2 2 i j  ds - dso = ( G i j  - g.  .)doid@’ = 2 ~ .  .de de 
1 J  1 J  

(2.7) 

- 
2Eij = G i j  g i j  

I n  t h i s  manner the  metric tensor f o r  the  deformed body i s  given i n  terms 

of the s t r a i n  tensor and the  metric tensor f o r  t he  undeformed body. 

The displacement vector i s  defined as 

Thus 

- d v ’  
g i  + - aei 

and 

- av . -  - dv dv dv - g i j + -  g j + g i * - + - * -  
ael aeJ ael aej 

(2.10) 

(2.11) 

(2.12) 

4 



. Hence 

(2.13) 

-c 
We wri te  v i n  terms of i t s  components with respect  t o  t h e  undeformed 

body: 
-c 
v = v  p m 

Then we can wri te  
.-- 
- -  - v  gm 
aei 
dv 

m, i 

(2.14) 

(2.15) 

where t h e  comma denotes covariant d i f f e ren t i a t ion  of v w i t h  respect 

t o  Bi and the  metric coqonents  of Boo The s t r a i n  tensor  then 

becomes 

m 

E - - ( v  1 + v  + v  r v .) 
i j  - 2 i , j  j , i  ,i r , J  

(2.16) 

Note i n  pa r t i cu la r  t h a t  the  s t r a i n  tensor  i s  symmetric and i s  wri t ten 

w i t h  reference t o  the  undeformed body. 

There a r e  three  other geometric quant i t ies  that w i l l  be usefu l  l a t e r ;  

these  are the  elongations, shears, and r e l a t i v e  change i n  volume. The 

elongations represent t he  r e l a t i v e  changes i n  magnitude of l i n e  elements 

along the  coordinate curves. A l i n e  element along a coordinate curve 

Bi i n  Bo can be wr i t ten  as 

- i  
dsOi = gi de (i not summed) 

w i t h  magnitude 

(2.18) 

4 -c 
For the  same elements i n  B, we s u b s t i t u t e  Gi and Gii f o r  g and 

gii* 

i 
Then t h e  elongations are defined as follows: 

5 



. 

1 1 1 .  
e i = [&i - dsoiI/d50i = [(Gii)' - (gii)z]Agii)T 

1 1 
= (Gii/gii)" - 1 = (1 + 2 ~ . . / g . . ) 2  - 1 

11 11 (2.19) 

Then l e t  
I(lij 

be t h e  angle between two d i f f e r e n t i a l  l i n e  elements 

%i and dToj, and l e t  sqij be the change i n  t h i s  angle as t he  body 

deforms. Then dij + Sqij i s  the angle between d i f f e r e n t i a l  l i n e  

elements dsi and ds i n  B: 
-c -c 

3 
1 - -1 - 2  + si). .) = (dTi dT.)(dsids.) = G .  . ( G . . G . . )  

1 J  J J 1 J  11 J J  

(i # j )  . (2.20) 

The 

independent ones . 
8qij a re  the  shears;  note t h a t  a t  any point there  a re  only three 

A d i f f e r e n t i a l  volume i n  Bo i s  

(2.21) 

of t he  g i j  where g is  the  determinant of the  covariant components 

metric tensor fo r  B The d i f f e r e n t i a l  volume f o r  B i s  found by 0' 
replacing g with G, t he  determinant of t he  Gi j .  Thus the  r e l a t ive  

change i n  volume as a r e su l t  of the deformation i s  

dV/dVo = (G/g)s 

A l s o ,  it can be shown1* t h a t  g and G a re  re la ted  as follows: 

(2.22) 

(2.23) 

2.2 The Small-Strain Assumption 
Up t o  now there  has been no r e s t r i c t i o n  imposed on the  magnitude of 

t h e  deformations (elongations and shears) .  Such general i ty  i s  ra re ly  

* 
Number superscr ipts  i n  the  tex t  denote references l i s t e d  a f t e r  
Chapter VIII. 

6 



necessary, however, because for  t h e  most p a r t  w e  are concerned with 
purely e l a s t i c  deformations 

case f o r  a f l u t t e r i n g  p l a t e  t h a t  i s  not nearing i t s  fa t igue  l i m i t .  

Recourse t o  a s t r e s s - s t r a in  diagram f o r  any metal commonly used i n  aero- 

space s t r u c t u r a l  applications w i l l  show t h a t  the  s t r a ins  below the pro- 

por t iona l  l i m i t  a r e  much smaller than unity.  

f i ca t ion  w i l l  be t o  assume t h a t  the  strains are  negl igible  i n  comparison 

with terms of order unity.  

In pa r t i cu la r ,  t h i s  is  undoubtedly the  

Therefore the f i rs t  simpli- 

To i l l u s t r a t e  the  process of s implif icat ion,  we choose the  body- 

f ixed coordinate system so t h a t  it coincides with the Cartesian axis  

system when the  body i s  a t  rest .  Then g 

no need t o  dis t inguish covariant components from contravariant components. 

- i j  = gi j  - 6ij, and there  i s  

From Eqs  . (2.19) we f ind  t h a t  the elongations a re  comparable t o  the  strains:  

e i = E  ii (i not summed) (2.24) 

Also, t he  angles 

E q s .  (2.20), 
z) i j  

are r igh t  angles, so  the shears become, from 

C 0 S ( ( b i j  + 6z). .) = s i n  8qij 
1 J  

(i # 3)  
s i n  6qij IJ 6qij = 2Ei 

The determinant g i s  now unity, so with the  a i d  of Eqs . (2.22) and 

(2.23) we get  fo r  the  r e l a t i v e  change i n  volume 

dV/dVo = Eii (2.26) 

Thus t h e  elongations, shears,  and r e l a t ive  change i n  volume a re  also 

negl igible  i n  comparison with terms of order unity.  To t h i s  order of 

approximation, an inf ini tes imal  volume element de de de w i l l  remain 

cubic during the deformation, and it w i l l  have t h e  same volume. The 

body-fixed coordinates w i l l  remain orthogonal, and the body i t s e l f  i s  

f o r  a l l  p r a c t i c a l  purposes incompressible. However, the  t rans la t ion  and 

"rigid-body" ro ta t ion  of t he  volume element are  s t i l l  without l imitat ion.  

