

EPA Water Infrastructure Adaptation R&D Programs and Tools for Planning and Engineering

Dr. Y. Jeffrey Yang, P.E., D.WRE

EPA National Risk Management Research Laboratory

September, 2008

Office of Research and Development National Risk Management Research Laboratory

ORD Infrastructure Program: Climate Change as an Important Variable

Condition assessment, water quality and asset management...

R&D for Adaptation Tools

Engineering tools for planning and management

- National infrastructure assessment Tool box 1
 - Downscaling in precipitation, overland runoff and flow rate
 - Water quality modeling / prediction
 - Water and wastewater treatment plant performance and adaptive engineering
- □ Water availability Tool box 2
- □ Water resource impacts in biofuel productions Tool box 5

Engineering measures for adaptation

- □ Alternative water resource development Tool box 3
- □ Water conservation Tool box 4

Tool box #1: Engineering analysis and process design under climate changes – Water treatment plants, storm water systems, water quality programs

Nationwide Hydrological Characterization and Regional Studies

- Nationwide hydroclimatic change studies
- Several large regions / areas have responded and will continue to respond to climate change differently
- Boundaries are being delineated
- Large changes in design storm for some locations
- Near completion
- Talking to NOAA in updating the return storm interval
- Release to public some time in the future

7.3% difference in

Case Study: Lower Mississippi River Basin

- Topographically controlled precipitation variation and changes
- ENSO influences on precipitation, floods and nutrient flux
- Upstream nutrient reduction key to hypoxia control. BMP designs incorporating hydroclimatic changes
- Source water impact to water plant operations

Outcomes:

- Methodology for downscaling
- Techniques linking water quality and flow changes to synoptic-scale climatic systems
- Technical basis for adaptation preparation

Case Study: Little Miami River Basin (Ohio)

- BASINS model. Climate change scenarios, and corresponding hydrologic changes in water quality and flows
- BASINS-CAT. ORD/NCEA model to be released soon
- Land Use Model. Predict future land use under climatic changes using Markov chain modeling and GIS predictors
- WTP model. Assess treatment plant performance and necessary process engineering / retrofitting for predicted new source water aualities in future climates

EAVETT BUTTE Legend

Little Miami River Watershed

Outcomes

- Methodology for downscaling
- Tools for land use planning
- Tools for water treatment plant assessment and adaptive engineering
- In an integrated platform

Projected Land Use 2001

Tool Box #2: Water Availability Forecasting

- Methodology and techniques published, being applied in case studies
- GIS and wavelet modeling, RCM calibration, and remotesensing based Water Availability Index (WAI) techniques in an integrated platform
- Support long-term planning and short-term operations
- More pilot-testing sites wanted

Tool box #5: Water resources need assessment and water reuse in biofuel productions

- Investigation of water usage, waste water generation, contaminant byproduct formation during corn-based ethanol productions.
- Engineering studies of wastewater reuse in ethanol fermentation for better economics
- Collaborative studies with universities and the Southern Illinois Ethanol Research Center
- First report on water resources impact and water reuse potential assessment by 2008

Tool Box #3: Alternative water sources development & utilization – wastewater reuse

Wastewater reuse experimental testing

Low-pressure MBR development for wastewater reuse

Tool Box #4: Water conservation - Pipe leak detection and water loss prevention

Pilot-scale Experimental Station at EPA T&E facility (Cincinnati, OH)

11

Field-scale Experimental Station at EPA-Edison Facility (New Jersey)

- Aim to find economic and effective technologies to reduce water loss and prevent water quality deterioration in pipes
- Conservation is a major adaptation measure at stake for both water and energy
- New non-intrusive detection technology in focus: networked sensor array with acoustic and water quality sensors
- Manual for water pipe leak detection and management
- Water pipe leak and infrastructure database on pipe failure modes, geographic distribution, network age, network operations, ...
- New field testing sites are needed in cooperation.

A part of:

- EPA 21st Century Sustainable Infrastructure
- EPA Climate Change and WRAP Research

Summary – Thank You!

Engineering tools for planning and management

- National infrastructure assessment Tool box 1
 - Downscaling in precipitation, overland runoff and flow rate
 - Water quality modeling / prediction
 - Water and wastewater treatment plant performance and adaptive engineering
- □ Water availability Tool box 2
- □ Water resource impacts in biofuel productions Tool box 5

Engineering measures for adaptation

- Alternative water resource development Tool box 3
- □ Water conservation Tool box 4

http://www.epa.gov/nrmrl/wswrd/wqm/wrap/ yang.jeff@epa.gov, 513-569-7655