

ECN Home

Search

Geometry

3 Ambient Conditions

Distribution

7 Definitions

8.1 Soot

8.3 Liquid Penetration Lenath

8.4 Lift-Off Length 8.5 Ignition Delay 8.6 High-Speed Movies & Flow Visualization **Related Internet**

8.2 Jet Penetration

Sites References **Tutorial: Diesel Spray Visualization**

8 Experimental Diagnostics

5 Injector Characterization

6 Fuels

Experimental Data

Constant-Volume

Diesel Combustion

1 Experimental Data

2 Combustion Vessel

4 Thermal & Velocity

Fuels

The composition and properties of the fuels used in the experiments are given in Table 6.1. They consist of three oxygenated fuels (T70, GE80, and BM88) and five hydrocarbon fuels (NHPT, CET, HMN, CN80 and D2). T70 was originally used as a low-sooting fuel with a similar ignition delay as a cetane number 42.5 diesel reference fuel in order to facilitate optical diagnostics in the Sandia/Cummins optical engine (Dec, SAE 970873). Similarly, the oxygenated fuels GE80 and BM88 had the same ignition delay as CN80 (cetane number 80) (Mueller, SAE 2003-01-1791). Ignition delays were matched only after adding a significant portion of an ignition enhancer, EHN, to BM88.

The fuel temperature (T_{f}) and density (ρ_{r}) at the fuel injector orifice are included in Table 6.1. Note that experiments were conducted at two fuel temperatures for D2 and CN80. This is because a fuel injector cooler was added after the initial D2 tests were completed. Table 6.1 shows that fuel density tends to decrease as temperature increases and that the fuel density of CN80 at 373;K is actually closer to the fuel density of D2 at 436 K. The fuel density can be important because fuel jets with the similar fuel density and pressure drop across the orifice will have similar jet momentum, which ultimately affects the mixing of the fuel jet. However, the fuel temperature difference had little effect on the soot level and location, or on the lift-off length and ignition delay (Pickett SAE 2003-01-3080).

Fuel	Composition (by volume)	ρ _f ^g [kg/m ³]	т _ғ [К]	02 ^h [wt%]	Ω _f ⁱ [%]	Cetane Number	Atomic H/(C-O) Ratio	LHV ^j [MJ/kg]	(A/F) k st
т70	70% TEOP ^a 30% HMN ^b	808	373	21.5	7.8	-	2.84	32.6	11.1
GE80	80% TPGME ^c 20% HMN ^b	858	373	25.8	10.0	-	3.15	30.5	10.2
BM88	88% DBM ^d 7% nC16 ^e 5% EHN ^f	907	373	26.5	10.9	-	2.49	28.7	9.5
NHPT	100% n- heptane	613	373	0	0	56	2.29	44.6	15.4
CET	100% nC16 ^e or cetane	673	436	0	0	100	2.13	43.9	15.2
HMN	100% HMN ^b	689	436	0	0	15	2.13	43.9	15.2
	76.5% nC16 ^e	724	373						
CN80	23.5% HMN ^b	682	436	0	0	80	2.13	43.9	15.2
	33.8% aromatics	767	373						
D2	65% paraffins 1.2% olefins	712	436	0	0	46	1.8	42.8	14.7
^a 1,1,3,3 tetraethoxy-propane ($C_{11}H_{24}O_4$) ^g Density at a fuel temperature, $T_{f'}$, and atmospheric									

Table 6.1

^b 2,2,4,4,6,8,8 heptamethyl-

nonane (C₁₆H₃₄)

pressure. The uncertainty is $\pm 2 \text{ kg/m}^3$.

^h Oxygen weight percent.

ⁱ Oxygen ratio of the fuel. See SAE 2003-01-1791.

^c tri-propylene-glycol-methyl-ether ^j Lower Heating Value

 $(C_{10}H_{22}O_{4})$ ^d dibutyl-maleate $(C_{12}H_{20}O_4)$

^e normal-hexadecane (C₁₆H₃₄)

^f 2-ethylhexyl-nitrate (C₈H₁₇NO₃)

^k Stoichiometric air-to-fuel ratio by mass of the given fuel mixing with simulated ambient at 21% O_2 , 6.1% CO₂, 3.6% H₂O, 69.3% N₂.

For further information, contact <u>Web Grand Pooh-Bar</u> Last Modified on January 5, 2007