The expressions f o r  the  strain components, Eqs.  (2.16), .can be wri t ten 

i n  terms of the  usual p a r t i a l  derivatives:  

1 2 3  

7 



A s  a prelude t o  fur ther  s implif icat ion,  we define the  following 

quant i t ies  : 

i j  

- 4  

COS Cp. 1 = gi*Gi/(giiGii) 

(2 .28)  

The w i j  characterize t h e  average ro ta t ion  of in f in i tes imal  volume 

elements, and f o r  small s t r a i n  they can be iden t i f i ed  d i r ec t ly  with the  

rigid-body ro t a t ion  of these volume elements. The angles qi a r e  the  

ro t a t ions  of t h e  body-fixed coordinate l i n e s  as a r e s u l t  of the deformation. 

They a r e  not the  same as the ro ta t ions  w but they  a re  comparable i n  

magnitude.2 Note t h a t  the  e i j  a r e  symmetric and the  w 

symmetric with respect t o  t h e  indices i and j ,  so  t h a t  the  e i j  comprise 

s i x  independent quant i t ies  a t  any point  while the  

i j '  
are a n t i -  

i j  

w i j  
comprise three .  

The assumption of s m a l l  elongations and shears does not  i n  i t s e l f  

imply t h a t  the  ro ta t ions  a r e  small. However, the simultaneous occurrence 

of s m a l l  elongations and shears and la rge  ro ta t ions  does imply t h a t  a t  

least one cha rac t e r i s t i c  dimension of the  body i s  small i n  r e l a t ion  t o  

the others .  The obvious example of such a body i s  of course a t h i n  p l a t e .  

2.3 The Assumption of L i m i t s  on the  Rotations 

Let us now assume some l imi ta t ion  on t h e  ro ta t ions .  A convenient 

one i s  t o  assume t h a t  t he  squaresof the  ro ta t ions  a r e  s m a l l  r e l a t i v e  t o  

and the  e i j  terms of order uni ty .  Under these circumstances t h e  E 

d i f f e r  by terms of the  order of products of t he  coordinate-line rataticns:2 
i j  

E i j  - e i j  = 0(qi'pj) 

a 



Since these ro ta t ions  a re  of t he  same order of magnitude as the  volume- 

element ro ta t ions  i j  
a re  of t he  order of t he  s t r a i n s  o r  of products of the  volume-element 

ro ta t ions ,  whichever a r e  la rger ,  and it is  for the  most p a r t  l e s s  

r e s t r i c t i v e  t o  take as l a rge r  quant i t ies  products of t h e  ro ta t ions .  We 

wri te  the  s t r a i n  components as 

w i j  ’ we view E q s  . (2.29) as s t a t i n g  t h a t  t he  e 

(2.30) 1 - w  1 r j  
E = e i j  + (eri - wri)(erj i j  

Then the  products l i k e  

products l i k e  e e ri  r j  
products i n  comparison 

1 c i j  = e i j  + 2 

e w a re  t h i r d  order i n  the  ro ta t ions ,  and r i  r j  
a re  fou r th  order i n  the ro ta t ions .  Neglecting such 

w i t h  t he  other terms gives 

w w  r i  r j  

Final ly ,  assuming t h a t  

gives the  l i n e a r  r e l a t i o n  

E = e  
i j  i j  

. (2.31) 

t he  ro ta t ions  a re  of the  order of t he  s t r a i n s  

I n  t h i s  case there  i s  no d i s t inc t ion  between the  pre-deformation and 

post-deformation geometry. 

(2.32) 
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111. COMPATIBILITY EQUATIONS 

The compatibil i ty equations a r e  obtained from the requirement t h a t  

t h e  Riemann-Christoffel tensor  for  a Euclidean space be iden t i ca l ly  zero. 

They a re  usefu l  f o r  t h e  most par t  when problems i n  e l a s t i c i t y  are posed 

i n  terms of t h e  s t r a i n s  o r  the  s t resses .  Since problems of i n t e r e s t  i n  

t h i s  report  w i l l  be posed d i r ec t ly  i n  terms of t he  displacements, the 

compatibil i ty equations w i l l  not be discussed fur ther ;  t h e i r  der ivat ion 

and s impl i f ica t ion  f o r  s m a l l  s t r a ins  and ro ta t ions  can be found i n  Ref.2. 

10 



IV. STRESS; THE EQUATIONS OF MOTION; BOUNDARY CONDITIONS 

4 . 1  S t r e s s  

We assume t h a t  t he  body Bo is  deformed t o  B by the  act ion of 

two types of forces:  surface forces P per  un i t  surface area of B and 

body forces  B per  u n i t  mass of B. The accelerat ion a t  a point  i n  B 

i s  denoted by z. 
The force  exerted across any element of a rea  AS i n  B i s  s t a t i c a l l y  

4 

equivalent t o  a force  AT and a moment a t  some point  on AS. We 

assume t h a t ,  as nS approaches zero around the  poin t ,  S/nS approaches 

zero and *?AS has a f i n i t e  l i m i t  t ,  the  s t r e s s  vector o r  t r ac t ion .  

This s t r e s s  vector depends on two vectors - the  pos i t ion  vector of t h e  

poin t ,  and the uni t  vector normal t o  the  area t o  which 7 r e fe r s .  

We then consider a point  P i n  B w i t h  t he  three  coordinate curves 

through it. 
hedron a t  P with t h e  a i d  of the surfaces 6Ii = constant through P; 

a l s o  shown are  the  appropriate base vectors and the corresponding 

tetrahedron a t  Po i n  the  unstrained body B 

As i l l u s t r a t e d  i n  Fig. 4.1, we define an elementary t e t r a -  

0 :  

P 

Figure 4 .l. Elemental Tetrahedrons f o r  Undeformed and Deformed Body. 

