Landfill Gas Collection System Design

What you need to know

How it affects your job

Design Objectives

- Control migration
- Control emissions
- Control odors
- Maximize gas collection for energy recovery
- Comply with regulations

Designing to Accommodate the Variable Nature of Landfills

- MSW
- C&D
- Waste Age
- Method of Filling
- Location
- Climate

Types Of Systems

Passive

Active

Passive System

 System that relies on pressure or concentration gradients to function
 Vertical vents, gravel trenches

Active System

 System that includes a prime mover that creates a vacuum on the landfill

- Vertical gas wells
- Horizontal collectors

Passive • Pluses and Minuses Low Operating cost Low initial cost Positive pressures Gas collection inefficiencies Condensate removal Minimal capacity

Active

Pluses and Minuses

- Maximum capacity
- Functions with various gas systems
- Maintains vacuum on the landfill
- Higher initial cost
- Higher operating cost

What Goes into a Gas Collection System Design?

- Well Spacing
- Well Materials and Depth
- Non-Well Extraction Points
- Collection Piping
- Condensate
- Dual Gas/Leachate Extraction
- Flares

Well Spacing

- ROI equation
 - Limitations of
- Landfill design
- Permeability
- Waste type
- Operating pressure/vacuum

Well Spacing

Typical ranges of ROI
 Passive Wells

Active Wells

Well Spacing

- Gas venting layer beneath final cover
 - Waste Hauling and Bath Examples
 Sand vs. Geosynthetic

- Pipe vs. Pipeless vs. non-gravel pack wells
- Well diameter
- Materials of construction
- Well heads
- Well Lifecycle
- Design Limitations

- Pipe vs. Pipeless vs. non-gravel pack wells
 - Depth
 - Packing
 - Surface seal
 - Geomembrane Boots
 - Connection to header
 - Header design

Well diameter

- Implications
 - Flow
 - Pressure
- Cost

- Well Design / Materials of construction
- Typically HDPE or PVC
- Stainless Steel
 - (rarely)

• PVC

- Rigid
- Higher temperature
- Structurally functional when slotted
- Easy to extend
- Higher cost
- Variety of manufactured fittings

HDPE

- Low cost
- Very flexible
- Temperature affects
- Stainless Steel
- Other materials

Geomembrane Boot Around Well

Well heads

- Monitoring capability
- Liquid level accessibility
- Resistance to environmental affects
- Versatility after installation

Well Design - A

A BETTER TOMORROW made possible

A Tyco International Ltd. Company

EarthTech

Well Design - B

Accu-flo Model

EarthTech

A BETTER TOMORROW made possible

A Tyco International Ltd. Company

Remote Up-slope Wellhead

- Used when header is upslope of well
- Prevents lateral from filling with condensate
- Typical lateral/wellhead will become blocked with condensate in this configuration

Remote Up-slope Wellhead

Well Life Cycle

- Life expectancy
- Causes for decline in well performance
 - liquids
 - silt
 - pipe crushing
- Design Limitations

Non-Well Extraction Points

Leachate collection risers

Trench systems

Regulatory Implications

Leachate Sump Riser Connection

Sump Tie-in

Horizontal Trench Design

• How to:

- Get the vacuum to the wells
- Get the gas from the well to the flare
 - Or the power plant

- Looping systems
- Pipe slope
- Pipe diameter
- Valves
- Pipe Lifecycle
- Condensate

Header Pipe Trench

Looping systems

- Benefits vs. costs
- Designed to be redundant
- Accepts expansions

Pipe slope

- Implications associated with settlement
 - Bellies
 - Sedimentation
 - Shearing
- Design Options
- Design Limitations

Pipe diameter
sizing for gas and condensate flow

Collection Piping - Valves

- Control valves at strategic locations in header system
- Purpose
 - Isolation portions of the system for maintenance, etc
- Not used for balancing the wellfield
 - Use values at wellheads for that

Collection Piping - Valves

Types

- Butterfly
- Gate
- Others
- Materials of construction

Underground Control Valve

Collection Piping - Valves

 Monitoring ports on both sides of valve for troubleshooting

Collection Piping

Pipe Life Cycle

- Life expectancy
- Causes for decline in flow capacity
 - Landfill settlement
 - Pipe crushing
- Design Limitations

HOW DID ALL THIS LIQUID GET IN MY GAS HEADER PIPES?

- What is it?
- Where does it come from?
- Can't we make it go away?
 No!
- How do we manage it?
- What if we don't manage it?

• What is it?

- Warm gas from within the landfill
- Saturated with water vapor
- Flows into a cooler area
 - Wellhead above ground at ambient temperature
- Voila Condensate!

- Managing it
- Need to size headers to carry it, along with the gas

Headers need to be sloped so condensate doesn't pool in them!
NEED TO MAKE SURE HEADERS DON'T HAVE UNDRAINED LOW POINTS!!!

Estimating quantities of condensate

- Gas flow estimates
- Humidity change
- System design and gas temperature

- Condensate Management Structures
 - Knock-outs
 - Lift stations
 - Barometric drip legs
 - Transfer stations
 - Drip legs
 - Potential for air intrusion
 - Pneumatic vs. Electric

Sump

Knock-out Station

Drip Legs

Condensate Drip Leg

- Consequences of inadequate condensate management
 - Flooded headers
 - Low vacuum at well heads
 - Effectively reduces pipe diameter
 - Increased operating cost

Condensate Knock-out and Pump

Condensate Knock-out and Pump

Inline Knock-out

Dual Leachate/Gas Extraction

What do we do with the gas once we collect it?

- Enclosed vs. open
- Sizing
- Capacity ranges
- Interconnection with gas recovery project

Enclosed vs. open

- Destruction efficiency
- Cost
- Simplicity of operation

Sizing

- Gas rate
- Operating temperature
- Ignition source

Capacity ranges (turndown capability)
 May be important for some of the closed sites with very little gas

Blower and Flare Station

A Tyco International Ltd. Company

A Tyco International Ltd. Company

Blower and Flare Station

Flare Drain

Open Flare

Controls

Emission safety interlock

- Flare Off
 - Blower Off
 - Valve Closes
- Pneumatic Valves
- PLC

Flare Valve

Actuator

Flare Diagram

Blower Inlet

Propane Tank

Flame Arrestors

A Tyco International Ltd. Company

Control Panel

Nitrogen Supply

Flares

- Interconnection with power plant operations
- Implications for NSPS/EG compliance

Construction Quality Assurance

 Documenting that the constructed system resembles the permitted system

- Critical elements
- Well construction
 - Depth
 - Slotted pipe
 - Backfill
 - Seal and boots

- Critical elements
- Header
 - Slope
 - Pipe size
 - Air tight
- Condensate Management
 - Pipe connections
 - Dripleg dimensions

Critical elements

 Document what gets buried and can't be seen after the fact

Collection System Cost Comparison

- Active vs. passive
- Typical 1-10 well system
- Typical 10 20 well system
- Typical 20 50 well system

