

Search for Large Extra Dimensions at the Tevatron



1

Kevin Burkett, Harvard University on behalf of the CDF and D0 collaborations

Outline:

Tevatron in Run I – CDF, D0 detectors

Signatures of Extra Dimensions

Results of Searches for Graviton Exchange

Results of Searches for Graviton Emission

First Look at Run II



### Tevatron Performance in Run I





Luminosity

proton-antiproton collider
√s = 1.8 TeV

Run I: Oct 92 – Feb 96
Integrated Luminosity ~120 pb<sup>-1</sup>/expt.



### CDF and D0 Detectors in Run I







- Silicon Vertex Detector $m_{
  m impact}$  resolution  $\sigma_{d_0} \sim (13 \oplus 40/P_T) \mu_{
  m m}$
- Central Tracking Chamber $(\delta P_T/P_T)^2 = (0.0066)^2 \oplus (0.0009 \times P_T)^2$
- Muon and Calorimeter Systems
   high efficiency for e and µtrigger and offline ID





Collider Searches for LED have focused on models of Arkani-Hamed, Dimopoulos, and Dvali (ADD)

- n Extra Dimensions are compactified
- SM world constrained to 4D brane, gravity can propagate in bulk
- (4+n)D Planck scale related to 4D Planck scale

 $M_{Pl}^2 \sim R^n M_S^{2+n}$ 

- Signatures:
  - Direct Graviton Emission
  - Virtual Graviton Exchange



## Collider Signatures for Large Extra Dimensions



#### Direct Graviton Emission $e_{e_{\xi}, e_{\xi}, e_{\xi$ people gaa $g_{\alpha}^{a}(k_{1})$ $g_{\beta}^{b}(k_{2}) \sim f^{f}$ G<sup>(n)</sup><sub>μν</sub> $G_{\mu\nu}^{(n)}$ 22 $k_2$ $q_2$ q1 (a) (c) (d) (b)

#### Virtual Graviton Exchange



- Dileptons
- Diphotons

- Jets + Missing  $E_T$
- Photon + Missing  $E_T$

Kevin Burkett, Planck02 - May 25, 2002





- Pair production in virtual graviton exchange
- Interference between SM and Graviton exchange



• Three terms in cross section: SM, interference, graviton  $\sigma = \sigma_{SM} + \eta \sigma_{INT} + \eta^2 \sigma_{KK}$  where  $\eta = F/M_s^4$ 

Definitions of F :  $\begin{array}{cc} 1 & (GRW) \\ \log(M_S^2/M) & n=2 & (HLZ) \\ (2/n-2) & n>2 & (HLZ) \\ 2\lambda/\pi & (Hewett) \end{array}$ 



### D0 Search in Diphotons and Dielectrons



Combine Diphotons and Dielectrons by dropping track requirements on electrons

- Require 2 EM Objects
  - E<sub>T</sub> > 45 GeV
  - $|\eta_d| < 1.1 \text{ or } 1.5 < |\eta_d| < 2.5$
  - **₽**<sub>T</sub> < 25 GeV
- All Run I data: 127 pb-1
- 1282 events in final sample
  - Main backgrounds: Drell-Yan and  $\gamma\gamma$

• Use both invariant mass and  $|cos\theta^*|$  in fit for  $\eta$ 



## D0 Search in Di-photons and Di-electrons



#### Using M(EM-EM) and $|\cos\theta^*|$ separately



Kevin Burkett, Planck02 - May 25, 2002



### D0 Search in Diphotons and Dielectrons



#### Comparison of the data and the SM predictions

DØ Preliminary, Run I, 127 pb<sup>-1</sup>





# D0 Search in Diphotons and Dielectrons



- Data agrees well with SM
- No excess of events at large M(EM-EM) and small |cosθ\*| where signal would dominate
- Set limits on  $\rm M_{\rm S}$

Limits (95%CL):

- $M_S > 1.2 \text{ TeV} (GRW)$ 
  - > 1.1 TeV (Hewett  $\lambda$ =+1)
  - > 1.0 TeV (Hewett  $\lambda$ =-1)

| n | M <sub>s</sub> (TeV) |
|---|----------------------|
| 2 | 1.4                  |
| 3 | 1.4                  |
| 4 | 1.2                  |
| 5 | 1.1                  |
| 6 | 1.0                  |
| 7 | 1.0                  |