The points  Pi, Poi a r e  located on t h e i r  respect ive coordinate curves 

an inf in i tes imal  dis tance from P o r  Po : 

11 
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4 V - i  
dsoi = POPoi = gide 

(i  not summed) 

The surface 8 = constant through P i s  the  
1 

surface defined by the 8, 
c 1 

and e3 coordinate curves, and i ts  uni t  normal a t  P is  a G l 1 ) - " ,  t he  

rec iproca l  or contravariant base vector divided by i t s  magnitude. The area 
of t h e  s ide  of t he  tetrahedron defined by the  surface 

given vec to r i a l ly  as one-half the area of t he  parallelogram defined by 

ds2 and ds3, o r  as (dT2 x dT3)/2: 

el = constant i s  

-c - 

Thus we can say i n  general  

where 
1 

= [(Wii)"/2]dejdQk (i not summed, i # j # k )  (4 -4) 

dSoi and WOi f o r  B a re  found by sub- 0 The corresponding areas 

s t i t u t i n g  the  proper metric components f o r  

u se fu l  quantity,  the r a t i o  of the area magnitudes: 
Bo. Then we can define another 

Denote by the  wit normal t o  t h e  area P1P2P3, o r  dS, as i l l u s t r a t e d  

i n  Fig. 4.1; no i s  the  corresponding normal f o r  dSo. Let be the 

s t r e s s  vector associated with dS and n. These areas a r e  r e l a t ed  

v e c t o r i a l l y  t o  the  other s ides  of  t he  tetrahedrons as follows: 

- 
3 

id 

i= 1 

12 



4 -c Then, denoting by n and n t h e  components of n .  and n with 
i d  O i  0 

respect t o  base vectors G i  and z i ,  wz get  t he  sca l a r  r e l a t ions  

1 ii 2 n.(G ) ds = dsi  
1 

Associated with t h e  surfaces 8 i  = constant 

a r e  s t r e s s  vectors -t . The equation of motion 
-c 

i 

of t h e  tetrahedron i n  B 

for  t h i s  tetrahedron 

reduces t o  an equation of s t a t i c  equilibrium, because the  i n e r t i a  term i s  

of higher order i n  the d i f f e r e n t i a l  l i m i t .  We f ind  then 

.-c 

tdS = rids i (4 4 

By subs t i t u t ing  f o r  dSi from the f i r s t  of E q s .  (4.7) we obtain 

3 
1 r=c ni(G ii ) 2 - ti 

i= 1 
(4.9) 

- 
The s t r e s s  vector t associated with a surface normal i n  B i s  in-  

var ian t  under coordinate transformation i f  n i s  f ixed.  The ni a r e  

covariant components of t h e  uni t  vector n. Therefore the  s t r e s s  vectors 

(&)Z Ti must transform according t o  t h e  contravariant transformation 

laws, and from them we can define t h e  contravariant  components of a stress 

tensor :  

- 
-c 

1 

We say then t$at iij is the  jth contravariant component of the  s t r e s s  
ii *i 

vector ( G  ) t i  associated with the surface Bi = constant. Note t h a t  

t h e  o i j  a r e  re fer red  t o  t h e  deformed body B - t h e i r  dimensions a r e  force  

p e r  un i t  a rea  i n  By and the indices i and j r e f e r  t o  coordinate d i -  

rec t ions  i n  B. A more convenient formulation is  obtained by basing the  

s t r e s s  vectors on the  pre-deformation, r a the r  than the  post-deformation, 

element of area.  This can be achieved by recas t ing  Eq.  (4.8) i n  terms of 

t h e  o r i g i n a l  areas dSo and dSOi with t h e  a i d  of t h e  second of E q s .  (4.6) 
and E q s .  ( 4 .5 ) .  We thereby obtain 

13 



3 
-c ii 3 4 .-c 

t(dS/dSo)dSo = tOdSO = 1 ,Ti(GGii/gg ) dSoi = tOidSoi- 

i= 1 

where 

i= 1 
(4.11) 

(4.12) 

It i s  important t o  understand tha t  Eqs. (4.11) s t i l l  represent the  

equation of motion of the  tetrahedron i n  B; they a r e  merely r e m i t t e n  so 

t h a t  the  reference area i s  the corresponding area i n  Note, however, 

t h a t  the  components n are the  components of the  surface normal i n  

re fer red  t o  base vectors i n  

Bo. 

BO O i  

Bo. We can wr i te  the  stress vector i n  terms 

of components as before : 

(4.13) 

The r e l a t ion  between the  si' and the  a i j  is  deduced from Eqs . (4.13), 
t h e  second of Eqs. (4.12), and E q s .  (4.10): 

, .  

(4.14) i j  eiJ = (G/g)' u 
i j  We can say then t h a t  s i s  the jth component of the  s t r e s s  vector 

re fer red  t o  the surface = constant of the  tetrahedron i n  ii 3- 
(g 1 t 0 i  
B, whose reference area, however, i s  t he  surface area of t he  same s ide  of 

t h e  tetrahedron i n  i t s  undeformed s t a t e .  We cannot s t a t e  i n  general  t h a t  

t h e  s a r e  the components of a tensor .  i j  

4 .2  The Equations of Motion 

Let us now expand the  tetrahedron s o  t h a t  it becomes an inf in i tes imal  

= constant, 8 + de = constant, i i 
'i curv i l inear  paral le lepiped w i t h  faces 

as shown i n  Fig. 4.2: 

14 
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Figure 4.2. Elemental Paral le lepiped i n  Deformed Body 

The areas of the  faces 8 .  = constant a r e  t o  f i r s t  order j u s t  twice the  

areas  of t he  corresponding faces of the  tetrahedron, s o  we have f o r  the  

forces  on these faces 

1 

1 1 (i not summed, i f j fk )  - t .dS .  = - toi(gg + ii ) 2 d ejdQk 
1 1  

(4 J.5) 

The forces on the  faces Qi + dei = constant a r e  given t o  f i r s t  order by 

The body force  and i n e r t i a  force of the  paral le lepiped a re  given by 

Here we have used the  equation of continuity:  

I 

P W  = P o ( g F  

Applying t h e  force equation of motion t o  the  paral le lepiped gives 

(4.16) 

(4.18) 



3 

Summing moments about some point i n  the  paral le lepiped gives the  symmetry 

property of the s t ress- tensor  components: 

i j  j i  
rJ = r J  (4.20) 

Thus from Eqs. (4.14) we see tha t  t h e  components 
symmetry property.  

s i j  have the same 

Let us now assume t h a t  the  body-fixed coordinate system coincides 

with the f ixed Cartesian axis system when the  body i s  undeformed. Then 

t h e  metric-tensor components become very simple, and Eq. (4.19) reduces 

t o  the  following: 

a i j  - - (S G j )  + p o Z =  p 8  a d  
(4.21) 

Here w e  have wr i t ten  the  

I n  order t o  obtain the sca la r  form of t h i s  equation, we resolve it i n  terms 

of the f ixed base vectors 

and post-deformation Cartesian coordinates t o  each other with the  a i d  of 

t h e  displacement components and then by using the  proper transformation 

l a w s .  The coordinates a re  re la ted  as follows: 

in  component form with the  a id  of Eqs. (4.13).  O i  

- 
gi. This i s  accomplished by r e l a t ing  the  pre-  

(4.22) 

These equations a r e  viewed as defining coordinate curves i n  B t h a t  were 

p a r a l l e l  t o  the  Cartesian axes in  Bo. 
Cartesian coordinates i n  .B of the  l i n e  t h a t  coincided with the  Q3 axis  

i n  Bo by s e t t i n g  el = e2 = 0 i n  Eqs .  (4.22). I n  t h i s  same sense we 

can resolve t h e  base vectors for  the body-fixed coordinates i n  B i n  terms 

For example, we can obtain the  

of those f o r  t he  

t i o n  l a w :  

Cartesian coordinates by using the appropriate transforma- 

(4.23) 
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Thus Eq. (4.21) becomes 

(4.24) 

Since t h e  

easi ly  wr i t ten  as 

are f ixed  vectors,  t h e  scalar form of t h i s  equation i s  
S 

a 
+ %)] + pOBs = p d l S  (4 *25 

- 
where Bs and As are components of B and with respect  t o  the  

f ixed  base vectors gs . 4 

We then proceed t o  simplify these equations as was done fo r  the  

I n  terms of t he  quant i t ies  e, ~ , and strain-displacement r e l a t ions .  
u Eqs. (4.25) become i j '  

a - [ s i j (6  + e - w > I  + p O ~ s  = p&s ae l  s j  s j  s j  (4.26) 

The smal l - s t ra in  assumption (elongations and shears neglLgible i n  com- 

par ison with terms of order uni ty)  does not permit any d i r ec t  s implif ica-  

t i o n  of E i s .  (4.26), although t h e i r  meaning i n  physical  terms is  consid- 

e rab ly  s implif ied.  The body-fixed coordinates i n  B can now be considered 

orthogonal, s o  t h e  equations express the  equation of motion of a rectangu- 

lar  paral le lepiped with a r b i t r a r y  t r ans l a t ion  and ro ta t ion  from i t s  

o r i g i n a l  s t a t e .  The components s (or ,  now, s ) become indis t inguish-  

ab le  from t h e  tensor  components 

squares of t he  ro ta t ions  are small compared with terms of &der uni ty ,  

t he  e 

have then 

i j  
i j  

u i j  (o r  u. .). With the  assumption t h a t  
1 J  

i n  E ~ S .  (4.26) become of higher order and can be neglected; w e  
s j  

[S. .(6 - w ) ]  + po Bs = p A 
a ae, 1j s j  s j  o s  

F ina l ly ,  w e  obtain the  l i nea r  equations when t h  

assumed much smaller than terms of order unity:  

rotatior! then 

(4.3) 

elves a re  

ds i s  ae. + POBs = poAs 
1 

(4.28) 



4 . 3  Boundary Conditions 

A t  any point  on the  boundary where t h e  displacements a re  not given, 

t h e  conditions t o  be s a t i s f i e d  express t h e  requirement t h a t  the  s t r e s s  

vector a t  t h e  boundary surface be equal t o  t h e  surface loading - t h a t  i s ,  
A -  

t h a t  P = t .  We use Eqs. 

normal n i s  t h e  normal 
4 

0 

(4.11) and E q s .  (4.13), where now t h e  uni t  

t o  t he  boundary surface of : BO 

3 

i= 1 - i j  - F = n  s G 
0 O i  j 

(4.29) 

It has been t a c i t l y  assumed, as before, t h a t  t h e  most desirable  form of 

these  equations i s  one where the reference areas a re  those i n  BO. I f  t h e  

surface loading vector i s  given per unit area of B, then the  r a t i o  

dS/dSo is needed. 

elemental areas dSoi, t h e  vector components n and the  s t r a i n s .  It 

w i l l  not be wr i t ten  e x p l i c i t l y  here;  it i s  given i n  Ref. 2 for  Cartesian 

coordinates. 

This r a t i o  depends i n  a complicated manner on t h e  

O i  ' 

As was done with the  equations of motion, we resolve the  second of 

Eqs. (4.29) i n t o  components along t h e  f ixed  Cartesian axes. We l e t  Pos 

be the  components of Po 

Eqs. (4.23);  t h i s  gives 

with respect t o  t h e  base vectors gs and use 

(4.30) 

I n  terms of t he  quant i tes  e and o we have i j  i j '  

The process of s implif icat ion follows c lose ly  t h a t  f o r  t he  equations 

of motion. The small-strain assumption permits no change i n  t h e  form of 

Eqs. (4.31),  but s impl i f ica t ion  does r e s u l t  because the area r a t i o s  

dSi/dSoi and dS/dSo a re  approximately uni ty .  The e a re  neglected 

when squares of t he  ro ta t ions  are small i n  comparison with terms of order 
un i ty :  

s j  
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Pos = n o i  s ij('sj - w  s j  1 (4.32) 

And, f i n a l l y ,  t h e  l i n e a r  equations are obtained when the  ro t a t ions  a r e  

assmed negl ig ib ly  small: 

Pos = n O i  s i s  (4.33) 



V. STRESS-STRAIN RELATIONS; STRAIN ENERGY 

5 . 1  Stress-Strain Relations 

We observed e a r l i e r  t h a t  the problems of grea tes t  i n t e re s t  i n  t h i s  

study would be those where the proportional l i m i t  of the  mater ia l  i s  not 

exceeded. In  other  words, we consider problems t h a t  a r e  geometrically 

nonlinear but e l a s t i c a l l y  l inear ,  and f o r  t he  t h e  being we r e s t r i c t  

ourselves t o  i so t ropic  materials.  The e f f ec t s  of any in t e rna l  d i ss ipa t ive  

processes a re  neglected. The s t r e s s - s t r a in  re la t ions  a re  then l i nea r ,  

and we can use Hooke's law: 

( 5  4 s = ?& 6 -F 2w€ 
i j  kk i j  i j  

where h and p a re  the  Lam& constants of e l a s t i c i t y .  In  terms of 

Young's modulus E and Poisson's r a t i o  v ,  Eqs. ( 5 . 1 )  become 

5.2 S t r a in  Energy 

The s t r a i n  energy for  an e l a s t i c  body can be generally wr i t ten  as 

follows : 

Here the  innermost i n t eg ra l  represents t he  s t r a i n  energy per  un i t  volume, 

obtained by in tegra t ing  with respect t o  the  s t r a i n  from a s t a t e  of zero 

s t r a i n  t o  the  f i n a l  s t a t e  of s t r a in ,  represented by When the body 

i s  purely e l a s t i c  and t h e  s t r e s s - s t r a in  r e l a t ions  a re  l i nea r ,  t h i s  i n t eg ra l  

can be evaluated, and the  strain energy becomes 

t f .  