# **CDF Search in Diphotons**



Cross-Section for 
$$p\overline{p} \to \gamma\gamma + X$$
  
$$\frac{d\sigma}{dM_{\gamma\gamma}} = \frac{d\sigma}{dM_{\gamma\gamma}}\Big|_{SM} + \eta \frac{d\sigma}{dM_{\gamma\gamma}}\Big|_{INT} + \eta^2 \frac{d\sigma}{dM_{\gamma\gamma}}\Big|_{KK} \quad \eta = \frac{\lambda}{M_s^4}$$

#### Event Selection:

- $E_T(\gamma) > 22 \text{ GeV}, |\eta| < 1$
- Use central-central (CC) and central-plug (CP)

#### Results:

|       | CC             | CP             |
|-------|----------------|----------------|
| Data  | 287            | 192            |
| SM    | <b>96</b> ±63  | <b>76</b> ±31  |
| Fakes | <b>184</b> ±63 | <b>132</b> ±28 |







Similar to Diphoton Analysis  $\frac{d\sigma}{dM_{II}} = \frac{d\sigma}{dM_{II}} + \eta \frac{d\sigma}{dM_{II}} + \eta^2 \frac{d\sigma}{dM_{II}} = \frac{\lambda}{M_s^4}$ 

Data: 3319(CC), 3825(CP) evts

#### Perform Simultaneous Fit for: n<sub>SM</sub>(CC), n<sub>SM</sub>(CP), n<sub>BKG</sub>(CP), η

#### Results:

|                       | Expected         | Fit             |
|-----------------------|------------------|-----------------|
| n <sub>sm</sub> (CC)  | <b>3463</b> ±223 | <b>3327</b> ±56 |
| n <sub>sm</sub> (CP)  | <b>3883</b> ±292 | <b>3687</b> ±63 |
| n <sub>BKG</sub> (CP) | <b>224</b> ±71   | <b>151</b> ±24  |

 $M_s$  Limits (with K=1.3):

- 826 GeV ( $\lambda$ =-1 Hewett)
- 808 GeV (λ=+1 Hewett)







#### Central-Central Dielectrons

#### **Central-Plug Dielectrons**



Kevin Burkett, Planck02 - May 25, 2002



### CDF Search in Diphotons and Dielectrons



Combine M<sub>S</sub> Limits(GeV) from Dileptons and Diphotons

|                       | Dilepton | Dilepton+<br>Diphoton |
|-----------------------|----------|-----------------------|
| GRW                   | 925      | 1051                  |
| Hewett $\lambda = +1$ | 808      | 853                   |
| Hewett $\lambda = -1$ | 826      | 939                   |
| n=3 (HLZ)             | 1100     | 1250                  |
| n=4 (HLZ)             | 925      | 1051                  |
| n=5 (HLZ)             | 836      | 950                   |
| n=6 (HLZ)             | 778      | 884                   |
| n=7 (HLZ)             | 735      | 836                   |



### CDF and D0 Results for Diphotons and Dielectrons



Run I M<sub>s</sub> Lower Limits from Graviton Exchange (GeV)

| Model                 | CDF  | <b>D0</b> |
|-----------------------|------|-----------|
| GRW                   | 1051 | 1200      |
| Hewett $\lambda = +1$ | 853  | 1100      |
| Hewett $\lambda = -1$ | 939  | 1000      |
| n=3 (HLZ)             | 1250 | 1400      |
| n=4 (HLZ)             | 1051 | 1200      |
| n=5 (HLZ)             | 950  | 1100      |
| n=6 (HLZ)             | 884  | 1000      |
| n=7 (HLZ)             | 836  | 1000      |

LEP: Dileptons(OPAL)  $M_S > 1180, 1170 (\lambda = +1, -1)$ Diphotons(Comb.)  $M_S > 970, 940 (\lambda = +1, -1)$ 





- Additional jets possible from ISR, FSR
- Signature is jets or photon  $+ \mathbb{Z}_{T}$



### D0 Search in Jets + $E_T$



Event Selection:

- E<sub>T</sub>(jet1)>150 GeV, |η|<1</li>
- E<sub>T</sub>(jet2)<50 GeV</p>
- |∆\u03c6(Jet2, E\_T)| > 15° to reduce QCD background
- Reject events with isolated muons
- Reject cosmic ray events

| Background                    | Expected #     |
|-------------------------------|----------------|
| $Z \rightarrow vv+jets$       | 21.0 ± 5.1     |
| $W \rightarrow ev+jets$       | 3.1 ± 0.7      |
| $W \rightarrow \mu\nu$ +jets  | $0.8 \pm 0.3$  |
| $W \rightarrow \tau v + jets$ | $5.3 \pm 2.3$  |
| QCD/Cosmics                   | $7.8 \pm 7.1$  |
| Total                         | $38.0 \pm 9.6$ |

## D0 Search in Jets+E/T



Results in 78 pb<sup>-1</sup>:

- N(data) = 38
- $N(bkgd) = 38.0 \pm 9.6$

Expected Signal (n=2, M<sub>S</sub>=1TeV)

N(signal) = 19.5 ± 3.9







#### Limits on M<sub>S</sub>(GeV) at 95%CL





 $10^{3}$ 











# 



Photon  $E_{\tau}$  (GeV)





CDF Search in  $\gamma + \not\!\!\! E_T$ 





For a given value of n, cross-section falls like 1/M<sub>S</sub><sup>2+n</sup>

For low values of M<sub>S</sub> cross-section in MC is higher for increasing values of n

At low M<sub>S</sub>, limits higher for larger values of n





# CDF Search in $\gamma + \not \! E_T$





#### 



23





# 



Graviton mass distribution peaks higher for n=6

- 2 competing effects
- Heavier gravitons in n=6 case will have larger E<sub>T</sub>
- Heavier gravitons produced closer to threshold due to falling PDFs



Kevin Burkett, Planckuz - Iviay 23, 2002



### Tevatron, Detector Upgrades for Run II



#### Tevatron Upgrades for Run II

- >√s = 1.8 TeV → 1.96 TeV
- >Crossing rate 3.5  $\mu$ sec  $\rightarrow$  396 nsec
- ► Expect ~200 pb<sup>-1</sup> by end of year

Detector Upgrades for Run II

#### • D0

- New 2T solenoid
- New silicon, fiber tracker
  - Silicon to  $|\eta|=3$
- Retain calorimeter, but faster readout

#### CDF

- > New silicon, drift chamber, TOF
- New secondary vertex trigger
- > New scintillating tile plug cal.

>Extends to  $|\eta|=3.6$ 





#### $Z \rightarrow ee$ Candidates from CDF and D0



Kevin Burkett, Planck02 - May 25, 2002



## D0 Expected Run II M<sub>S</sub> Sensitivity (TeV)



#### Jets + $\mathbf{E}_{T}$ Search

| n | Early Run II (300 pb-1) |
|---|-------------------------|
| 2 | 1.40                    |
| 3 | 1.15                    |
| 4 | 1.00                    |
| 5 | 0.90                    |

#### Dilepton, Diphoton Search

|           | Run IIa               | Run IIb                |
|-----------|-----------------------|------------------------|
|           | (2 fb <sup>-1</sup> ) | (20 fb <sup>-1</sup> ) |
| Dileptons | 1.3-1.9               | 1.7-2.7                |
| Diphotons | 1.5-2.4               | 2.0-3.4                |
| Combined  | 1.5-2.5               | 2.1-3.5                |





### First D0 Plots in Virtual Graviton Search in RunII



Follows Run I analysis
Both ee and γγ
Use mass, cosθ\*
E<sub>T</sub>(EM) > 25 GeV

First data agrees qualitatively with background prediction Highest mass candidate consistent with background topology No limits yet



Kevin Burkett, Planck02 - May 25, 2002







- Results from Run I analyses nearly complete
   All should be out by end of summer
   No evidence yet for Large Extra Dimensions
- Run II has begun at the Tevatron
   Upgraded D0 and CDF detectors are operating well
   Expect 100-200 pb<sup>-1</sup> of data by end of the year
   First Run II results at next winter conferences