3 

Note tha t  t he  integrat ion i s  over the  volume of t he  undeformed body. 

When the  body-fixed coordinate system in  

Cartesian system, Eq. (5.4) becomes simply 
Bo i s  ident i f led  with t h e  fixed 

s E de de de w = 'JJ 2 i j  i j  1 2 3 

20 
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V I .  SUMMARY OF THREE-DIMENSIONAL APPROXIMATIONS 

We conclude the  work i n  three dimensions by summarizing the  levels  

of approximation t h a t  have been enumerated above. There a r e  e s sen t i a l ly  

th ree .  One l e v e l  i s  characterized by the  assumption t h a t  the s t r a i n s  do 

not exceed the  e las t ic  l i m i t  and a r e  therefore  negl igible  with respect  t o  

quant i t ies  of order unity,  with no r e s t r i c t i o n  placed on the ro ta t ions .  

The applicable equations a r e  Eqs . (2.30) f o r  t he  strain-displacement 

r e l a t ions ,  Eqs. (4.26) f o r  the  equations of motion, and Eqs. (4.31) f o r  

t h e  boundary conditions.  

t he  addi t iona l  assumption t h a t  squares of t he  ro ta t ions  a re  negl igible  

with respect t o  terms of order unity.  I n  the  same order as f o r  t he  f irst  

l eve l ,  the  applicable equations a r e  Eqs. (2.31), Eqs. (4.27), and Eqs. 

(4.32). 

t he  order of s t ra ins .  The applicable equations a r e  then the  l i n e a r  ones: 

Eqs. (2.32), Eqs. (4.28), and Eqs.  (4.32), again i n  the  same order as 

before.  The equations a re  grouped together i n  Table 1: 

The second l e v e l  i s  obtained by introducing 

The t h i r d  l e v e l  i s  given by r e s t r i c t i n g  the  rotat ions t o  be of 

Table 1. S m a r y  of Levels of Approximation i n  Three Dimensions 

Assumption: Small s t r a i n s  
I 

Strain-displacement: ‘ij = e i j  + (e,i-W,i)(e,j-w,j) 

a i j  Eqs . of motion: - [ s (€is j+e -w ) 1 + pOBs = pOAs 

i j  

aei  s j  s j  

1 Stress  boundary condition: Pos = n O i s  bS j+es j-ws j 

Assumptions : Small s t r a i n s  plus small products 

. ‘ij i j  2 r i  rj 
1 = e  + - w  w Strain-displacement : 

a 
Eqs. of motion: ae. [sij(G s j  -w s j  ) ]  + pOBs 

1 

and squares of rotat ions 

= POAS 

S t ress  boundary condition: Pos = noi6ij(8sja6j) 

Assumptions: Small s t r a i n s  and ro ta t ions  

continued 
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Strain-displacement: 

T Eqs. of motion: 

€ i j  = e i j  

+ POBs = POAS 

St re s s  boundary condition: Pos - - noisis 
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V I I .  PANEL-FLUTTER EQUATIONS AND BOUNDARY CONDITIONS; 

METHOD OF SOLUTION 

7.1 Derivation of the  Euler Equations and Boundary Conditions 

We now consider a thin,  isotropic,  i n i t i a l l y  f l a t  p l a t e  of constant 

thickness h. 

t h a t  the  X 

coincides with the  middle surface of t he  p l a t e  i n  i t s  unstrained s t a t e .  

Let the  f ixed Cartesian coordinate system be located so 

ax i s  i s  normal t o  the  p l a t e  and so t h a t  the  plane 5 = o  3 

Then we must choose the proper l e v e l  of approximation f o r  the  three-  

dimensional equations. It seems c l e a r  from physical considerations t h a t  

f o r  the purpose of t h i s  study the second or intermediate l e v e l  i s  appro- 

p r i a t e .  White it is  evident tha t  s ign i f icant  ro ta t ions  must be taken 

i n t o  account, it i s  equally evident t h a t  the  added complication. of 

accounting f o r  unres t r ic ted  ro ta t ions  i s  unnecessary. This l e v e l  i s  

reasonably consis tent  with the  assumptions used i n  deriving the  von Ka/m’n 

p l a t e  equations, which have been used by some authors (Dowell 5 f o r  

example) t o  study the  pane l - f lu t te r  problem. 

r e s t r i c t i v e  assumptions involved i n  the  development of t he  von K&&n 

equations; these w i l l  be taken up a f t e r  the  equations appropriate t o  t h i s  

study have been derived. 

There a re  huwever addi t ional  

The next s t ep  i s  t o  approximate the  displacements by expanding them 

about t he  middle surface i n  powers of the  l a t e r a l  coordinate: 

h 

vi(e&,e3,t) = Yi(e1,e2,t) + e 3 i ( e  1’ e 2’ t )  + ... ( 7 4  

These s e r i e s  a r e  truncated a t  two terms each, and two geometric assump- 

t i o n s  a r e  used t o  wri te  the  vi i n  terms of the Vi. The middle-surface 

displacements vi a r e  then the unknowns of the  problem. This procedure 

w i l l  be followed i n  the  development t h a t  follows, and afterwards a process 

f o r  going on t o  higher approximations w i l l  be described. 

A 

- 

The f i r s t  of the  geometric assumptions i s  the Love-Kirchhoff hypoth- 

e s i s  - t h a t  f i b e r s  normal t o  the middle surface before the  deformation 

remain normal and unextended a f t e r  t he  deformation. We express t h i s  

assumption mathematically by requiring t h a t  

middle surface. 

= 0 a t  the  €23 = €13 = ‘33 
The other assumption i s  that e f f ec t s  of ro ta t ion  about 
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an ax i s  normal t o  the  plane of the p l a t e  - given by the  quantity w12 - 
a r e  negl igible  i n  comparison with e f f ec t s  of ro ta t ions  about axes ly ing  

i n  the  plane of the  p l a t e  - given by the  quant i t ies  w and w 23 13 
Applying the  second of t he  above assumptions t o  Eqs. (2.31) gives 

f o r  t he  s t r a i n s  

and w i n  terms of t he  W e  write the  quant i t ies  

displacement components by using Eqs. (7 .1)  and Eqs. (2.28). We obtain 

then f o r  el3’ cZ3, and E 

e13’ e23’ e33’ w13J 23 

33 
A a;3 at3 

‘€13 = v1 + 

+ ‘3 
A 

( 7 . 3 )  
A 

‘€23 = v2 + 

+ e3 
A 

A av3 A 

33 

Applying the  f i r s t  of the  aforementioned assumptions gives 

I 
1 = - a e ,  

y 2 - - $  - 
continued 
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and t h i s  i n  turn  gives f o r  the  s t r a i n s  

E13 = E23 = E33 = 0 

I n  obtaining Eqs. (7 .5)  w e  have neglected other nonlinear terms by making 

fu r the r  use of the assumption tha t  products of the ro ta t ions  

w23 
l e f t  over i n  E 

these s t r a i n s  a r e  taken t o  be e f fec t ive ly  zero throughout the  p la te .  

w13 and 

Also, the  terms a r e  negl igible  with respect t o  terms of order unity.  

and E a r e  seen t o  be of higher order, so 33 € 13' 23' 

A t  t h i s  point it would be possible t o  go back t o  the  appropriate 

equations of equilibrium and boundary conditions and derive the proper 

p l a t e  equations. 

s ince t h i s  i s  the simplest way t o  assure a consistent s e t  of equations. 

The Euler equations and boundary conditions a r e  derived from Hamilton's 

pr inc ip le  : 

We prefer  however t o  use a var ia t iona l  formulation, 

dt2 (6T-6W+6We)dt = 0 

1 

where 6T i s  the  f i rs t  var ia t ion of the  k ine t ic  energy, 6W is the 

f i r s t  var ia t ion  of t he  s t r a i n  energy, and 

by conservative o r  nonconservative applied loads. 
6We is  the v i r t u a l  work done 

The var ia t ions a re  
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taken with respect t o  the displacements, which a r e  t h e  Principal  unknowns 

of the  problem. 

The k ine t ic  energy is  writ ten a s  folluws: 

where Vo denotes the  volume of t he  undeformed body. The ve loc i ty  

components a r e  wr i t ten  i n  terms of middle-surface 

with the a i d  of Eqs. (7.1) and Eqs. (7.4).  After 

order terms and then integrat ing with respect t o  

veloci ty  components 

again neglecting higher- 

03, we f ind  

. 
Here the  integrat ion i s  taken over the  planform area of the p la te ,  denoted 
by So. The f i r s t  var ia t ion  i s  then 

SO 

The terms multiplied by h3 

t o  el and e2 by using Green's theorem i n  the plane: 

are then integrated by pa r t s  with respect 

I 

.- .- 
- J, l  + 
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where Co i s  the  curve bounding So. The contour inkegration is  re- 

wr i t ten  i n  terms of a tangent coordinate, s, pos i t ive  counterclockwise, 

and a n o m 1  coordinate, n, posi t ive outward. The var ia t ion  of the 

k ine t i c  energy thus becomes 

Final ly ,  the  var ia t ion  i s  integrated with respect t o  time. A fu r the r  

p a r t i a l  integrat ion with respect t o  time i s  performed, thereby giving 

t h e  f i n a l  form: 

It has been assumed, as usual, tha t  the var ia t ions  a r e  zero a t  

t,. 
account by requir ing t h a t  the  v i r t u a l  displacements be consistent w i t h  

t he  physical constraints  of the problem; t h i s  means i n  pa r t i cu la r  that 

the  v i r t u a l  displacements must be zero a t  any point where the  displace- 

ments a r e  specified.  The expression in  braces i n  the  right-hand s ide  

of Eq. (7.12) w i l l  be used fo r  6T. 

tl and 

Note a l s o  t h a t  the  displacement boundary conditions a r e  taken in to  

We take Eqs. (7 .5 )  and in se r t  them i n  Eq. ( 5 . 5 )  i n  order t o  obtain 

t h e  s t r a i n  energy i n  terms of s t r e s ses  and displacements. We then 

ca lcu la te  the  var ia t ion  of the s t r a i n  energy, reca l l ing- tha t  t he  s t r e s ses  

a l so  depend on the  displacements; we f ind  
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In tegra t ing  with respect  t o  Q3, we f ind  

(7.14) 
where 

N i J  sijde3 
-h/2 

Mij  = J ~ ’ ~  e3sijde3 
-h/2 

As was done f o r  t he  k ine t i c  energy, we in tegra te  by par ts ,  rewrit ing 

t h e  l i n e  in t eg ra l s  around the  edges of the p l a t e  i n  terms of t he  tangent ia l  

and normal coordinates s and n. The N and M a r e  resolved i n  
t h e  tangent ia l  and normal direct ions,  as a r e  the  in-plane displacements 

v and v2. We have then 

i j  i j  

- - 
1 

continued 
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where N and Mm a r e  the integrated p l a t e  s t r e s ses  re fer red  t o  the  

normal t o  the  edge of the  plate ,  and Nns and Mns a r e  the  p l a t e  s t r e s ses  

re fer red  t o  the  tangent t o  the  edge; normal and tangent ia l  edge d is -  

placements a t  the  middle surface a r e  given by Tn 

forces,  we assume that the  surface loads per un i t  area a r e  given by the  

components fi, which represent t h e  proper generalized forces  associated 

w i t h  t h e  v i r t u a l  displacements 6vi. 

wr i t ten  simply as 

nn 

and respectively.  
6' 

For the  calculat ion of 6We, the  v i r t u a l  work of the  ex terna l  

The v i r t u a l  work can therefore  be 

"e = J[ ( f i6vi)dS 

% 
(7.17) 

where by 

and edges. 

we obtain 

S h  we mean the  t o t a l  surface area of the p l a t e  - top, bottom, 
Separating t h e  integrat ion around the  edges from the  r e s t ,  

f bide3 ds 

Co-h/2 

e3=- h/2 

29 



a 

As before, Eqs. (7.1) and Eqs.  (7.4) a r e  used t o  wr i te  the  displacements 

in terms of middle-surface displacements, and the  integrand of Eq. (7.18) 
becomes 

We then define surface loads referred t o  
So 

Fi = f i  + fil I e3 =h/2 e3=-h/2 

e3=-h/2 

m = ( e f )  
i 3 i  le3=h/2 

and edge loads on Co 

F I  =Jhl2 fide3 

- h/2 

With these def in i t ions  and Eq. (7.19) we re turn  t o  Eq. (7.18) and in t e -  

g ra t e  by pa r t s  t he  terms. in  the area in t eg ra l  involving var ia t ions of 

der iva t ives  ( o r  der ivat ives  .of var ia t ions) .  

obtained is  combined with the  or ig ina l  one, and the  resu l t ing  in t eg ra l  

i s  rewri t ten i n  terms of t he  normal and tangent ia l  coordinates n and 

s. 

The contour in t eg ra l  thereby 

We thus f i n d  the  f i n a l  form f o r  the  v i r t u a l  work 6We: 
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The three  var ia t ions  can nuw be combined. After grouping the 

coef f ic ien ts  of each of the variations,  we have 
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For Hamilton's pr inc ip le  t o  be sa t i s f i ed ,  w e  require t h a t  the  a rea  

in t eg ra l  and the  contour in tegra l  be separately zero. Furthermore, s ince 

the  var ia t ions  a r e  independent, we require  that the coef f ic ien t  of each 

var ia t ion  be zero. 

equations of the  problem: 

From the area integral  we obtain thereby the  M e r  

- + F2 - -p hT aN22 %2 
0 2 + 7 q - + a B ; -  

0 

0 

.- 

+ 2  + 
L 

.- 

From the  contour in t eg ra l  we obtain f irst  of all the  r e l a t ions  between 

t h e  applied loads and the  integrated p l a t e  s t resses:  

* 
N = Fn nn 

* * dT3 
M = m  + ns s ?as (7.25) 

* * a3, 
Mnn = m + n ? T i  
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We then f ind  the  quan t i t i e s  t ha t  must be specif ied a t - t h e  edge by examining 

the  contour in t eg ra l  i n  t h e  expression f o r  6We, Eq. (7.22). Any com- 
binat ion of loads or  displacements, t o t a l i n g  four, mst be specified; a 

load or  a displacement from each of t he  four products i n  the  integrand 

* * *  * * 

* 
or  any combination of four  except ones containing, say, both F and n - 
v or  the  l i k e .  n 

To complete the  formulation, we must determine the  integrated p l a t e  - 
s t r e s ses  N and M i n  terms of the displacements vi. This is 
accomplished by using the  s t r e s s - s t r a in  re la t ions ,  Eqs. (5.2), and the  

strain-displacement re la t ions ,  Eqs. (7.5). The s t r e s s - s t r a in  r e l a t ions  

i d  i j  

became 

s = [E( L-v)/(  l+v)( 1-2v)]Ell + [Ev/( l+v)( 1 - 2 ~ )  If22 

+ [Ev/( l+v)( 1-2v)IEll 

11 

s22 - - [E( l-~)/( l+v)( 1 - 2 ~ )  

s12 = [E/(1+v)1El2 

s~~ = LEV/( I+%')( 1-2V) 1 ( Ell+E22) 

"13 = '23 = o  

Even though it is not zero, the  stress 

equations of equilibrium or  the  boundary conditions. This i s  a r e s u l t  

of taking E approximately zero, so t h a t  s33 does no work and there-  

f o r e  does not appear i n  the  expression f o r  the s t r a i n  energy. 

subs t i t u t e  for the  s t r a i n s  from Eqs. (7.5) i n  Eqs. (7.26), in tegra te  wi th  

s33 does not appear i n  the 

33 
Now we 

and then multiply by 8 and in tegra te  i d '  3 t o  get  the N 

We obtain 
e3 respec t  t o  

t o  get  the  M 
i j  

continued 
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a27 

a% 
- (Eh3!t-v) ("3 + -4) V 

%2 - - 12 l+v 1-2v 1-v 

a2y3 
= (Eh3j;-v) ~ 

%2 12 l + v  1-2v J q q  

Using these  r e l a t ions  i n  Eqs. (7.24) alluws the  problem t o  be posed 

so le ly  i n  terms of displacements. 
3 Eqs. (7.24) a r e  s imilar  i n  form t o  those of Herrmann , whereas Eqs. 

(7.27) a r e  not. Herrmann used the stress-displacement r e l a t ions  of von 

K & d n  p l a t e  theory, where t h e  s t r e s s  

while the  s t r a i n  G~~ i s  not. In  other respects,  the  remarks i n  Ref. 

3 apply here - there  a r e  terms t h a t  represent t h e  e f f e c t  of rotatory 

i n e r t i a ,  and i n  the  absence of inertia terms Eqs. (7.24) would a l s o  

reduce t o  the  corresponding ones f o r  t he  von Karman theory. 

i s  i n  e f f e c t  taken a s  zero "33 

/ I  

7.2 Method of Solution 

I n  order t o  obtain solutions t o  these equations, we return t o  

Hamilton's pr inc ip le  and'use a generalization of t he  R i t z  method f o r  

dynamic systems. We take the  s t r a i n  energy a s  given by Eq. (7.14) and 

rewrite it i n  terms of the  displacements alone with the  a i d  of Eqs. 

(7.27). 
depend on the  displacements and t h e i r  der ivat ives  a s  follows: 

We can say then that the k ine t i c  energy and the  s t r a i n  energy 

c ont h u e d  
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( i  = 1,2,3;a,p = i , 2 )  

For the v i r t u a l  work of 

more compact form as 

the  external  forces,  

.- 

we rewrite Eq. (7.22) i n  a 

dV +J[Fn6vn *, + Fs6vs *, + -* F38v3 - - z:6(G)]ds 
(7.29) 

with the  s implif icat ion i n  notation being e a s i l y  discerned by comparison 

of t h i s  equation with Eq. (7.22). 

as follaws: 

The displacements a r e  then represented 

m 

The t r i a l  functions Yik and @.& a r e  chosen so t h a t  they form a com- 

p l e t e  s e t  of orthogonal functions that s a t i s f y  ( a t  l e a s t )  the geometric 

boundary conditions. 

f o r  a simply supported rectangular p l a t e  functions of the form 

For example, one might choose a s  t r i a l  functions 

kxe, 
( 7- 31) 

where 1, i s  the dimension of the p l a t e  i n  the O1 direction; f o r  a 

clamped rectangular p l a t e  one could use 

I Y  COS- I i k  1 (7.32) 
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The amplitude functions a thus become the  unknowns. Note t h a t  t he  

n 
given as sums of products of yl and v2 wi th  the proper d i rec t ion  

cosines. 

of 6alk and 6a2k. The same s i tua t ion  obtains a s  wel l  f o r  dy /dn, 

expressions given i n  Eqs.  (7.30) a r e  subs t i tu ted  f o r  the  displacements 

i n  the  kinetic-energy and strain-energy expressions, the dependence on 

the  new unknowns aik becomes simply 

ik - 
displacements v and Ts are l i n e a r  functions of Tl and - v2, being - 

We can therefore  write t he  var ia t ions  Syn and STs i n  terms 

s ince it can be wr i t ten  i n  terms of dy3/de, and s3/&,. When 3 the  

T = T ( i i k )  

For the  v i r t u a l  work me, w e  f ind  

. (7 .33)  

The unstarred coef f ic ien ts  of the  var ia t ions  i n  t h i s  expression come from 

t h e  area in t eg ra l  i n  Eq. (7.29), and a r e  given by expressions l i k e  

whereas the  s t a r r ed  coeff ic ients  a r e  derived from the  contour in t eg ra l  

i n  Eq. (7.29) and a re  given by expressions l i k e  

The d i rec t ion  cosines cos (e,,n) and cos (e,,s) a r e  those of the 

undeformed p la te ,  so cos (e,,n), f o r  example, is  the cosine of the 

angle between the  el(%) axis  and the  pre-deformation edge normal. 
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c We then rewri te  Hamilton's pr inc ip le  as 

Terms involving the  k ine t i c  energy a r e  integrated by par ts ,  with var ia t ions  

a t  times tl and t2 assumed zero. This gives 

Since the  var ia t ions  a r e  independent, we require  t h a t  each coef f ic ien t  be 

separately equal t o  zero, thereby a r r iv ing  a t  the  s e t s  of equations 

- a W  + Flk + Fa * = 0 

* -?E a (=) - 6 + F2k + F2k = o  
"2, 

-* 
-at 

(7.39) 
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f o r  each value of k. They a r e  i n  general coupled, quasi-l inear,  second- 

order, ordinary d i f f e r e n t i a l  equations. The problem i s  thus reduced t o  

an in i t ia l -va lue  problem, with the r e s u l t s  being the  p l a t e  motion a s  a 

function of time. 

7.3 Extension t o  Higher Approximations 

We r e c a l l  t h a t  i n  applying the  Love-Kirchhoff hypothesis we assumed 

and E were approximately zero throughout the  13 that the  s t r a i n s  

p la te .  It is  therefore  sa id  tha t  t he  e f f ec t s  of t ransverse shear defor- 

mations a re  neglected. 

problem i s  desired, t he  transverse shear deformations must be taken in to  

account. Therefore the  Love-Kirchhoff assumption i s  dropped. Ser ies  

expansions f o r  the  displacements a s  i n  Eqs. (7.1) a r e  assumed, and f o r  

t h e  first approximation the  se r i e s  a re  truncated a t  two terms. 

however, the  l i n e a r  terms i n  

middle-surface terms. The number of unknowns i s  doubled - from three 

t o  s i x  - and a var ia t iona l  formulation as i l l u s t r a t e d  i n  Section 7.1 
w i l l  give s i x  p l a t e  equations and the  proper boundary conditions t o  go 

wi th  them. This formulation has been discussed by Habip . In  pr inciple ,  

it can be extended indef in i te ly  simply by taking more and more terms i n  

t h e  se r i e s  expansions f o r  the displacements, although a s  a p rac t i ca l  

matter there  seems t o  be very l i t t l e  j u s t i f i c a t i o n  f o r  taking t ransverse 

shear deformations in to  account, a t  l e a s t  f o r  i so t ropic  p l a t e s  of thick-  

nesses of i n t e r e s t  i n  t h i s  study. 

I f  now a more accurate approximation t o  the p l a t e  

Now, 

ej a r e  no longer given a s  functions of t he  

4 
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V I I I .  CONCLUDING REMARKS . 
Further research a c t i v i t y  has been divided in to  three areas  of 

investigation, a s  outl ined below: 

(1) The f i rs t  case chosen f o r  de ta i led  analysis  is the one con- 

sidered by Dowell , who applied the  Galerkin method t o  the  von d d n  
p l a t e  equations wi th  f i r s t -o rde r  piston-theory aerodynamic loads. 

expected that a comparison of h i s  r e s u l t s  w i th  those obtained from 

va r i a t iona l  considerations (as outlined i n  Section V I I )  w i l l  help t o  

c l a r i f y  the  relat ionships  between the  two approaches. O f  pa r t i cu la r  

i n t e r e s t  i s  the e f f e c t  of t h e  boundary conditions on these relat ionships .  

This case w i l l  a l s o  provide a convenient means f o r  assessing the  influence 

of addi t iona l  nonl inear i t ies ,  such as aerodynamic nonl inear i t ies ,  on 

5 

It i s  

s t a b i l i t y  and the  behavior of the l i m i t  cycle. 
completion, a new case w i l l  be chosen f o r  de ta i led  analysis .  

c a l  model w i l l  simulate as closely a s  possible an experimental model, w i t h  

t h e  aim being t o  eliminate o r  explain any differences between experimental 

and theo re t i ca l  r e su l t s .  

present ly  under consideration. 

A s  t h i s  comparison nears 

The theore t i -  

Results from a number of experiments 6,798 are 

(2 )  Some l e s s  complex but  very in te res t ing  problems, such a s  a 

beamwith a follower force a t  one end and a Timoshenko beam, a r e  being 

t r e a t e d  with the  va r i a t iona l  approach and the Galerkin method. 

t he re  a re  f o r  the  most pa r t  exact solut ions t o  these problems, it i s  

expected that  some enlightening and very general r e s u l t s  w i l l  be obtained 

t o  be used a s  guidelines i n  the appl icat ion of the var ia t iona l  approach 

and the Galerkin method t o  pane l - f lu t te r  problems i n  general. 

Since 

( 3 )  Although the  p l a t e  equations presented i n  t h i s  report  a r e  ex- 

pected t o  be e n t i r e l y  adequate f o r  the  problems that w i l l  be considered, 

some fu r the r  thought w i l l  be given t o  t h e i r  development. There a re  very 

general  theor ies  f o r  p la tes  and she l l s ,  such a s  that of Koiter , but none 

of them appear t o  be su i t ab le  f o r  problems of i n t e r e s t  i n  t h i s  study. 

On the  other hand, the  poss ib i l i t y  of using the  p l a t e  thickness a s  a small 
parameter i n  an expansion scheme has been explored by a ,number of authors 

(Eringen'', f o r  example), and it appears t h a t  such a scheme would be most 

u se fu l  i n  providing a r a t iona l  ana ly t ic  means bf assessing the r e l a t i v e  

9 
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. 

c import of such e f f ec t s  a s  ro ta tory  i n e r t i a  and t ransverse shear defor- 

mations along wi th  the  geometric nonl inear i t ies  t h a t  a r i s e  when f i n i t e  

ro ta t ions  a r e  considered. . 

. 
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